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Messenger RNAs undergo 5’ capping, splicing, 3’-end processing, and export before
translation in the cytoplasm. It has become clear that these mRNA processing events are
tightly coupled and have a profound effect on the fate of the resulting transcript. This proc-
essing is represented by modifications of the pre-mRNA and loading of various protein
factors. The sum of protein factors that stay with the mRNA as a result of processing is modi-
fied over the life of the transcript, conferring significant regulation to its expression.

essenger RNA (mRNA) transcripts are
M extensively processed before export. 5’ cap-
ping, splicing, and 3’-end processing represent
nuclear processes that are large determinants
of the fate of a transcript. As mRNA process-
ing events involve different cellular machinery
(Fig. 1), RNA sequences, and have different
consequences for target mRNAs, these pro-
cesses were long seen to be independent of one
another. It has become clear over the last de-
cade, however, that these events are integrated
and coordinated in space and time (Schroeder
et al. 2000; reviewed in Bentley 2002; reviewed
in Moore and Proudfoot 2009). Nuclear pro-
cessing steps require a large set of proteins,
many of which are loaded onto the transcript
as a result of processing, adding a layer of
regulatory information that can affect export,
localization, translation, and stability of the
transcript. Examples of such proteins include
the exon-junction complex (EJC), left behind
from splicing, and the THO/TREX complex,

loaded during elongation. Indeed, the highly
integrated nature of nuclear mRNA processing
adds a new level of complexity to our picture
of gene regulation. The availability of genetic
fluorescent tags and sophisticated microscopy
technology adds a dynamic component to this
picture, providing spatial and temporal infor-
mation and highlighting how nuclear structure
might regulate gene expression (reviewed in
Gorski et al. 2006; reviewed in Moore and
Proudfoot 2009).

Transcription, the major contributor to
RNA biogenesis, takes place under constraints
of an anisotropic nuclear landscape that is
highly structured (chromatin, distinct nuclear
bodies, etc.) and dynamic (gene mobility, dif-
fusive factors, genomic reorganization during
cell cycle progression, etc.) (Yao et al. 2008). The
availability of increasingly sensitive equip-
ment and fluorescent markers has made it pos-
sible to intensively interrogate transcriptional
dynamics (Fig. 2) (Becker et al. 2002; Janicki
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Figure 1. mRNA processing is tightly coupled to tran-
scription. The phosphorylation state of the C-termi-
nal domain (CTD) of RNA Polymerase II (Pol II) is
given on the right in relation to major steps of tran-
scription. Listed are functional processing sequences
(red), components of processing machinery (blue)
and factors that are loaded onto the transcript as a
result of processing (green).

et al. 2004; reviewed in Shav-Tal et al. 2004b;
Darzacq et al. 2007; Yao et al. 2007). Such ap-
proaches provide a new perspective on mRNA
metabolism that has been mostly based on bio-
chemical data. For instance, whereas preformed
transcription complexes are sufficient for in
vitro transcription, live cell imaging experi-
ments show that different transcription factors
show a wide range of dwell times at the pro-
moter and suggest a link between transcription
complex assembly dynamics and transcription-
al output, consistent with a subunit assembly

model for transcription complex recruitment
(Gorski et al. 2008; reviewed in Darzacq et al.
2009). Modulation of transcriptional speed and
processivity is suggested to be a way of reg-
ulating gene expression (Darzacq et al. 2007;
reviewed in Core and Lis 2008; Core et al.
2008). These techniques have revealed highly
inefficient transcription by RNA polymerase 11
(Pol IT) and stochastic assembly of transcription
complexes (Darzacq et al. 2007; Gorski et al.
2008), and both assembly and processivity can
be regarded as rate limiting steps of in vivo
transcription (reviewed in Core and Lis 2008).
A novel way to look at gene expression has
been recently presented by analyzing transcript
amounts in individual cells on the single mol-
ecule level. Here the mean expression level and
its variation are accessible, leading to a detailed
understanding of variability in gene expres-
sion within a population (Zenklusen et al.
2008). Time lapse experiments add further in-
formation concerning the expression mode of
individual genes, providing insights into dif-
ferences between constitutive expression and
bursts in different species (reviewed in Larson
et al. 2009). These experimental approaches
allow for in depth characterization of transcrip-
tional dynamics (reviewed in Darzacq et al.
2009; reviewed in Larson et al. 2009), and are
likely to provide greater insight into down-
stream processes.

TRANSCRIPTION SETS THE STAGE FOR
PROCESSING

Transcription, particularly the carboxy-termi-
nal domain (CTD) of RNA Pol II, contributes
significantly to the integration of nuclear
mRNA processing (Fig. 3). The CTD is an
essential domain of the largest RNA Pol II
subunit, composed of conserved YSPTSPS hep-
tad repeats that are subject to reversible phos-
phorylation. It is well established that the CTD
functions in transcription, and it has an equal-
ly important role in mRNA processing. The
CTD interacts with a large number of protein
factors, and among the protein domains shown
to show preferential CTD binding are: CTD
interacting domains (CIDs), WW domains,
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Figure 2. In vivo detection of transcription using fluorescence microscopy. Schematic shows a reporter cassette
that is integrated as gene arrays into the genome. RFP-Lacl labels reveal array locus and immunofluorescence
shows that RNA Pol II with three distinct phosphorylation states is recruited to these active transcription sites
(B—M). Similarly, the gene array, visualized by CFP-Lacl, colocalizes with both MS2-tagged mRNAs, seen by
GFP, and mRNA FISH probes targeting exonic and intronic regions (N-Y). (Reprinted, with permission,

CFP-Lacl

CFP-Lacl

from Darzacq et al. 2007 [© 2007 Macmillan Publishers, Ltd.].)

and FF domains (Verdecia et al. 2000; Smith
et al. 2004; Noble et al. 2005). Serine 5 phos-
phorylation of the CTD occurs when RNA
Pol ITis at the 5’ end of the gene and is mediated
by the TFIIH-associated kinase CDK7 (Kin28 in
yeast) as transcription initiates. Serine 2 phos-
phorylation is mediated by PTEFb (CTDKI1
in yeast) as the processive RNA Pol II elon-
gates through the body of the gene (Komar-
nitsky et al. 2000; Peterlin and Price 2006).
These phosphorylation marks are critical to
the proper progression of transcription and
are required for coordinating processing events

(reviewed in Hirose and Manley 2000). Indeed,
the CTD has been shown to bind over 100 dif-
ferent yeast proteins in its phosphorylated state
(Phatnani et al. 2004). It can adopt different
conformations depending on phosphoryla-
tion patterns, protein interactions, and proline
isomerization via peptidyl-prolyl cis/trans iso-
merases (PPIases) (reviewed in Hirose and
Ohkuma 2007). In this way, the CTD functions
as a recruitment scaffold for different process-
ing factors throughout transcription, thereby
integrating processing events in time. Fur-
thermore, changes in chromatin structure on
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Figure 3. Depiction of several events that coincide with the switch from a promoter-engaged “poised” RNA pol-
ymerase to an elongating productive RNA polymerase (shown in purple). Histone modifications and changing
CTD phosphorylation states are known to be associated with this switch. Furthermore, transcription is inti-
mately coupled to mRNA processing events such as 5 capping and splicing. (Reprinted, with permission,

from Moore and Proudfoot 2009 [©) 2009, Elsevier].)

transcriptional activation are likely to contrib-
ute to mRNA processing through gene posi-
tioning, or relocation at or near nuclear pores,
and gene looping, or formation of DNA loops
in which 5’ and 3’ ends make contact (reviewed
in Moore and Proudfoot 2009). Recent evidence
from studies using galactose genes in yeast
showed that gene positioning can be a further
regulatory step, and an interaction has been
shown between transcription-dependent com-
plexes (e.g TREX/TREX-2), chromatin remod-
eling complexes (e.g. SAGA), and nuclear pores
(reviewed in Blobel 1985; Cabal et al. 2006;
Klockner et al. 2009; reviewed in Moore and
Proudfoot 2009). Export however, is likely
to depend on successful maturation of the
mRNA, and whereas in yeast gene gating to
nuclear pores is suggested, mRNAs of other
genes reach nuclear pores in a diffusive manner.
Studies in mammalian cell systems have not
supported gene gating, as fluorescence corre-
lation spectroscopy (FCS), FRAP and single
particle tracking consistently suggest diffusive
behavior (Politz et al. 1998; Shav-Tal et al.

2004a; Grunwald et al. 2006; Politz et al. 2006;
Braga et al. 2007; Siebrasse et al. 2008). In ad-
dition, high resolution studies of the nuclear
periphery led to the conclusion that DNA is
absent at the nuclear basket of nuclear pores
(Schermelleh et al. 2008). Thus, transcription,
and the associated machinery, serves to localize
processing factors to the appropriate place on
the nascent mRNA, stimulate and coordinate
processing and possibly establish functionally
significant chromatin conformations.

CAPPING

The first processing event an mRNA under-
goes is 5-end capping which requires three
enzymatic activities: RNA triphosphatase, gua-
nylyltransferase and 7-methyltransferase (re-
viewed in Shuman 2001). Occurring early in
transcription after RNA Pol II has transcribed
the first 25—30 nucleotides, the RNA triphos-
phatase first acts on the terminal nucleotide
to remove the y-phosphate. The guanylyltrans-
ferase then transfers GMP from GTP to form
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GpppN, which is subsequently methylated. In
mammals, a bifunctional capping enzyme in-
cludes both amino-terminal RNA triphosphate
activity and carboxy-terminal guanylyltrans-
ferase activity. In yeast, the RNA triphosphatase
(Cetl) and separate guanylyltransferase (Cegl)
form a heterodimeric capping enzyme. In both
cases, a separate methyltransferase (Abdl in
yeast) is required to methylate the guanine at
the N7 position.

TRANSCRIPTION AND CAPPING ARE
TIGHTLY COUPLED

Mammalian capping enzyme binds directly to
the elongating RNA Pol II with a phosphory-
lated CTD (termed RNA Pol 110) through its
guanylyltransferase domain (Yue et al. 1997),
thereby coupling capping to the early stage of
transcription. Yeast capping enzyme subunits
also bind directly and independently to RNA
Pol 110, and this interaction is dependent on
Kin28, the subunit of TFIIH responsible for ser-
ine 5 phosphorylation (Rodriguez et al. 2000).
The loss of serine 5 phosphorylation during
transcription correlates with the release of the
capping enzyme, which is believed to occur
before the nascent transcript is 500 nucleotides
long (reviewed in Zorio and Bentley 2004).
Cegl guanylylation activity is inhibited by the
phosphorylated CTD but is restored and
enhanced by Cet1, and this allosteric regulation
may represent a means to temporally coordinate
guanylylation and triphosphatase activities
(Cho et al. 1998; Ho et al. 1998). In mammals,
CTD binding to the guanylyltransferase has
an allosteric affect, causing a twofold increase
in affinity of guanylyltransferase for GTP
(Ho and Shuman 1999). CTD phosphorylation
that accompanies the transition from initiation
to elongation has a clear impact on capping and
allows communication between the transcrip-
tional machinery and capping enzymes. It
seems that capping also has a direct impact on
transcription. Recent evidence indicates that
capping enzymes can relieve transcriptional
repression, suggesting an additional role in pro-
moter clearance (Mandal et al. 2004). Tempera-
ture sensitive cegl yeast mutants are sensitive

RNA Processing and Export

to drugs that disrupt elongation and show de-
creased transcription through promoter-proxi-
mal pause sites (Kim et al. 2004a). Furthermore,
yeast capping enzyme subunits influence RNA
Pol II occupancy at the 5" end and may regulate
transcription reinitiation (Myers et al. 2002;
Schroeder et al. 2004). Taken together, it seems
that transcription complexes are held at the
promoter until capping occurs, after which the
polymerase switches into an elongating mode.

CONSEQUENCES OF SUCCESSFUL
CAPPING

Capping of transcripts confers stability. In yeast
as well as mammals, capping helps protect the
transcript from 5'—3’ exonucleases present in
both the nucleus and cytoplasm (Hsu and
Stevens 1993; Walther et al. 1998). The 5 —3’
degradation pathway involves deadenylation
followed by rapid decapping by Dcpl/Dcp2,
and degradation by the processive 5’ — 3’ exonu-
clease, Xrnl (Hsu and Stevens 1993; Muhlrad
etal. 1995). The cap is also important in media-
ting mRNA recruitment to ribosomes. The pro-
tein complex elF4F recognizes the cap before
translation, and facilitates circularization of
mRNAs via an interaction with polyA-binding
protein (PAB1), thereby aiding in translation
reinitiation and enhancing protein synthesis
(Tarun and Sachs 1996; Wakiyama et al. 2000).
Transcripts engaged in translation are protected
from degradation suggesting competition be-
tween translation and degradation (reviewed in
Jacobson and Peltz 1996). Finally, depletion of
CBC (cap-binding complex) from HeLa cell
extracts inhibits the endonucleolytic cleavage
step of 3’-end formation, reduces the stability
of poly(A) cleavage complexes, and disrupts
communication between 5’ and 3’ ends (Flaherty
etal. 1997).

SPLICING

The precise removal of noncoding intervening
sequences, or introns, from many pre-mRNAs
is a required process for proper protein expres-
sion. In both yeast and mammals, this reaction
is catalyzed by the spliceosome, consisting of
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the U1, U2, U4, U5 and U6 small nuclear RNPs
(snRNPs) in conjunction with a large number
of additional proteins (reviewed in Stark and
Luhrmann 2006). Within the spliceosome, a
series of RNA—RNA, RNA-protein, and pro-
tein—protein interactions is needed to identify
and remove intronic regions and join exons,
producing a mature transcript (reviewed in
Collins and Guthrie 2000). The mature spliceo-
some carries out splicing through two trans-
esterification reactions. First, the 2’-OH of a
branch point nucleotide performs a nucleolytic
attack on the first nucleotide of the intron,
forming a lariat intermediate. Second, the 3'-
OH from the free exon performs a nucleolytic
attack on the last nucleotide of the intron,
thereby joining exons and releasing the lariat
intron. Intron identification relies on certain
sequences, including the 5’ splice site, branch
point (and downstream polypyrimidine tract)
and 3’ splice site. In yeast, splice sites are easily
identified, and although only 3% of genes con-
tain single short introns, they account for more
than 25% of cellular mRNAs (Ares et al. 1999;
Lopez and Seraphin 1999; reviewed in Barrass
and Beggs 2003). In mammals, however, splice
sites are less clear, and many genes contains
multiple introns that vary from a few hundred
to hundreds of thousands of nucleotides
(Lander et al. 2001). The presence of putative
splice sites in higher eukaryotes does not nec-
essarily lead to selection of these sites by the
spliceosome. Flanking pre-mRNA regulatory
elements, including intronic and exonic splic-
ing enhancers or silencers, bind trans-acting reg-
ulatory factors that enhance or repress snRNP
recruitment to splice sites. Generally, exonic
splicing enhancers are bound by Serine/Argi-
nine-rich (SR) proteins, whereas exonic splicing
silencers are bound by heterogenous nuclear
ribonucleoprotein (hnRNP) proteins (reviewed
in Cartegni et al. 2002; reviewed in Singh and
Valcarcel 2005). Therefore in higher eukaryotes,
it is the cumulative effect of multiple factors
that modulates splice site selection. As a result,
92%—94% of human transcripts are subject to
alternative splicing, representing an important
source of diversity in gene expression with
serious implications for health and disease

(reviewed in Nissim-Rafinia and Kerem 2005;
Wang et al. 2008). Conversely, in yeast, SR pro-
teins do not appear to have a significant role in
splicing, consistent with the absence of exonic
splicing enhancers (reviewed in Wahl et al.
2009).

The spliceosome is rich in proteins, con-
taining approximately 125 different proteins
(more than two-thirds of its mass), and spliceo-
some assembly is characterized by a remarkable
exchange of components from one step to the
next (reviewed in Wahl et al. 2009). Although
RNA-RNA base pairing interactions are critical
to the precise recognition of splice sites, they are
generally weak and require additional proteins
for enhanced stabilization. DExD /H-type RNA-
dependent ATPases/helicases have long been
implicated in rearrangements within the spli-
ceosome, and many are conserved between yeast
and humans. These proteins act at discrete stages
of splicing including single-strand RNA trans-
location, strand annealing, and protein dis-
placement (reviewed in Pyle 2008). Human
spliceosomes also contain several PPIases that
are absent in yeast, though the role of these pro-
teins in splicing is not well understood. Similar
to DExD/H-type RNA-dependent ATPases/
helicases, they are recruited at discrete stages
of splicing and are thought to be involved in at
least one protein conformational switching
event (reviewed in Wahl et al. 2009). Further-
more, post-translational modification of splic-
ing factors and spliceosomal proteins may act
as switches to allow fine tuning of the spliceo-
some (Bellare et al. 2008; reviewed in Wahl et al.
2009). The nature of interactions during such a
tightly regulated protein-rich process is not
very well documented and may be best studied
using in vivo imaging techniques. For example,
one recent study (Fig. 4) employed FRET-FLIM
and revealed for the first time that different com-
plexes of splicing factors show differential dis-
tributions in live cell nuclei (Ellis et al. 2008).

SPLICING LEAVES A MARK

Mature mRNAs are occupied by a number of
different proteins that determine their fate in
many ways, and several of these associations are
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Figure 4. Spatial mapping of the interaction of U1 70K with SF2/ASF in vivo. Shown are confocal images of cells
transfected with EGFP-U1 70K and cotransfected with either mCherry-C1 or mCherry-SF2/ASE Mean fluores-
cence lifetime (in picoseconds) and percentages of FRET efficiency and FRET amplitude are shown ( pseudo-
color) in these same cells (A). The same experiment was repeated in the presence of 25 pg/ml DBR for 2
hours before imaging (B). FRET efficiencies calculated from FLIM measurements for the interaction of SF2/
ASF with U1 70K (C). © Ellis et al., 2008. J. Cell Biol. 181: 921-934.
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splice-dependent. As mentioned, various pro-
teins associate cotranscriptionally and accom-
pany the packaged mRNA into the cytoplasm
where they can direct localization, translation
and decay. Shuttling SR proteins specifically
serve as mRNP binding sites for export factors,
and the phosphorylation state of these proteins
confers export competence (reviewed in Huang
and Steitz 2005; reviewed in Moore and Proud-
foot 2009). The THO/TREX complex, which
functions in transcription and export, associ-
ates with spliced mRNAs at the 5'-most exon
(Cheng et al. 2006). THO/TREX recruitment
is enhanced by splicing, and promotes rapid
export (Valencia et al. 2008). In mammals,
REF/Aly and UAP56 (homologs of yeast Yral
and Sub2), are recruited as a consequence of
splicing and have a role in aiding export. Per-
haps the most studied splice-dependent mark
is the exon junction complex, or EJC. EJCs are
stably deposited 20—24 nucleotides upstream
of exon-exon junctions late in splicing (Le Hir
et al. 2000). Interestingly, spliced mRNAs ap-
pear to have greater translational efficiency
than their cDNA counterparts (reviewed in Le
Hir et al. 2003). Aside from their role in non-
sense mediated decay, EJCs appear to directly
enhance translation initiation. Although there
are several proposed mechanisms by which
EJCs do this, they ultimately serve to promote
the pioneer round of translation (reviewed in
Moore and Proudfoot 2009). Finally, a number
of DEAD-box proteins have recently been iden-
tified as associating with mRNAs in a splice-
dependent manner, and these are believed to
influence many aspects of mRNA metabolism
(Merz et al. 2007; reviewed in Rosner and Rin-
kevich 2007). Taken together, it is clear that
spliced mRNAs carry with them numerous pro-
tein marks that indicate their splicing history
and have important downstream effects.

LINKS BETWEEN TRANSCRIPTION AND
SPLICING

Initial work focusing on the link between tran-
scription and splicing suggested that splicing
occurs cotranscriptionally and factors involved
in splicing colocalize with transcription sites

(Beyer and Osheim 1988; Zhang et al. 1994).
Similar to capping, the CTD of RNA Pol II
has an important role in splicing. CTD trunca-
tion causes inefficient splicing in mammalian
cells and inhibition of colocalization of splicing
factors with transcription sites (McCracken
et al. 1997; Misteli and Spector 1999). Further-
more, RNA Pol I10 has been shown to physically
associate with splicing factors that do not bind
RNA Pol IIA (RNA Pol I with an unphosphory-
lated CTD), suggesting this interaction depends
on the phosphorylation state of the CTD. Both
anti-CTD antibodies and CTD peptides can
inhibit splicing in vitro, and expression of phos-
phorylated CTD peptides has a similar effect on
mammalian cells in vivo (Yuryev et al. 1996; Du
and Warren 1997). RNA Pol 110 enhances splic-
ing in vitro, whereas RNA Pol ITA has an inhib-
itory effect (Hirose et al. 1999). This is believed
to result from RNA Pol I10-dependent stimula-
tion of the early steps of spliceosome assembly,
possibly by facilitating the binding of snRNPs to
the nascent transcript. Therefore, it seems that
CTD phosphorylation can act to recruit splicing
factors to the nascent transcript to ensure rapid
and accurate splicing. Transcription is also
linked to splicing in ways independent of the
CTD. Promoter identity and expression levels
of certain SR proteins are known to affect alter-
native splicing (Cramer et al. 1997). Further-
more, in both yeast and mammals, disruption
of RNA Pol II elongation markedly shifts the
balance of alternatively spliced isoforms (de la
Mata et al. 2003; Howe et al. 2003). This is con-
sistent with a “first come first served” model in
which elongation rate regulates splice site selec-
tion, as 5’ splice sites are more likely to pair with
newly transcribed 3’ splice sites. Additionally,
the transcriptional coactivator, p52, is known
to interact with SF2/ASF and stimulates splic-
ing (Ge et al. 1998), suggesting that transcrip-
tional machinery can modulate splicing factor
recruitment.

Finally, splicing can also have an impact on
transcription. The presence of introns can con-
fer increased transcriptional efficiency, possibly
through increase initiation rates (Brinster et al.
1988). Recruitment of snRNPs by TAT-SF1, an
elongation factor that associates with P-TEFb,
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enhances elongation and this effect is dependent
on the presence of functional splice signals
(Fong and Zhou 2001; Kameoka et al. 2004).
Reminiscent of the effect of capping on tran-
scription, certain splicing factors have also
been shown to promote elongation (Lin et al.
2008).

LINKS BETWEEN CAPPING AND SPLICING

Capping also has a role in splicing. The 5’ cap
structure increases splicing efficiency in mam-
malian cell extracts and in vivo (Konarska et al.
1984; Inoue et al. 1989). Depletion of CBC in
cell extracts prevents spliceosome assembly at
an early step in complex formation (Izaurralde
et al. 1994). In yeast, CBC interacts with com-
ponents of the earliest identified splicing
complexes (Colotetal. 1996). Similarly, in mam-
mals, successful capping and CBC recruitment
is implicated in U1 small nuclear ribonucleo-
proteins (snRNP) recognition of the 5’ splice
site, but this effect is specific to mRNAs with
only one intron (Lewis et al. 1996).

QUALITY CONTROL OF SPLICING

Splicing defects can lead to potentially harmful
protein variants. mRNAs are subject to quality
control in the nucleus resulting in the preven-
tion of export of splicing-defective transcripts.
To date, several mutations in cis (conserved splice
sites) and in trans (spliceosome components
required for 1st or 2nd step catalysis) yield
drastic reductions in mature mRNA without
a corresponding increase in unspliced pre-
mRNAs (reviewed in Staley and Guthrie 1998;
Bousquet-Antonelli et al. 2000). Mature mRNA
levels are largely restored in these same mu-
tants when degradation is inhibited, suggesting
that spliceosomes are able to act successfully
on these substrates if they are not quickly de-
stroyed. Thus, quality control acts on a number
of different splice-defective pre-mRNAs, and
degradation is in direct competition with pro-
ductive splicing. This sort of kinetic com-
petition is exemplified by the finding that
decreased ATP hydrolysis of the DExD/H-
type RNA-dependent ATPases, Prp16, leads to

RNA Processing and Export

productive splicing of pre-mRNAs harboring
mutant branch points that would normally be
discarded (Burgess and Guthrie 1993). This
same principal has been extended to other
splice site mutations and members of the
DExD/H-type RNA-dependent ATPases/heli-
cases family (Mayas et al. 2006). By coupling
spliceosomal rearrangements with irreversible
ATP hydrolysis, these proteins ensure that
splice-aberrant mRNAs which are unable to
complete splicing within a time frame dictated
by ATP hydrolysis rates, are discarded (reviewed
in Villa et al. 2008). Quality control takes
place in the nucleus, can act at numerous stages
in the splicing process and serves to commit un-
spliced mRNAs to degradation pathways. One
such pathway involves both 3’ — 5 degrada-
tion by the exosome and 5" — 3’ degradation
by the nuclear exonuclease Ratl (Bousquet-
Antonelli et al. 2000). Other degradation path-
ways include Dbrl-mediated debranching of
aberrant lariat-intermediates followed by ex-
port and cytoplasmic degradation, and Rntl-
mediated endonucleolytic cleavage of unspliced
pre-mRNAs followed by nuclear degradation
(Danin-Kreiselman et al. 2003; Hilleren and
Parker 2003). An additional quality control
mechanism involves spliceosome-dependent
nuclear retention of unspliced transcripts. A
number of different proteins seem to be in-
volved in anchoring these transcripts at the
nuclear side of the nuclear pore complex, and
retention may be regulated by desumoylation
(reviewed in Dziembowski et al. 2004; Galy
et al. 2004; Palancade et al. 2005; Lewis et al.
2007). Furthermore, splice-defective mRNAs
are also known to be retained at the site of tran-
scription (Custodio et al. 1999; reviewed in
Custodio and Carmo-Fonseca 2001). Thus,
the cell has evolved various ways to ensure that
unspliced transcripts do not leak into the
cytoplasm. Finally, nonsense mediated decay
(NMD) represents a highly specific form of
quality control that extends to higher eukar-
yotes. The presence of an EJC downstream of
a stop codon triggers degradation of translating
mRNAs (reviewed in Stalder and Muhlemann
2008). Splice-dependent EJC deposition can
increase the translational efficiency of normal
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mRNAs while ensuring rapid degradation of
aberrant mRNAs.

3’-END PROCESSING

The final step of transcription is endonucleo-
Iytic cleavage which occurs 10—30 nucleotides
downstream of a signal sequence (conserved
AAUAAA sequence in mammals or an AU-rich
sequence in yeast), followed by poly(A) addi-
tion at the 3’ end (reviewed in Proudfoot
2004). The poly(A) tail is similar to the cap in
that it is important for the stability and trans-
lational efficiency of the mRNA (Drummond
et al. 1985). Cleavage requires multiple pro-
teins, including cleavage/polyadenylation spe-
cificity factor (CPSF), cleavage stimulation
factor (CstF), and two cleavage factors (CFIm
and CFIIm) in mammals, or cleavage-polyade-
nylation factor (CPF) and two cleavage factors
(CF1A and CF1B) in yeast. Poly(A) polymerase
(PAP) then adds the poly(A) tail to the 3-OH
that is exposed on cleavage (reviewed in Proud-
foot 2004).

CPSF and CstF are highly conserved be-
tween yeast and humans and are required for
both cleavage and polyadenylation (reviewed
in Shatkin and Manley 2000). CPSF recognizes
RNA and facilitates PAP recruitment. The en-
donuclease responsible for cleavage in mam-
mals is CPSF-73 and Ydhl1 in yeast (Ryan et al.
2004; Mandel et al. 2006). CstF recognizes U/
GU-rich elements found in the mRNA and is
directly involved in polyadenylation. The con-
served AAUAAA sequence and downstream
U/GU site comprise the core poly(A) element,
although additional auxiliary elements can in-
fluence polyadenylation efficiency (Gil and
Proudfoot 1984; Sadofsky and Alwine 1984;
Russnak 1991; Bagga et al. 1995). Cleavage is
closely coupled to poly(A) tail synthesis, which
also requires PAB1. A number of other factors
also participate in 3’-end processing, and many
do not share homologs in other systems (re-
viewed in Shatkin and Manley 2000).

As with splicing, transcripts can be alterna-
tively polyadenylated, thereby altering stability,
localization or transport. It is estimated that

more than half of the genes in the human
genome are subject to such alternative 3'-end
processing, generating isoforms that differ in
3’ UTR length or encoding different proteins
altogether (Tian et al. 2005). Alternative poly-
adenylation can be tissue specific, may be
coupled to alternative splicing and can have
implications for health and disease (Peterson
and Perry 1989; Beaudoing and Gautheret
2001; Tian et al. 2005; Lu et al. 2007; reviewed
in Danckwardt et al. 2008). In fact, many hu-
man genes contain multiple potential 3'-end
cleavage sites, and appropriate site selection is
achieved by alternate mechanisms, representing
an additional layer of complexity in the regula-
tion of gene expression (reviewed in Wilusz and
Spector 2010). It is important to note that the
mechanism and machinery responsible for al-
ternative polyadenylation remain unclear.

TRANSCRIPTION AND 3'-END
PROCESSING INFLUENCE EACH
OTHER

Many factors involved in 3’-end processing have
been shown to interact with the CTD, including
CstF subunits. Purified CTD can stimulate the
cleavage step and is needed for processing in
reconstituted reactions (Hirose and Manley
1998). As with 5 capping, the specific CTD
phosphorylation pattern is important in 3'-
end processing. In this case, loss of serine 2
phosphorylation in Ctkl (yeast) or Cdk9 (Dro-
sophila) mutants leads to a defect in 3’-end
processing, likely resulting from improper or
inefficient recruitment of processing factors
(reviewed in Hirose and Ohkuma 2007). Fur-
thermore, several yeast proteins involved in 3'-
end processing preferentially bind the CTD
phosphorylated at serine 2, which may ensure
processing occurs as the polymerase reaches
the end of a gene. In mammalian cells, unlike
yeast, the CTD is also required for cleavage
(Licatalosi et al. 2002). Once again, the CTD ap-
pears to mediate coupling between transcrip-
tion and 3’-end processing.

Although transcription elongation contin-
ues for quite some distance after the poly(A)
signal, transcription termination and 3’-end
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processing are intimately coupled. This was
supported by the finding that termination re-
quires functional poly(A) signals (reviewed in
Hirose and Manley 2000). There are multiple
ways in which 3’-end processing may be coupled
to transcription termination:

e Inthe antiterminator model, extrusion of the
poly(A) signal from the polymerase triggers a
change in the factors associated, possibly
releasing elongation factors or recruiting
termination factors (reviewed in Buratowski
2005). The PAF and TREX complexes repre-
sent good candidates for such a model, and
have been shown to cross-link throughout
the gene up to the poly(A) signal, in which
they are largely absent (Kim et al. 2004b).
The absence of these and other factors may
switch the polymerase into a nonprocessive
mode, releasing it from the DNA template.

o The torpedo model of termination has
gained recent support in both yeast and
mammals (reviewed in Buratowski 2005).
According to this model, the 5 — 3’ exonu-
cleases Ratl (Xrn2 in mammals) is recruited
to the 3’ end of the mRNA, in which it inter-
acts with Rtt103, which is known to contact
the CTD phosphorylated at serine 2. Ratl/
Xrnl degrades the downstream product,
eventually catching up with and triggering
the release of RNA Pol II (Kim et al. 2004c¢;
West et al. 2004).

Transcriptional pause sites positioned
downstream of the poly(A) signal also seem to
be important for 3’-end processing and ter-
mination of a number of mammalian genes,
reestablishing the theme of kinetic coupling
between transcription and processing (Yonaha
and Proudfoot 2000).

Although 3’-end processing machinery is
enriched at the 3’ end of genes, certain factors
can be found at or near promoters toward the
5’ end. For example, CPSF can be recruited to
promoters through an association with TFIID
(Dantonel et al. 1997). Ssu72, a component of
yeast CPE seems to function at many stages,
including transcription initiation, 3’-end proc-
essing and termination of certain mRNAs and

RNA Processing and Export

snoRNAs (reviewed in Proudfoot et al. 2002).
As described, CTD phosphorylation patterns
are linked to processing events, and Ssu72, in
conjunction with Ptal (another component of
yeast CPF), also appears to have phosphatase
activity specific for serine 5 (Krishnamurthy et
al. 2004). Additional genetic and physical in-
teractions have been described between the tran-
scriptional machinery (TFIIB and Subl) and
the 3’-end processing factors Ssu72 and Rnal5
(Sun and Hampsey 1996; Wu et al. 1999; Calvo
and Manley 2005). Interactions between factors
located on opposite ends of genes is likely facili-
tated by the formation of gene loops, and TFIIB,
Ssu72 and Ptal all appear to have a role in this
(Singh and Hampsey 2007). Overall, it seems
that the transcriptional machinery, DNA tem-
plate, nascent mRNA and 3’-end processing
machinery are in constant communication for
processing.

QUALITY CONTROL OF 3’-END
PROCESSING

Evidence in yeast shows that transcripts under-
going aberrant 3’-end processing are disposed
of. Defects associated with papl-1 mutants are
suppressed by deletion of the exosomal subunit
Rrp6, which is known to interact with both PAP
and the export factor Npl3 (Burkard and Butler
2000). Hypoadenylated mRNAs are retained
in the nucleus at the site of transcription, and
these transcripts are stabilized and exported in
the absence of Rrp6 (Hilleren et al. 2001). In
rnal4 and rnal5 mutant strains, defects in ter-
mination lead to readthrough transcripts and
aberrant polyadenylation. Deletion of Rrp6
stabilizes the aberrantly polyadenylated popu-
lation whereas depletion of Rrp41 stabilizes
the population of long readthrough transcripts
(Libri et al. 2002; Torchet et al. 2002). Therefore,
different components of the exosome may have
evolved specialized roles in mRNA surveillance,
ensuring rapid degradation of transcripts that
possess aberrant 3’ ends. Additionally, THO
complex or sub2 mutants show defects in 3'-
end formation, reduced mRNA levels and reten-
tion at the site of transcription. Codeletion of
Rrp6 and TRAMP components restores mRNA
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levels, although the retention effect only re-
quires Rrp6 (Libri et al. 2002; Rougemaille et al.
2007). These observations may suggest kinetic
competition between 3’ end formation and
degradation. Transcripts that do not quickly
and efficiently undergo 3'-end processing are
exposed to the exosome, and mutation of exo-
some components may allow more time for
defective 3'-end processing machinery to func-
tion. Finally, recent evidence suggests that
nuclear mRNP assembly factors are involved
in releasing the 3’-end processing machinery
from the transcript after polyadenylation (Qu
et al. 2009). This may be a way to temporally
coordinate 3’-end formation, mRNP matura-
tion and export.

EXPORT OF mRNA

Transport through the nuclear pore complex
(NPC) represents the link between the nucleus
and cytoplasm. Several studies have investigated
mRNA mobility in the nucleoplasm and have
revealed probabilistic movement of mRNAs
with diffusion coefficients between 0.03 um?/s
and 4 um*/s (Politz et al. 1998; Shav-Tal et al.
2004a; Braga et al. 2007; Siebrasse et al. 2008).
In pulse-chase experiments, mRNA was found
in the cytoplasm within ~20 min after tran-
scription (Lewin 1980). However, single-
molecule tracking experiments suggest that
transit through the NPC is significantly faster,
on the order of fractions of a second. Different
forms of RNA have been observed in close prox-
imity to the nuclear envelope in electron micro-
graphs (reviewed in Franke and Scheer 1974).
Detailed resolution of individual mRNPs and
how they move through nuclear pores is mainly
derived from work using mRNPs of Balbiani
Ring (BR) genes in salivary gland cells of Chiro-
nomus (Mehlin et al. 1992; Kiseleva et al. 1998).
These large mRNPs, ~50 nm in diameter, have
been visualized interacting with nuclear pores
by electron microscopy. Because of their size,
these mRNPs unfold at the NPC and show
directional translocation through the NPC,
beginning with the 5" end (reviewed in Dane-
holt 2001). Hypothetical sequences for distinct
steps in the export process have been assembled

from EM series (Kiseleva et al. 1998). mRNA
export likely involves distinct docking, trans-
location and release steps from the NPC, anal-
ogous to a ratchet model that includes a
specific function for the mRNA associated
DEAD box helicase DBP5 (reviewed in Stewart
2007). Direct interaction of DPB5 with Nup214,
a cytoplasmic component of the NPC, has been
shown (Napetschnig et al. 2009; von Moeller
et al. 2009) and DPB5 is thought to promote
export factor release and eventual reorganiza-
tion of the mRNA (reviewed in Iglesias and
Stutz 2008). DBP5 localization, the timing
and location of loading onto the transcript,
and how many export factors are actually
attached to any individual transcript remains
unclear (Zhao et al. 2002; Estruch and
Cole 2003; Lund and Guthrie 2005; von Moeller
et al. 2009). Discrepancy in the number of BR-
mRNPs observed on the nuclear and cytoplas-
mic surfaces of nuclear pores in EM studies
have been interpreted as uncoupled asynchro-
nous functions of the export process, which
should result in a waiting step during transport.
Simultaneously, it was concluded that translo-
cation through the central channel of nuclear
pores is probably fast compared to the docking
step on the nuclear surface of the pore (Kiseleva
et al. 1998). Biochemical studies indicates that
mRNA export competence is directly linked
to transcription (reviewed in Kohler and
Hurt 2007; reviewed in Hurt and Silver 2008;
reviewed in Iglesias and Stutz 2008; reviewed
in Carmody and Wente 2009; reviewed in
Moore and Proudfoot 2009). Recently, a link
between actin and transcription has been
suggested. Actin (1) can be detected as a com-
ponent of pre-mRNP complexes, (2) binds
transcription factors, (3) is involved in chroma-
tin remodeling, and (4) associates directly to
RNA polymerases (reviewed in Miralles and
Visa 2006). Interestingly, actin may also have a
role in export, as it has been observed to associ-
ate cotranscriptionally with BR-mRNPs and
remains associated throughout export (Perci-
palle et al. 2001). Furthermore, the nuclear
export receptor exportin-6 shows specificity
for profilin-actin, suggesting an additional
role as an adaptor for export of certain mRNAs

12 Cite this article as Cold Spring Harb Perspect Biol 2010;2:a000752



fggﬁﬁ) Cold Spring Harbor Perspectives in Biology

PERSPECTIVES

Voocd”

www.cshperspectives.org

(Stuven et al. 2003; reviewed in Miralles and
Visa 2006).

Export is mediated by protein factors asso-
ciated with the mRNA, and mRNAs that do
not carry the necessary adaptor and export fac-
tors are retained in the nucleus (reviewed in
Iglesias and Stutz 2008). Most mRNAs seem
to export via a TAP (Mex67 in yeast)-dependent
pathway. TAP is not a member of the karyo-
pherin family and does not rely on the GTPase
Ran, which mediates nuclear import (Segref
et al. 1997; reviewed in Macara 2001; reviewed
in Dreyfuss et al. 2002). Export factors do not
recognize the mRNA directly, but rather through
adapters such as Aly/REF (Yral in yeast), which
is necessary for export (Stutz et al. 2000; Zhou
et al. 2000; Gatfield et al. 2001; Le Hir et al.
2001). However, CBP80, a component of the
CBC, has been implicated in mediating con-
tacts between transport receptors and mRNA
(Hamm and Mattaj 1990; Cheng et al. 2006).
Aly/REF has been identified to be loaded in a
splice-dependent manner as part of the EJC
(Le Hir et al. 2001). Complex regulation of
Aly/REF links mRNA export to cell cycle pro-
gression (Zhou et al. 2000; Okada et al. 2008;
reviewed in Okada and Ye 2009) and Yral, has
been linked to S-phase entry (Swaminathan
et al. 2007). Conversely, in Drosophila and Cae-
norhabditis elegans, mRNA export is Aly/REF
independent (Gatfield and Izaurralde 2002;
Longman et al. 2003).

The transcription-export complex (TREX)
exemplifies the tight coupling between tran-
scription and export. Recruitment of the TREX
complex is coupled to the transcription machi-
nery in yeast but associated with the splicing
machinery in metazoans (Masuda et al. 2005;
Cheng et al. 2006). In metazoans, the TREX
complex was initially thought to be part of the
EJC (Gatfield et al. 2001; Le Hir et al. 2001)
but is now known to be recruited to the 5’ end
independently, in a splicing and 5" cap-depend-
ent manner (Masuda et al. 2005; Cheng et al.
2006). In yeast, molecular machinery serves
to dock transcribing genes to nuclear pores, re-
sulting in “gene gating.” SAGA, involved in his-
tone modification and DNA remodeling, has
also been shown to interact with transcription

RNA Processing and Export

factors (Grant et al. 1997; Larschan and Wins-
ton 2001; reviewed in Daniel and Grant 2007).
Components of SAGA and TREX2 complexes
are required for gene gating of the GAL locus
following activation (Cabal et al. 2006; Wilmes
and Guthrie 2009). Susl, one such component,
promotes NPC docking and export (reviewed
in Blobel 1985; Jani et al. 2009; Klockner et al.
2009; Wilmes and Guthrie 2009). Susl is also
involved in transcription elongation and may
prevent harmful DNA:RNA hybrids during
transcription (Klockner et al. 2009). Interac-
tions have been shown for both TREX and
TREX2 complexes with Swtl, an endonuclease
that interacts with nuclear pores and is involved
in mRNA quality control (Skruzny et al. 2009).
Although major pathways for mRNA export
have been identified, based on interspecies var-
iations and the number of transport factors and
cofactors involved, additional pathways are
likely to exist. For example, export of certain
viral and other mRNAs depend on CRM1 as
an export factor (Ohno et al. 2000; reviewed
in Dreyfuss et al. 2002; reviewed in Iglesias
and Stutz 2008).

The extent to which processing and export
might be regulated in a species- and differentia-
tion-dependent manner currently remains
unclear. Dynamic regulation of mRNA process-
ing factors is a relatively new question, and it is
still unclear to what degree mRNA export is
regulated at the level of individual nuclear
pores. A dynamic view of how mRNA transi-
tions through the nuclear pore is lacking, but
recent developments in mRNA labeling and
imaging technology may provide the opportu-
nity to fill this gap in the near future.

CONCLUDING REMARKS

As discussed, a wealth of ensemble biochemi-
cal studies has provided great molecular and
mechanistic insight into mRNA processing,
leading to further questions that will require
in vivo imaging approaches. Several recent
studies highlight the importance of such tech-
niques in gaining quantitative information
on fundamental aspects of mRNA processing
events, with spatial and temporal resolution.
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For example, the nucleus is the site of numerous
essential cellular processes that are likely coor-
dinated through highly organized and com-
partmentalized nuclear bodies with distinct
functions, as observed using cellular imaging
(reviewed in Misteli 2007). Nuclear bodies
lack membranes and are highly dynamic yet
steady-state structures. This represents a more
advanced view from the original idea of nuclear
factories for transcription and replication, in
which core components localized to static dis-
crete foci (reviewed in Iborra et al. 1996). This
environment facilitates gene expression at mul-
tiple levels, including chromatin accessibility,
transcriptional control, integration of process-
ing events, stringent quality control, export of
mature mRNPs to the cytoplasm and transla-
tion. Recent work suggests that Cajal body for-
mation does not require specific gene loci and
can initiate from any Cajal body protein, sup-
porting a self-assembling model for nuclear
bodies (Kaiser et al. 2008; reviewed in Misteli
2008). Additionally, the long-standing question
of whether differentially spliced transcripts
recruit distinct sets of basal pre-mRNA splicing
factors has recently been addressed. Quanti-
tative single-cell imaging has shown the first
in vivo evidence of differential association of
pre-mRNA splicing factors with alternatively
spliced transcripts, supporting a stochastic
model of alternative splicing which would pre-
dict that combinatorial sets of splicing factors
contribute to splicing outcome (Mabon and
Misteli 2005). FRET and FLIM techniques have
been applied to investigate interactions between
SR proteins and splicing components. Unlike
biochemical methods, FRET can be used to
study interactions in living cells, with mini-
mal perturbation to the highly structured and
dynamic nuclear environment (reviewed in
Wouters et al. 2001; Ellis et al. 2008). Such an
approach has revealed individual interactions
that occur in the presence of RNA Pol II in-
hibitors, suggesting they are not exclusively
cotranscriptional. FRAP analysis suggests that
processing factors are highly dynamic and are
exchanged between nuclear bodies and other
nuclear locations in a matter of seconds (Phair
and Misteli 2000; reviewed in Lamond and

Spector 2003). Both FRET and FRAP have
been used to study the localization and associa-
tion of SF1 and U2AE The mobility of these
proteins is correlated with their ability to inter-
act with each other, and they are believed to
interact in what are described as extraspliceo-
somal complexes that form before and persist
after spliceosome assembly (Rino et al. 2008).
The development of real-time, single-molecule
imaging techniques provides an especially excit-
ing and promising opportunity to probe in vivo
realities, reconciling molecular and mechanistic
details within a kinetic and spatial context. One
such example involves single particle tracking
of Ul snRNP within the nucleus (see Fig. 5),
revealing both mobile and transiently immobile

Figure 5. In vivo trajectories of single Ul snRNPs
within the nucleus of HeLa cells. Fluorescently
labeled native U1 snRNPs were microinjected to vis-
ualize and track single molecules, recorded at 200 Hz.
SF2/ASF-GFP was transiently expressed to distin-
guish mobile and transiently immobilized U1 snRNP
particles within the nucleoplasm and speckles, out-
lined in gray (A). A 8 wm? area from A is broken
down into a short image sequence displaying a single
trajectory over time (B). Grunwald et al. 2006, ©
2006 by The American Society for Cell Biology.
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states (Grunwald et al. 2006). Single molecule
imaging makes the range of mobility states
over a population of molecules immediately
apparent, and changes in the behavior of any
individual molecule during observation can be
assessed. A major lesson from these studies is
that “the mobility” of a given molecule is more
likely a mixed population of different states.
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