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ABSTRACT We have designed a statistical test that elim-
inates the assumption of equal group variances from one-way
analysis of variance. This test is preferable to the standard
technique of trial-and-error transformation and can be shown
to be an extension of the Behrens-Fisher T test to the case of
three or more means. We suggest that this procedure be used
in most applications where the one-way analysis of variance has
traditionally been applied to biological data.

Fixed effects one-way analysis of variance I (ANOVA-1W) is
a frequently used statistical tool in many areas of science,
especially the biological sciences. A difficulty inherent in its
application, however, is the common occurrence of inter-
group heteroscedasticity-i.e., variances differ among
groups. The ANOVA-1W test requires that variances be
homogeneous.
One solution to the heteroscedasticity problem is based

upon sequential statistical analysis (1). This technique re-
quires that two samples be taken from each population, with
the sizes of the second samples contingent upon the charac-
teristics of the first samples. Such conditional, multiple
sampling is not practical in many biological settings, and a
nonsequential procedure is warranted.
Transformation is a nonsequential technique that may be

used to correct for heteroscedasticity, but exact significance
testing is only possible when a suitable transformation can be
prescribed a priori. An approximate test is possible when trial
and error leads to a transformation that, based upon residual
analysis, eliminates heteroscedasticity while maintaining
normality of group means. Even this approximate test is
inappropriate when sample sizes are small, however, because
residual analysis cannot reliably determine the suitability of
a transformation. A second complicating factor is that elim-
ination of heteroscedasticity by transformation tends to skew
the transformed data and thereby violates the assumption of
the normality of sample means. Exact, nonsequential testing
in the context of ANOVA-1W is therefore rarely possible
when heteroscedasticity is encountered, and a researcher is
left with the dilemma of no suitable parametric test.
Here we solve this problem by developing an ANOVA-1W

procedure that requires neither equality of the group vari-
ances nor sequential sampling. We begin by first expressing
Fisher's F statistic (2), from the ANOVA-1W, in terms of
Student's t tests between all pairwise combinations of means.
Fisher's F statistic from an ANOVA-1W is typically ex-
pressed as the ratio of the between-group to the within-group
mean-squared errors-i.e.,

F = {SSB/(K - 1)}/{SSE/(NT-K)}[K1

= [1/(K - 1)] \'(Y. - Y..)-/(Sp/Ni), i = 1,.K, [21

where SSB and SSE are the between-group and within-group
sums of squares, respectively, K is the number of groups, NT
= N1 + N, + . . + NK., where N, is the sample size of the
ith group, S" is the pooled variance across all groups (S. =
SSE/I[NT - K]), Yj is the sample mean for the ith group, and
Y.. is the weighted average grand mean with weights equaling
1/(S2/Nj).
An algebraically equivalent expression is

F = weighted average (t2); I = 1. (K - 1).

j= (i + 1), .... K. [31

where t~. is the squared t value from a Student's t test
comparing the ith and jth means (tij = {Y.j - Y }/{Sp[1/N; +
1/N ]}"2), and wveight>j = 1/(SI/Nj) + 1/(SI/N-). The P value
for the F statistic can therefore be interpreted as the proba-
bility, on the null hypothesis (H(; it, = it, = . = Ik) with
repeated sampling, that the average t2 statistic will be greater
than or equal to the observed average. Because a test based
upon the square of a t statistic is equivalent to a two-tailed t
test, Fisher's F statistic from the ANOVA-1W can be inter-
preted as the average two-tailed t test between means.
To develop a test statistic when equal variances cannot be

presumed, we begin by first considering the simplest case in
which the true variances for each group are known without
error. A new test statistic, F*, can be defined in terms of the
normal Z tests between all pairwise combinations of means.

F* = weighted average (ZX); i = 1. (K - 1).

j= (i + 1). K [41

= [1/(K - 1)] \'(Y. - Y')2/(V1,/N;); i = 1,. , [51

where YX, Ni, and K are defined as before, 4, is the squared
Z value from a normal Z test comparing the ith and jth means
(Z.. = { Y. - Y._}/{[V2/N;] + [V2/Nl]}i/2) ICeigt/ = 1/
(V;/N;) + 1/(VJ7N1), V', is the known variance for the ith
group, Y' is the weighted average grand mean with weights
equaling 1/(V71Nj). The F* statistic follows a X' divided by
degrees of freedom distribution, with degrees of freedom
equaling K - 1. Small values of F* support H0, whereas large
values support the HA that ai, 7 it, for at least one iJ,/ pair. The
P value from a test based upon the F* statistic is the
probability, on H( with repeated sampling, that FE will be
greater than or equal to the observed value. This is the
prob(X >1/(K - 1) - F* served) in repeated sampling, where
Xj.1 is a X variate with K - I degrees of freedom.
When the variances of the groups are unknown, the F5

statistic is inappropriate because the Zj cannot be calculated
for the pairwise tests between means. As shown above,
however, replacing the Z,, with Student's t values leads to

Abbreviation: ANOVA-1W, fixed effects one-way analysis of vari-
ance (that assumes equal variances).
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Fisher's F statistic, which enables testing when there is a
common but unknown variance among groups. When the
variances are unknown and differ among groups, we propose
replacing the Zij with Behrens-Fisher T values (T;j = {YI, -
y }/{S21Ni + S;1/N}1/2). Barnard (3) has recently discussed
the appropriateness of the Behrens-Fisher T test (2, 4) when
comparing means derived from normal distributions with
unequal variances. He concludes that P values from the
Behrens-Fisher T test need not be motivated by fiducial
arguments and that T is the preferred nonsequential test
statistic for comparing means from normal distributions with
unequal and unknown variances.
To incorporate the Behrens-Fisher T statistic into

ANOVA-1W we define the modified F* statistic, Fu, in
which the V2 are replaced by their sample estimates,

Fu = [1/(K - 1)] \'(Y_; -

i = 1, . K [6]

= weighted average (TV); i = 1, . (K - 1),

j= (i + 1), . K, [7]

where Y ;, N,, and K are defined as before, S is the nonpooled
sample variance for the ith mean, Y" is the weighted average
grand mean with weights equaling 1/(SV/N,), T;j is the test
statistic from the Behrens-Fisher test between means i andj,
and wveightij = 1/(SWlNi) + 1/(S2IN1). Note that: (i) The F and
Fu statistics are special cases of F* in which the sample
variances are substituted for the population variances, (ii) for
the case of two means the Fu statistic reduces to the square
of the Behrens-Fisher T statistic (i.e., Fu = 72), and (iii) F*
is a weighted-average Z2, Fu is a weighted-average T2, and
F is a weighted average 2.
For testing purposes, one rejects the null hypothesis H( in

favor of the alternate hypothesis HA for large values of Fu.
The P value from a test based upon Fu is the probability, on
H(, that Fu . FU(observed). As was the case for Fisher's F, the
Fu statistic can be interpreted as an average two-tailed test
between means.
The distribution of Fu converges on that of a x2 variate

divided by degrees of freedom (X2_1/[K - 1]) when all
sample sizes jointly approach infinity. The cumulative dis-
tribution function of Fu will be described in detail elsewhere
and can be shown to equal,

Prob(Fu > Fu(observed)) =

T PrbSvSv(x
|,. .. |,Prob,(fu) L(v2IS2) *...*L(V21S2)dV2 . .. Mv, [8]

where

fu = [1/(K - 1)] '(Y. - y')21/( v,/N;), i = 1, K, [9]

Prob5 is the probability that (XK-1/[K - 1] . fu). L( 1,2S2) is
the likelihood of v2 given its sample estimate (Si). and y!" is the
weighted average grand mean with weights equaling 1/(1-Q/N,).

Tabulation of the critical values for Fu is not practical. due
to the large number of parameters (i.e., k, n , lk., S1..
Sk) associated with the Fu distribution, nor is it necessary.
We have developed a simple numerical procedure, based on
a technique developed by Barnard (3), for calculating exact
P values for observed values of Fu-i.e., the Prob(Fu -

Fu(obsered)) when H0 is true. These calculations can be done
by hand but become tedious for large values ofK-a problem
we have solved with a simple computer program. The nu-
merical procedure and its computerized solution will be
described elsewhere as part of a more detailed comparison of
the power and robustness to deviations from model assump-
tions of the Fu test.
As a numerical example of the Fu test, suppose three

populations were sampled and that N; = 5, 6, 7; S2 = 4, 7, 25:
and Yi = 0, 5, 2 for samples 1, 2, and 3, respectively. A
Bartlett test (5) with these data leads to acceptance of the null
hypothesis of equal group variances (P = 0.137). If the
potential heteroscedasticity were ignored, the F statistic from
an ANOVA-1W would be 2.629, and the corresponding P
value would be 0.105. When our test is applied, Fu = 6.356.
and the corresponding P value is 0.036. This example illus-
trates how the P values from the new procedure can be
considerably smaller than those from an ANOVA-1W. This
is a consequence of the procedure described here not artifi-
cially inflating the smaller variance estimates, as would occur
via the pooling procedure used in ANOVA-1W.
We suggest that the Fu test be used in those cases where

the unknown group variances cannot be demonstrated to be
equal. This situation will include most cases where ANOVA-
1W has traditionally been used, either with or without
transformation because the presumption of no intergroup
heteroscedasticity can rarely be rigorously demonstrated.
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