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Abstract

Organisms move through the world by changing their shape, and here we explore the mapping from shape space to
movements in the nematode Caenorhabditis elegans as it crawls on an agar plate. We characterize the statistics of the
trajectories through the correlation functions of the orientation angular velocity, orientation angle and the mean-squared
displacement, and we find that the loss of orientational memory has significant contributions from both abrupt, large
amplitude turning events and the continuous dynamics between these events. Further, we discover long-time persistence
of orientational memory in the intervals between abrupt turns. Building on recent work demonstrating that C. elegans
movements are restricted to a low-dimensional shape space, we construct a map from the dynamics in this shape space to
the trajectory of the worm along the agar. We use this connection to illustrate that changes in the continuous dynamics
reveal subtle differences in movement strategy that occur among mutants defective in two classes of dopamine receptors.
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Introduction

From the swimming motions of E. coli [1] to the mobility of

human populations [2], the way in which organisms move through

the world profoundly influences their experience. Ultimately, these

strategies of movement change the chances for survival and

reproduction, and thus are subject to natural selection. Typically,

ecological or evolutionary studies of movement focus on

trajectories measured through course-grained variables such as

the center of mass [3]. However, to an organism, movement is not

translation or rotation of its body relative to an external coordinate

system, but rather transformations of shape as measured in its own

intrinsic coordinates. Analyzing together both the internal states

and external motions offers deeper insight into the study of

movement strategies.

In general, the connection between transformations in shape

space and movement through the world is complicated. There is a

long tradition of work which tries to make this connection through

analytic approximations of the equations describing the mechanics

of the organism’s interaction with the outside world. This

approach is perhaps best developed for swimming and flying

organisms [4,5], and there are particularly elegant results in the

limit of swimming at low Reynolds number [6–8]. All of these

methods depend on some small parameter in the physical

interaction between the organism and its environment. A very

different possibility for simplifying the relation between shapes and

movement arises if the space of shapes itself is limited. In several

systems, the potentially high dimensional space of shapes or

movements is not sampled uniformly under natural conditions, so

that one can recognize a lower dimensional manifold that fully

describes the system [9–12]. In these cases it is possible to ask

empirically how motions on this low dimensional manifold map

into movements relative to the outside world.

The motion of the nematode Caenorhabditis elegans provides an

example of this dimensionality reduction. In previous work, we

found that the shapes taken on by the worm’s body are well-

approximated by a four dimensional space spanned by elementary

shapes or ‘eigenworms’ [13]. Here we connect the dynamics in this

low dimensional space of shapes to the trajectories of worms as

they crawl on an agar plate, the conventional experimental setup

for studying worm behavior [14–17]. In the process, we offer a

new analysis of the trajectories themselves, and show how the

intrinsic shape dynamics gives us a more comprehensive tool for

the analysis of mutant locomotory behavior.

Results

Center-of-mass trajectories
To understand how changes in the worm’s shape determines its

motion, we first characterize the motion itself. In Fig 1a, we show

an example of the worm’s trajectory, defined by the centroid of the

black and white body images. The worm’s trajectory consists of

gently curving segments, interrupted by sharp turns or reversals.

These discrete reorientation events are characterized by curved

body shapes, such as turns caused by body bends or turns after

reversal events, known as V–turns, because the worm’s resem-

blance to the Greek letter V. It is tempting to think of these

trajectories as being approximately like those of E. coli, consisting

of long, relatively straight runs punctuated by tumbles, which

randomly reorient the cell [18]. Indeed, variations of this model in
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which trajectories are segmented into discrete ‘runs’ have long

been used to study the movements of a wide variety of organisms

[19,20] including C. elegans [14,21]. However we will see the

limitations of this ‘‘run and tumble’’ model by closer statistical

analysis of the entire trajectory.

Trajectories are characterized by the speed of motion, vcm~D _~xx~xxD,
the local tangent angle, a(t), and the local orientation velocity

vcm~da=dt at each moment in time (Fig 1b). The standard

deviation of the curvature is dvrms~0:223+0:001 rad=sec, but

the distribution of angles r(v) has long tails, as shown by

comparing the cumulative distribution P(DvD) to a Gaussian

distribution with the same variance (inset to Fig 1b). Excursions to

the large amplitude tails correspond to abrupt reorientation events

and are colored red in Fig 1a.

If worms lose orientational memory then their movements will

look diffusive at long times. One signature of such behavior is

contained in the mean–square distance between two points on the

trajectory,

S(dx)2Tt:SD~xx(tzt){~xx(t)D2T, ð1Þ

which for diffusion should grow linearly with the time t. In Fig 2a,

we see that this is what happens for times longer than t*10s. At

shorter times, the mean–square displacement grows as the square

of the time difference, which corresponds to ballistic motion at a

fixed velocity. This suggests that the time scale for worms to lose

directional memory is *10s, and this can be seen directly from the

correlation function for the local tangent angle,

Ca(t):S cos½a(tzt){a(t)�T, ð2Þ

as shown in Fig 2b.

A sequence of uncorrelated runs and tumbles translates into a

mathematical model in which the orientation angle a is, from time

to time, completely randomized by discrete events. For E. coli these

events are the tumbles, and it is natural to think that for C. elegans

these events are the reorientation events. If turns occur randomly at

rate rturn, and generate completely new, uncorrelated directions of

movement, then the correlation function for direction will decay as

Ca(t)~ exp {rturnDtDð Þ: ð3Þ

But since rturn typically is less than two per minute [14,21],

reorientation events alone can’t explain the shorter time of decay of

the directional correlations, as seen quantitatively in Fig 1d. Thus,

changes in the orientation angle a occurring in between

reorientation events must play a key role.

We can disentangle the contributions of continuous and discrete

reorientation by looking at the orientation correlation of the

trajectory between reorientation events. As in previous work [21] we

identify reorientation events as moments when vcmw0:87 rad=s.

The correlation of the angles at the beginning and the end of

the reorientation event, vcos(astart)�c�o�s(aend)w~{0:06+0.01,

demonstrating that these turns effectively randomize the direction.

We compute the orientation correlation function Ca(t) within the

intervals, and the result, Cinterval
a (t), is shown as the green curve

of Fig. 3. Removing the intervening abrupt reorientation events

reveals a non-exponential, non-monotonic angular correlation,

which is a marked departure from ordinary orientational diffusion.

If the continuous dynamics within intervals are independent of

reorientation events then the angular correlation function is the

product of two terms

Ctotal
a (t)~Cinterval

a (t)|P(t), ð4Þ

where P(t) is probability that two points separated by time t come

from the same interval. To quantify the contribution of continuous

dynamics to the overall loss of orientation memory, we use Eq 4 to

compute Ctotal
a and we compare this with the measured angular

correlation. Figure 3 shows that this is an excellent approximation,

with no adjustable parameters. Importantly, the continuous

dynamics remain significant even when the threshold is lowered

to vcmw0:60 rad=s, the lowest value where Eq 4 is an adequate

description of orientation correlations (data not shown). These

results demonstrate that the loss of total orientational memory is

due to two independent processes, both of which may be

controlled as part of an overall foraging strategy, and that a

‘‘run and tumble’’ model focusing on discrete reorientation events

is an inadequate description of C. elegans movement.

Modes and movements
Worms move in the world by changing their posture and here

we show that the centroid trajectories are quantitatively captured

Figure 1. Center-of-mass trajectories. (a) A typical center-of-mass trajectory on the agar plate. The path includes both abrupt orientation
changes (red) in which the worm shape is deeply bent (inset), and continuously curving segments. (b) Definition of the local orientation angle a(t)
and the local orientation velocity vcm(t)~da(t)=dt. The inset shows the cumulative distribution of orientation velocities (red) contrasted with a
Gaussian distribution that has the same variance (blue). The center-of-mass time series fxcm(t),ycm(t)g was filtered with a third-order polynomial in a
running window 11 frames in length and acm and vcm were built using this filter.
doi:10.1371/journal.pone.0013914.g001

Modes to Movement
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by the dynamics of body shape. Following general practice, we

generated trajectories by tracking the center of mass of the worm’s

silhouette, ~xxcm(t), but an equally valid alternative would be to

follow the midpoint of the worm as indicated in Fig 4a, generating

a trajectory ~xxmid(t). When the worm moves smoothly and doesn’t

change shape dramatically, both definitions of trajectory produce

nearly identical results, but during those moments when the worm

bends deeply, these trajectories diverge. We can quantify this

divergence by measuring the difference between the center of mass

and the midpoint trajectories, d~xx~~xxcm{~xxmid and defining the

difference speed vd~Dd _~xx~xxD. For large curvature we see this

difference speed vd approaches the center-of-mass speed vcm

(Fig 4b), illustrating that neither measure is a good indicator of the

trajectory. Guided by these observations, we partition the worm’s

trajectory into three regimes: (i) segments where the centroid

heading is a faithful representation of trajectory orientation,

DvDv0:4 rad=s, 86% of the data; (ii) segments involving large

reorientations which we collapse to point events, DvDw0:87 rad=s,

5% of the data; and (iii) ambiguous segments 0:4ƒDvDƒ
0:87 rad=s, 9% of the data. To construct the connection between

shape and movement we confine our analysis to the first regime

and note that our results are insensitive to small changes in the

boundaries between segments.

In previous work [13] we found that the space of shapes of C.

elegans during free locomotion is low-dimensional with four

principal dimensions (eigenworms) capturing approximately

95% of the variance of the space of shapes. In this framework,

the trajectories of worm shape are quantitatively described as a

linear combination of the four eigenworms with corresponding

time-varying weights, the modes fai~1:4(t)g. A summary of

these results is shown in Fig 5 and we use these modes to

construct an explicit map from the dynamics of shape into

vcm(t).

In general we expect the worm’s reorientation dynamics to be

connected to changes in its shape, and we can construct this

connection between modes and movement using the four intrinsic

shape modes. The simplest model is a linear one,

vmodes(t)~
X4

i~1

biai(t), ð5Þ

and by fitting the coefficients, bi~½{0:021,0:017,0:023,0:015�
rad/s, we can capture 60% of the variance in vcm. More generally

we expect a nonlinear relationship, including time derivatives of

the shape. Thus, we introduce twelve variables,

xi~1:4~a1:4(t), ð6Þ

xi~5:8~
da1:4(t)

dt
, ð7Þ

xi~9:12~
d2a1:4(t)

dt2
, ð8Þ

Figure 2. Trajectory correlations. (a) Mean–square displacement as a function of time along the trajectory [Eq (1)]. At short times we see ballistic
(dx!t) behavior, crossing over to diffusion [(dx)2!t] at long times. (b) The orientation angle correlation function [Eq (2)] for worm motion (red),
contrasted with a simple ‘‘run and tumble’’ model (blue) in which reorientation events occur randomly with rate rV~0:045 Hz, corresponding to the
rate of reorientation events [14,21].
doi:10.1371/journal.pone.0013914.g002

Figure 3. Components of orientation correlation. The loss of
orientation memory is captured by independent contributions from
abrupt reorientation events and continuous dynamics between these
events. The orientation correlation function Cinterval

a (t) computed by
averaging over all delays within the same interval is shown in green.
The probability P(t) that two times separated by t are within the same
interval is shown in blue. The predicted orientation correlation function
from Eq 4 is shown in black, compared with the data, shown as red
points with standard errors of the mean.
doi:10.1371/journal.pone.0013914.g003

Modes to Movement
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Figure 4. Problems of center-of-mass tracking. (a) The displacement vector d~xx~~xxcm{~xxmid. (b) Average ratio of vd to vcm as a function of local
orientation velocity. Dotted lines denote error in the mean. When the local orientation velocity, vcm is large, the center-of-mass velocity mixes
changes of the body shape with changes in the directional heading. The dotted red line denotes the threshold we use for modeling in section Modes
and movements.
doi:10.1371/journal.pone.0013914.g004

=

Figure 5. Low dimensional description of worm shape, following Ref [13]. (a) Each raw image of the worm is processed by passing a curve
through the center of the body; the red circle marks the head. Arc length s along this curve is normalized, 0ƒsv1, and we define the tangent
t̂t(s)~dh=ds to the centerline curve. (b) We rotate all images so that ShT is zero and thus h(s) provides a description of the worm shape that is intrinsic
to the worm itself. (c) We decompose each shape h(s) into contributions from the leading four eigenmodes, which capture 95% of the variance in
shape space, and the amplitudes of fluctuation along each mode are normalized to unit variance, Sa2

i T~1. (d) Fluctuations along the first two modes
correspond to an oscillation, or nearly circular orbit in this projection of the shape space. (e) Fluctuations along the third mode show strongly non–
Gaussian statistics. The first two modes drive the propulsive wave along the body, the third mode makes the dominant contribution to turning, and
the fourth mode (not shown) describes localized fluctuations of the head and tail.
doi:10.1371/journal.pone.0013914.g005

Modes to Movement
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and model the curvature as

vmodes~
X

i

cixiz
X

ij

cijxixjz
X
ijk

cijkxixjxk: ð9Þ

This mode-based model of vcm provides an excellent fit, Fig 6a,

and captures more than 80% of the variance in the curvature.

More importantly, we also predict the dynamics of the curvature,

as shown through the correlation function

Cv(t):
1

Sv2T
Sv(tzt)v(t)T ð10Þ

in Fig 6b, and it is these dynamics that underlie the continuous

reorientations shown in the green curve of Fig 3.

The curvature is dominated by contributions from the

amplitude of the third mode, which is connected to bending of

the worm’s body [13]. We have shown previously that the

instantaneous speed of the worm vcm(t)! _ww(t), where the phase w
as the angle in the plane fa1,a2g (cf Fig 5d). Taken together we

can map from the modes to the speed and local curvature of the

center-of-mass trajectory, so we can completely reconstruct the

worm’s movements from its shape as a function of time (Figure

S1).

Mutants and adaptation
As with all organisms, C. elegans behavior is modulated by

experience. As an example, the rate of V–turns decreases

systematically with time away from food [14], as well as changing

in response to thermal [22] and chemical [21] stimuli. It is also

known that dopamine plays a significant role in these behaviors

[23,24]. Here we use the analytic tools developed above to

characterize both adaptation and the behavior of dopamine

mutants dop-2 (vs105) and dop-3 (vs106).

The distribution of times between reorientation events changes

as the worms spend more time away from food. As before we

identify reorientation events as moments when vcmw0:87 rad=s.

With this threshold, we can measure the cumulative distribution of

inter–turn intervals, or equivalently the probability that a turn has

not yet occurred after a time t, and this is shown in Fig 7a. During

the course of our experiments the worms spend 40 min away from

food; allowing for an initial adjustment to being placed on the the

plate we divide the last 28.3 min into three equal epochs to search

for adaptation to the environment. We see that the interval

distributions vary systematically with time. In more detail, we see

that the distribution has two components,

P(t)~ae{rshorttz(1{a)e
{rlongt

, ð11Þ

and only the slower component rlong contributes to the

lengthening of the times between turns. A similar results has been

shown for swimming worms [25]. Repeating the analysis for the

dopamine mutants, we find the interval distributions statistically

identical (Table 1). The short time behavior of the distribution,

summarized by rshort is unchanging, while the long time behavior

varies across time but is different than the wild-type at late times.

The dopamine mutants do not have the same suppression of

reorientation events as the wild-type as shown previously [24].

Our analysis above shows that continuous re–orientation in

between turns is a significant component of the worm’s motion,

and that this behavior is driven by the dynamics in shape space.

Indeed, the correlation time of the bending mode a3 also shows

adaptation between early and late times (Fig 7b), showing that

worms produce straighter inter-turn trajectories at later times.

Although the statistics of turning are the same for the two different

mutants, Fig 8 shows that the dynamics along the different modes

are in fact quite different. Along modes 1 and 2 (which form a

quadrature pair), dop-2 is similar to the wild type, but dop-3 exhibits

a faster oscillation. Recalling that this corresponds to the

undulatory wave along the body [13], we predict that the dop-3

mutant should move more quickly, and this is observed when we

track the center-of-mass motions: mean speeds of the three

variants are vcm~½0:076,0:082,0:121�+0:001 mm/s for N2, dop-2

and dop-3 respectively. The mode dynamics also combine though

Eq 9 to produce different turning dynamics and, in particular, dop-

3 animals make longer-lasting turns which result in curvier

trajectories. While these pheonotypic differences are subtle and

have not been reported before, they are immediately apparent in

the dynamics in shape space. Taken together we find continuous

motion, including gradual re–orientation, and discrete turning

behaviors are under genetic control.

Discussion

It is tempting to think of behavior as a sequence of discrete

actions, each taken in consequence of a specific decision. In the

simplest cases, such as the running and tumbling of E. coli, we can

see these discrete events reflected directly in the trajectory of the

organism’s center-of-mass motion [1]. In contrast, we find that, for

Figure 6. The intrinsic dynamics of worm shape capture the extrinsic motions of foraging trajectories. (a) We construct an eigenworm
model of the orientation velocity (Eq 9) and show the joint distribution r(vcm,vmodes). (b) The orientation velocity two-point correlation function for
the eigenworm model (blue) and the center-of-mass motion (red).
doi:10.1371/journal.pone.0013914.g006

Modes to Movement
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C. elegans, discrete behaviors are roughly only half of the story: the

exploratory trajectories of the worm get approximately equal

contributions from discrete turning events and from continuous

re–orientational motions in between the turns. Further, we can

trace these continuous motions back to the underlying dynamics in

the space of body shapes. Finally, we see that these different

components of the motion are under independent genetic and

adaptive control.

Quantitatively, we found that the exploratory motions of C.

elegans are composed of two principle reorientation elements:

abrupt events, including classical V–turns, which occur infre-

quently, and the continuous dynamics of orientation between these

events. These two processes both make significant contributions to

the worm’s total loss of orientational memory on the *10s time

scale. By focusing on the continuous intervals between discrete

turns, however, we find that the worm’s orientation can exhibit a

longer term memory, lasting two minutes or more, and non-

monotonic correlations, corresponding to an abundance of arcs as

seen, for example, in the trajectory of Fig. 1a. The presence of

these arcs as well as the differential behavior of the mutants

suggests that C. elegans controls more aspects of its motion than the

stochastic rate of abrupt events. Evidence for this sort of

continuous control has also recently been observed during C.

elegans chemotaxis [26].

Extending previous work showing that the body shapes of C.

elegans are captured by four modes [13], we built a phenomeno-

logical model that connects the intrinsic dynamics of these modes

to the speed and curvature of the worm’s trajectory through the

external world. This model allows us to connect the body

configurations, which are what the neuromuscular system can

control, to the behaviors that have adaptive value. As an example

of what can be learned from this analysis, we studied the motion of

two mutants, dop-2 and dop-3, which contain defective receptors for

the neurotransmitter dopamine, an important component in the

modulation of foraging strategy. Although these mutants have

nearly identical statistics when we look at their discrete turning

behaviors, their continuous motions, as seen in the dynamics of

fluctuations along four different shape dimensions, show substan-

tial differences. This suggests that the goal of mapping genes to

behavior [27,28] will require us to look much more closely, and

quantitatively, at the behavior of individual organisms.

Methods

The image centroid and worm shape data were collected as in

Ref [13], using tracking video microscopy with sampling

frequency f ~4hz, similar to other machine vision-based pheno-

typing [29,30]. The resulting centroid time series fxcm(t),ycm(t)g
was filtered with a third-order polynomial in a running window

spanning +5 frames and the derivatives used to construct acm and

vcm were built from the filtered data. We used a total of N~32
wild-type worms, N~50 dop-2 (vs105) worms and N~50 dop-3

(vs106) worms, each tracked for 35 minutes. The worms were

transferred to the agar plate using a platinum worm pick and we

excluded the first 400 seconds of each tracking run to avoid any

influences due to mechanical stimulation. Following [13] we derive

the shape from each worm image by passing a curve through the

center of the body. xmid is defined as the center position along this

curve. We normalize the arc length s along this curve 0ƒsv1,

and we define the tangent t̂t(s)~dh=ds. We then rotate all images

so that ShT is zero and thus h(s) provides a description of the

shape that is intrinsic to the worm itself. Finally, we decompose

each shape h(s) into contributions (modes, ai~
P

h(s):ei(s)) from

the leading four eigenworms ei~1:4, which capture 95% of the

variance in shape space. For the linear models connecting modes

to movement, Eqn’s (5,9), fitting was confined to inter-turn

intervals, and the weights were obtained by minimizing the rms

error e~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(vcm{vmodes)

2T
q

.

Supporting Information

Figure S1 Reconstructed trajectories. To explicitly dem-

onstrate that the shape modes provide sufficient information to

reconstruct the worm trajectories in real space, we show 16

Figure 7. Adaptation of foraging behavior. (a) The cumulative distribution of times between reorientation events in wild–type worms.
Reorientation events are defined as described in the text, and dashed lines denote bootstrap standard deviations. (b) The temporal correlation of the
third eigenmode, a3 , between reorientation events, for early and late times.
doi:10.1371/journal.pone.0013914.g007

Table 1. Properties of the inter–turn interval distribution.

rshort (Hz, +0:02) rlong (Hz, +0:002)

genotype early middle late early middle late

N2 0.63 0.76 0.63 0.053 0.040 0.027

dop-2 0.68 0.67 0.68 0.072 0.048 0.044

dop-3 0.65 0.66 0.60 0.070 0.046 0.042

Data as in Fig 7 were collected also for N~50 dopamine mutants, each also
observed for 35 minutes, and all the data were fit to Eq 11. Results are shown
for the two rates, rshort and rlong , that define the time scales for turning. We note
that rshort~0:66+0:04 Hz across all epochs and genetic variants, and that
differences in V–turns between the dopamine mutants are statistically
insignificant.
doi:10.1371/journal.pone.0013914.t001

Modes to Movement
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trajectory reconstructions from (randomly chosen) continuous

intervals in the data that are longer than 60 seconds. In these

reconstructions, red trajectories are generated from the mode

model (Eq 9) while blue trajectories are measured from centroid

motion. Arrows denote the direction of motion and the black scale

bar is 1 mm in each plot. For these reconstructions, we model the

worms trajectory orientation dynamics entirely through vmode and

we use the centroid speed to fit the overall scale. Thus we have

xrecon(t)~x0z
Ð

dt vcm cos (
Ð

dt vmode(t)za0) and yrecon(t)~
y0z

Ð
dt vcm sin (

Ð
dt vmode(t)za0). We note that our model is

based on vmode and thus the reconstructions involve two

integrations and we match the initial position and initial

orientation angle to the worm data. Importantly, during the

integration process, errors in the model, however small, accumu-

late leading to deviations from the actual trajectories at late times.

Nonetheless, it is clear from the reconstructions that the shape

model predicts qualitatively similar movements even during

trajectory epochs where the orientation changes dramatically

Found at: doi:10.1371/journal.pone.0013914.s001 (0.81 MB EPS)
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