
The structural diversity and promise of antiparasitic marine
invertebrate-derived small molecules

Katharine R Watts, Karen Tenney, and Phillip Crews
University of California, Santa Cruz, Department of Chemistry and Biochemistry, 1156 High St.,
Santa Cruz, CA 95064, United States

Abstract
This review focuses on six important parasitic diseases that adversely affect the health and lives of
over one billion people worldwide. In light of the global human impact of these neglected tropical
diseases (NTDs), several initiatives and campaigns have been mounted to eradicate these infections
once and for all. Currently available therapeutics summarized herein are either ineffective and/or
have severe and deleterious side effects. Resistant strains continue to emerge and there is an overall
unmet and urgent need for new antiparasitic drugs. Marine-derived small molecules (MDSMs) from
invertebrates comprise an extremely diverse and promising source of compounds from a wide variety
of structural classes. New discoveries of marine natural product privileged structures and compound
classes that are being made via natural product library screening using whole cell in vitro assays are
highlighted. It is striking to note that for the first time in history the entire genomes of all six parasites
have been sequenced and additional transcriptome and proteomic analyses are available.
Furthermore, open and shared, publicly available databases of the genome sequences, compounds,
screening assays, and druggable molecular targets are being used by the worldwide research
community. A combined assessment of all of the above factors, especially of current discoveries in
marine natural products, implies a brighter future with more effective, affordable, and benign
antiparasitic therapeutics.

Introduction
Today over one billion people worldwide are at risk for contracting and battling tropical
infectious diseases caused by parasitic organisms. Scores of countries, mostly in the Third
World, are impacted and the World Health Organization now classifies many of these ailments
as neglected tropical diseases (NTDs) (Neglected tropical diseases; URL:
http://www.who.int/neglecteddiseases/). For decades the natural products community has
engaged in the quest to identify small molecule leads to develop robust chemo-therapeutics
against NTDs. However, most of these efforts are nascent and must now be invigorated because
the humanitarian benefit from a breakthrough could be enormous. For example, as we begin a
new decade, it is unthinkable that in the Third World one child dies every 30 s due to Malaria
(10 Facts on malaria; URL: http://www.who.int/features/factfiles/malaria/). The goal of this
brief account, which covers the period January 2008–August 2010, is to focus on six important
parasitic diseases. These constitute notable targets for discovery and pipeline-building based
on compounds emerging from the study of marine-derived small molecules (MDSMs) from
invertebrates.

In a review published in 1993 [1] we discussed the existence of relevant parasitic diseases
caused by helminth (19 examples) and protozoal (12 examples) parasites that could be targets
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for the discovery of MDSMs. In this focused update, we present trends and opportunities
through an important subset of six diseases —Malaria, Schistosomiasis, Chagas Disease, River
Blindness, Leishmaniasis, and Sleeping Sickness. An overview of the various terms associated
with these diseases, their causative parasite, the transferring host organism, and estimated
global human impact is summarized in Table 1. Protozoan parasites transferred to a human
host through an insect bite are the cause of Malaria, Chagas Disease, Leishmaniasis, and
Sleeping Sickness. Helminth diseases are the category for the other two entries,
Schistosomiasis and River Blindness. Trematodes (blood flukes) of the genus Schistosoma
flourish inside freshwater snails and enter the human host directly through the skin causing
schistosomiasis. Lastly, River Blindness is the result of a common endosymbiotic relationship
between a bacterium (Wolbachia pipientis) and a nematode (Onchocerca volvulus), which
enter the human bloodstream through a blackfly bite. For a more detailed overview of life
cycles of these parasites and disease symptoms the reader is directed to the World Health
Organization (WHO Fact Sheets; URL: http://www.who.int/mediacentre/fact-sheets) and the
Centers for Disease Control and Prevention (CDC Index of Parasitic Diseases; URL:
http://www.cdc.gov/ncidod/dpd/parasites/).

The answer to the obvious question — What current therapeutics exist for treating these
diseases? — appears in the form of the 17 molecular structures shown in Figure 1. The
compounds of this list represent ancient first generation drugs (see dates of their discovery —
one can be traced back to 1921), many are somewhat toxic (see examples with As and Sb),
several are difficult to administer, and almost all suffer from the continuing emergence of
resistant parasite strains. Few among this list (only 31%) are based on a natural product, which
is in contrast to the situation with anti-infectives where greater than 65% of clinical agents are
of such origin [2].

Initiatives are now rapidly emerging to overcome the well-known hurdles (development
expense, distribution to low income and remote populations, target finding) for developing
antiparasitics to combat the entries of Table 1. Assisting in the push forward to encourage
natural products based-discoveries are a multitude of opportunities headed by US federally
funded International Cooperative Biodiversity Groups (ICBG), The Bill & Melinda Gates
Foundation, the Drugs for Neglected Diseases Initiative (DNDi), the Special Program for
Research and Training in Tropical Diseases (TDR), the Medicines For Malaria Venture
(MMV), the Anti-Wolbachia (A-WOL) Consortium, the Institute for One World Health, the
Seattle Biomedical Research Institute, and the Sandler Center for Basic Research in Parasitic
Diseases at UC San Francisco. These and other programs will lead to the next generation of
discoveries and we believe MDSMs will play an ever-expanding role because of proof-of-
concept discoveries that have emerged during the last decade.

An important preamble
Before proceeding, it is important to mention some trends as well as milestone discoveries that
provide a platform for future developments. First, very few compounds on the list in Table 1
have dates post 1990. This indicates there may be low-hanging molecular fruit as templates
for future research. Second, several antiparasitic drugs in Figure 1 are derived directly from
natural sources (amphotericin B, ivermectin) or are based on natural product scaffolds
(artesunate, mefloquine, and doxycy-cline), demonstrating the power of natural products in the
antiparasitic drug discovery pipeline. Third, recently, the screening of natural product libraries
using whole cell in vitro assays proved to be an effective paradigm for Novartis to uncover a
new antimalarial lead compound [3]. Fourth, several academic groups are also engaged in the
screening of MDSMs for antiparasitic leads and encouraging results have emerged in the past
decade. Strikingly, sponges have been a significant source of antimalarial active scaffolds
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headed by compounds with diverse structures such as the manzamines, plakortins,
isoaaptamines, axisonitriles, and homofascaplysins [4••,5••].

Despite the global relevance and lack of adequate therapeutics for Schistosomiasis and River
Blindness (Table 1), screening of both plant and marine natural products has been focused only
on P. falciparum, T. brucei sp., Leishmania sp. and T. cruzi and lead natural product scaffolds
against these four protozoa have been outlined in a recent review [6]. Other reviews of interest
include more specific reports covering drug resistance and natural product screening for T.
brucei sp. [7], P. falciparum [8], and Leishmania sp. [9], with the main focus on plant
metabolites. Natural products from medicinal plants with activity against T. cruzi were also
highlighted [10], and two publications summarizing the discovery and development of marine
antimalarials [4••,5••] recently appeared.

The synopsis in Figure 2 reflects these previous reviews and our supplemental literature
searches. The 133 compounds included in this collection, discovered from 2008 to 2010, all
displayed an IC50 below 30 μM against one or more parasites during in vitro screening. It is
evident that marine sponges provide the majority of antiparasitic MDSMs with 87 compounds
included in 30 publications between 2008 and 2010 [11–14,15•,16,17,18•,19,20•,21–27,28•,29–
31,32•,33,34•,35,36•,37•,38•,39•,40]. Marine-derived fungi have produced the next largest set of
20 compounds, reported in only four papers [41–44] and cyanobacteria follow with 11
compounds included in eight reports [45–52]. Marine algae [53], actinomycetes [54–56], and
hard corals [57–60] supplied four antiparasitic MDSMs each, and the final three metabolites
were isolated from an ascidian [61•]. The remainder of this account will be focused on
compounds from marine invertebrates (sponges, corals, and ascidians: 94 compounds, 70.7%)
versus microorganism-derived molecules (fungi, cyanobacteria, actinomycetes, algae: 39
compounds, 29.3%) based on the special interest of this review.

The 94 invertebrate-derived structures are divided into eight classes on the basis of their
molecular formulas and structural motifs as shown in Figure 3. Compounds containing only
carbon, hydrogen and oxygen (47 compounds, 50%) are the most abundant and have been
divided into four classes: endoperoxides, oxoterpenes, polyketides, and steroids. Nitrogen-
containing compounds (32 compounds, 34%) are also divided into subclasses of alkaloids,
peptides, and isonitrile (CN-R) terpenes and the unique structures possessing halogen atoms
comprise their own class (15 compounds, 16%).

A snapshot of selected natural products
Twenty compounds were chosen to represent the outstanding structural diversity of
antiparasitic MDSMs from invertebrates and they are displayed in Figure 4 along with the
IC50 (μM) results obtained from in vitro screening. Our discussion will be limited to the most
potent compounds of each molecular type, and the reader is encouraged to examine the cited
literature for a more comprehensive overview. Assay standards listed in Table 2 provide the
benchmark for comparison of in vitro bioassay data for the MDSMs discussed below.

Compounds containing carbon, hydrogen and oxygen
Endoperoxides [18•,20•,22,27,32•,35]. These polyketide and terpenoid compounds display
activities against P. falciparum and T. brucei in the nanomolar range, and also inhibit growth
of T. cruzi at concentrations that are comparable with current assay standards. These multiple
activities mirror the use of pentamidine and nifurtimox for the treatment of more than one
parasitic disease. Interestingly, the antimalarial endoperoxy polyketide manadoperoxide A
(1) showed a greater growth inhibition of a chloroquine resistant (CQR) strain of P.
falciparum versus a chloroquine sensitive (CQS) strain [18•]. Compounds isolated from
Plakortis sp. and Diacarnus bismarckensis displayed activity against T. brucei, although the

Watts et al. Page 3

Curr Opin Biotechnol. Author manuscript; available in PMC 2011 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



polyketide 2 [20•] surpassed other terpenes in potency, including compound 4 [32•]. Limited
screening of this compound class has been completed versus T. cruzi; however, endoperoxide
3 demonstrated growth inhibition equal with that of nifurtimox (Table 2) [22] and also showed
modest activity against L. donovani.

Terpenes [21,30,59,60], Steroids, [26,31,37•], and Polyketides [17,25,35]. Other oxygen-
containing terpenes display broad spectrum antiparasitic activities similar to the endoperoxy
group, albeit with much less effectiveness. Two examples are the coral-derived compound 5
[60] and compound 6 from a Spongia sp. [30]. Compound 7, from a group of steroidal saponins,
showed high potency against L. donovani. This represents a 20-fold improvement over the
assay standard benznidazole; however, the selectivity for 7 between mammalian cells (IC50 =
0.2 μM, rat myoblast) and the parasite was relatively low (SI = 4.0) [31]. Another
antileishmanial steroid 8 was isolated from a Crella sp. sponge collected in Antarctica, but was
less potent than 7. Recent reports on antiparasitic polyketides focus on screening against P.
falciparum. One highlight is the sulfonated compound 9 that showed excellent growth
inhibition of CQR strains and little cytotoxicity versus mammalian cells (IC50 = 45.0 μM,
MCF-7, SI = 512).

Compounds containing nitrogen
Alkaloids [11,13,15•,23,34•,36•,39•,57,61•] and CN-R terpenes [37•,38•]. Like the
endoperoxide group of structures, alkaloids from invertebrates exhibited powerful bioactivity
in multiple antiparasitic screens, with greatest potency against T. brucei and P. falciparum.
Notable compounds include the pyridoacridone compounds 10 [61•] and 11 [13], a terpene
alkaloid (12) [36•], the β-carboline 13, and guanidine alkaloids 14 [23] and 15 [34•]. Other
nanomolar growth inhibitors of P. falciparum include the isonitrile-containing terpenes 16
[37•] and 17 [38•]. An outstanding selectivity index of (>154) was observed between the P.
falciparum CQR strain and human fibroblast cells (IC50 = 13.9 μM) for compound 16.

Compounds containing halogen atoms
Halogenated metabolites [13,14,16,19,24,28•,33,40]. Secondary metabolites containing
halogen atoms are commonly isolated from marine organisms and these compounds often elicit
biological responses. Girolline (18), a relatively simple structure, is no exception, showing
strong growth inhibition effects in several strains of P. falciparum in the nanomolar range. A
similar pattern was reported for discorhabdin A (20), which showed equal activity in CQS and
CQR strains of P. falciparum. The complex polycyclic alkaloid dibromopalau’amine (19)
exhibited low micromolar IC50’s for P. falciparum, T. brucei rhodiense and L. donovani and
showed modest selectivity (SI = 9.8) for T. brucei rhodesiense versus mammalian cells (rat
myoblast, IC50 = 7.8 μM) [33]. A greater selectivity index of 27.2 was reported for compound
18 between Vero cells (IC50 = 2.1 μM) and a CQR strain P. falciparum [12].

Concluding remarks
The prospects for structure–activity relationship (SAR)-driven mining of MDSM-derived
pharmacophores as antiparasitics against the targets shown in Table 1 are significant.
Considerable structural diversity is represented in the 94 relevant structures we examined (as
illustrated by the subset in Figure 4) and is the basis for the recommendation of six structural
classes that are ripe for further development. This final list is based on biological properties of
potency and/or selectivity, on new insights gained during the last 2.5 years on previously
studied pharmacophores, plus new insights obtained for analogs based on structures examined
in the past. The scaffolds among this list shown in Table 3 include: endoperoxides, guanidine
alkaloids, β-carboline alkaloids, pyridoacridone alkaloids, isonitrile (CN-R) terpenes, and
terpene alkaloids.
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Comparing the information in the two center columns of Table 3 illustrates that, while no
significant new structure types have been identified, significant interest and effort is being
devoted to enhancing the lead potential of legacy pharmacophores. Here are some specific
examples to underscore this point. The antimalarial activity of plakortin (21) was discovered
in 2003 (IC50 = 0.87 μM (P. falciparum D10-CQS), IC50 = 0.41 μM (P. falciparum W2-CQR))
[62] and its potency against P. falciparum has not been surpassed by any other endoperoxide
(such as 1–4). Significantly, endoperoxide 2 represents a new lead compound for Sleeping
Sickness; it possesses nanomolar potency against T. brucei and 100-fold selectivity versus
mammalian cells (HEK293) [20•]. Similarly, in 2000 manzamine A (23) (original structure
published in 1986) was found to have antimalarial properties [63]. Its recent re-isolation along
with the zamamadine (13) series of compounds [39•] not only showed that manzamine A is
still the most potent antimalarial β-carboline alkaloid, but also uncovered its trypanocidal
properties (IC50 = 0.07 μM, T. brucei rhodesiense). However, concerns about the cytotoxicity
of 23 remain unresolved. Among the guanidine alkaloids, crambescidin 800 (24) (IC50 = 0.16
μM (P. falciparum 3D7-CQS), IC50 = 0.24 μM (P. falciparum FCR3-CQR)) [64] is more potent
than batzelladines (compounds 14, 15). New prospects have been discovered for the
pyridoacridone class, whose analogs have been poorly studied. In particular, ascididemin
(22) exhibits nM activity against Plasmodium and Trypanosoma [61•,65]. The isonitrile-
containing terpenoids represent a class known since 1973 and while kalihinol A (25) is
exquisitely potent (P. falciparum IC50 = 0.001 μM) [66] this activity level is matched by that
of amphilectenes (16, 17). The isonitrile functionality is the warhead for activity, putatively
by disruption of heme [67]. The known agelasine class represents a new opportunity for further
study; however, compound 12 is less potent than other legacy compounds.

In summary, our analysis of the discovery of active invertebrate-derived MDSMs suggests the
following trends: First, most of the information gained from in vitro screening studies in the
last three years has provided additional structure–activity information for established
antimalarial compounds [4••]. Second, several known antimalarial MDSMs and their
congeners also have potent trypanocidal activity versus T. brucei. Third, there are no significant
lead compounds under advanced evaluation against the other four parasitic diseases of Table
1 (Entries 2–5).

Gazing into our crystal ball
Scientists and philanthropists are becoming united in their belief that curing the six parasite
diseases discussed here can occur by a fusion of the structural diversity inherent in natural
products and the new insights being accumulated from breakthroughs in molecular biology.
Thus, we expect that the investigation of new and known MDSMs in the context of antiparasitic
research will thrive in coming years. Furthermore, such research activities will expand beyond
the core tasks of natural product-derived library screening. As illustrated above, MDSM leads
are in hand for Malaria and Sleeping Sickness, therefore a shift in effort is needed on two
different fronts. First, accelerated screening must occur against Leishmania sp. and T. cruzi
using well-established assays. Second, programs need to be initiated employing the
schistosomiasis parasite utilizing assays for medium-throughput [68] and high-throughput
[69••] screening that have recently been described. Likewise, current awareness searches
should be directed to assays employing the River Blindness causative organisms — Wolbachia
pipientis and Onchocercus volvulus.

The climate to promote rapid discovery has arrived. The impact of genomics and the availability
of publicly accessible, open and shared databases such as Collaborative Drug Discovery (CDD)
(URL: http://www.collaborative-drug.com/) represent new important milestones to facilitate
future research based on deeper understanding of parasite biology and host interactions, and
the potential for small molecules to modulate these processes. The CDD database and similar
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tools are rapidly expanding with voluminous screening and compound data being added by
researchers worldwide, such as the GlaxoS-mithKline open-access collection of 13 500
antimalarial compounds. The complete sequences for the genomes of each parasite in Table 1
have been published [70,71••,72–75]. Transcriptome and proteomic analyses provide
additional insights into parasite life cycles, environmental responses, parasite–host
interactions, and identification of new druggable targets [71••]. Indeed, the synergy of efforts
by the research community and the age of genomics have already greatly enhanced our
understanding of these diseases and potential curative agents. Thus, our summary of the recent
literature here serves not only as an overview of what has been accomplished, but also as a
wake-up call to the global natural products community in the tasks that remain before us!
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Figure 1.
Examples of current therapeutics against important parasitic diseases with trade names, target
disease (entries 1–6, Table 1), and year of discovery. *Natural product or based on a natural
product scaffold. aAdministered as a mixture of stereoisomers. bHAT(I): First stage of Human
African trypanosomiasis; cHAT(II): Second stage of Human African trypanosomiasis.
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Figure 2.
Overview of marine organism sources of 133 antiparasitic small molecules parasite targets
include all entries from Table 1 except River Blindness.
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Figure 3.
Structure types and the tally among eight classes of MDMS’s from invertebrates reported
2008–2010.
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Figure 4.
Twenty selected lead structures from 94 MDSM’s and their antiparasitic IC50’s (μM) *Parasite:
IC50 (μM) result from in vitro screening; aP.f. CQR = P. falciparum chloroquine-resistant
strain; bP.f. CQS = P. falciparum chloroquine-sensitive strain; cT.b. = T. brucei; dT.c. = T.
cruzi; eL.d. = L. donovani.
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Table 2

Examples of in vitro bioactivity data for assay standards

Disease target Assay standard IC50 (μM) Organism target Reference

Malaria Chloroquine 0.05 P. falciparum (D6 CQSa) [27]

5.3 P. falciparum (W2 CQRb) [27]

Artemesinin 0.01 P. falciparum (K1 CQR) [37•]

Atovaquone 0.0005 P. falciparum (D6 CQS) [38•]

0.002 P. falciparum (W2 CQR) [38•]

Schistosomiasis Niclosamide 4.6c Biomphalaria glabrata [50]

Chagas Benznidazole 1.2 T. cruzi [33]

Nifurtimiox 10.0 T. cruzi [52]

River Blindness None

Leishmaniasis Amphotericin B 0.07 L. donovani [27]

Miltefosine 0.5 L. donovani [33]

Sodium stibogluconate 44.7 L. donovani [51]

Sleeping Sickness Pentamidine 0.03 T. brucei brucei [20•]

Melarsoprol 0.01 T. brucei rhodesiense [33]

a
CQS = chloroquine sensitive strain.

b
CQR = chloroquine-resistant strain.

c
LC100 value.
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Table 3

MDSM lead compound classes for antimalarial and trypanocidal development

Target parasite
Lead compound classes and compound
numbersa

Legacy compound(s) and year of
antiparasitic discovery References

P. falciparum; T. brucei sp. Endoperoxides (1–4, 21) plakortin (2002) [18•,20•,22,27,32•,62]

P. falciparum Guanidine alkaloids (14, 15, 24) crambesidin 800 (2006) [23,34•,64]

P. falciparum β-Carboline alkaloids (13, 23) manzamine A (2000) [39•,63]

P. falciparum Pyridoacridone alkaloids (10, 11, 22) ascididemin (2003) [13,28•,61•,65]

P. falciparum CN-R terpenes (16, 17, 25) kalihinol (1998) [37•,38•,66]

P. falciparum; T. brucei sp. Terpene alkaloids (12) agelasine D (2008) [11,15•,36•]

a
See Figure 3 and structures below.
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