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Abstract
Prevention and early detection of breast cancer are the major prophylactic measures taken to
reduce the breast cancer related mortality and morbidity. Clinical management of breast cancer
largely relies on the efficacy of the breast-conserving surgeries and the subsequent radiation
therapy. A key problem that limits the success of these surgeries is the lack of accurate, real-time
knowledge about the positive tumor margins in the surgically excised tumors in the operating
room. This leads to tumor recurrence and, hence, the need for repeated surgeries. Current
intraoperative techniques such as frozen section pathology or touch imprint cytology severely
suffer from poor sampling and non-optimal detection sensitivity. Even though histopathology
analysis can provide information on positive tumor margins post-operatively (~2–3 days), this
information is of no immediate utility in the operating rooms. In this article, we propose a novel
image analysis method for tumor margin assessment based on nuclear morphometry and tissue
topology and demonstrate its high sensitivity/specificity in preclinical animal model of breast
carcinoma. The method relies on imaging nuclear-specific fluorescence in the excised surgical
specimen and on extracting nuclear morphometric parameters (size, number, and area fraction)
from the spatial distribution of the observed fluorescence in the tissue. We also report the utility of
tissue topology in tumor margin assessment by measuring the fractal dimension in the same set of
images. By a systematic analysis of multiple breast tissues specimens, we show here that the
proposed method is not only accurate (~97% sensitivity and 96% specificity) in thin sections, but
also in three-dimensional (3D) thick tissues that mimic the realistic lumpectomy specimens. Our
data clearly precludes the utility of nuclear size as a reliable diagnostic criterion for tumor margin
assessment. On the other hand, nuclear area fraction addresses this issue very effectively since it is
a combination of both nuclear size and count in any given region of the analyzed image, and thus
yields high sensitivity and specificity (~97%) in tumor detection. This is further substantiated by
an independent parameter, fractal dimension, based on the tissue topology. Although the basic
definition of cancer as an uncontrolled cell growth entails a high nuclear density in tumor regions,
a simple but systematic exploration of nuclear distribution in thick tissues by nuclear
morphometry and tissue topology as performed in this study has never been carried out, to the best
of our knowledge. We discuss the practical aspects of implementing this imaging approach in
automated tissue sampling scenario where the accuracy of tumor margin assessment can be
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significantly increased by scanning the entire surgical specimen rather than sampling only a few
sections as in current histopathology analysis.
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Introduction
Breast carcinoma is the most frequently diagnosed malignancy in women. Currently, a
woman living in the U.S has a 12.3% lifetime risk of developing breast cancer. In the last
two decades, the incidence rate of small (<2 cm) tumors has increased by ~2% per year
suggesting the critical role of mammography and other screening strategies in detecting
early cancers. Despite this good news, breast cancer continues to account for more than 21%
of cancer-related deaths worldwide and for the estimated 40,000 breast cancer-related deaths
in the U.S alone in 2010. A combination of breast-conservation surgery (lumpectomy) and
radiation therapy has become a standard of treatment for most in situ and invasive cancers
[1-9]. Removing all tumor present—with “clear margins”—is the goal of breast-conserving
surgery. Failure to do so significantly increases the risk of local recurrence. While local
recurrence may be treatable (mastectomy, chemotherapy ± radiation), it increases the risk of
systemic recurrence and death. Margin assessment depends on histopathologic analysis of
the lumpectomy specimen, which typically takes 2–3 days [10-14]. Information from this
analysis is thus of no immediate value during surgery. Several other approaches (e.g.,
imprint cytology, tomography etc.,) have shown promise but none has yet made the jump
from clinical research to clinical acceptance [10,12,15-17]. The use of intra-operative frozen
section has the longest track record. Frozen section is not as reliable as permanent (H&E)
section and specimens processed in this manner cannot be evaluated further. This
emphasizes the value of developing technologies that can incrementally add to our ability to
detect cancer intraoperatively, even if these technologies do not have outstanding sensitivity
and/or specificity. It is evident that we need alternate detection technologies that can
augment the existing repertoire of clinical diagnostic modalities. Our long-term goal is to
develop optical imaging approaches for enabling the tumor margin detection in
intraoperative settings [18-20]. In this study, by systematic comparison of normal and breast
tumor tissues from preclinical animal models of breast carcinoma, we demonstrate that
nuclear morphometric parameters (size and area fraction) and tissue topology parameter
(fractal dimension) can be potentially used as reliable imaging tools for discriminating
normal and breast tissues in vivo. In order to confirm the utility of this approach in human
breast specimens, we carried out similar morphometric analysis in a human tissue
microarray with four different cases of breast tumor status. Our results indicate that the
nuclear morphometry has a systematic dependence on the tumor stage and/or
aggressiveness. By extending the scope of the current observations to excised human tissues,
it is possible to achieve rapid assessment of tumor margins in intraoperative clinical settings
thereby alleviating the aforementioned problems in clinical management of breast cancer.

Materials and methods
Cell culture and tumor generation in rats

Adult female Fisher 344 rats (180–210 g body weight) were used in the current studies.
MAT B-III rat breast cancer cell line was purchased from ATCC (Manassas, VA, USA) and
cultured in McCoy’s 5a medium supplemented with 10% fetal bovine serum. When
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confluent, cells were harvested and washed twice with PBS, counted with trypan blue
staining for viability. In order to generate breast tumor xenografts, the rats were anesthetized
by maintaining a steady stream of oxygen/isoflurane using a nose cone/face mask. After
removing the hair and sterilizing the skin, 106 cell/0.2 ml were injected subcutaneously into
the mammary fat pads under the rat’s nipple on the right breast. Left breasts without tumor
cell injection served as normal control for every animal. All experiments were conducted on
both left (normal) and right (tumor) breasts in each animal. Rats were observed at set
intervals (days 0, 1, 3, 5, 7, 9, 11, 13, 15, and 21) for tumor growth. We observed that the
above inoculation protocol generated tumors (100% efficiency) within 2 days, and the tumor
size reached typically 2–4 cm in 3 weeks. All procedures used were carefully controlled to
adhere to the approved animal protocols (Cedars-Sinai Medical Center, Institutional Animal
Care and Use Committee).

Image acquisition
A wide-field fluorescence microscopy imaging system (Nikon TE2000; CoolSNAP CCD
camera) was employed in collecting all the images reported in this study. This system
utilizes the mercury arc lamp for excitation and appropriate filter cubes for collecting
fluorescence from the specimen (DAPI filter: 360/40 nm excitation; 400 nm LP dichroic;
460/50 nm emission and Alexa 488 filter: 480/30 nm excitation; 505 nm LP dichroic;
535/40 nm emission). An automated stage-scanning feature of the imaging system enabled
the rapid acquisition of data along both X and Y axes. After 3 weeks of tumor growth,
animals were anesthetized and tumor tissues were excised and immediately stored in
formalin containers. In order to obtain a matched pair of breast specimens without the
tumor, mammary fat pads and the surrounding breast stroma were also collected from the
left breast (no tumor injection) of each animal. For this study, 12 animals were subdivided
into two groups: group 1 (n = 6)—animal tissues were used in making paraffin blocks and
subsequent thin tissue sectioning (5–10 microns thickness) and group 2 (n = 6)—animal
tissues were used as thick tissue specimens (~4 cm3 volume) for three-dimensional (3D)
imaging as described in the next section. Our goal was to demonstrate the proposed method
of nuclear morphometry analysis in thin tissue sections (group 1) as well as in realistic thick
breast tissues that mimic the surgical specimens (group 2). Since the purpose of this study is
to evaluate the rapid assessment of nuclear architecture in tissues, we chose to use a DNA
intercalating fluorescent dye, DAPI (Invitrogen, Carlsbad, CA, USA) that has bright
fluorescence for fast imaging of nuclear-specific fluorescence from the breast tissues. The
DAPI-labeling protocol was optimized for good signal-to-noise ratio as well as for rapid
readout of the images. We found that both the thin tissue slides and the thick tissue
specimens could be labeled rapidly (~3 min, room temperature, 50 ng/ml working
concentration) for optimal imaging. Supporting immunofluorescence studies were carried
out by labeling the group 1 tissue sections with cancer-specific primary antibodies (rabbit
polyclonal) raised against key metabolic targets Glucose transporter 1 (GLUT1), epidermal
growth factor receptor (EGFR), fatty acid synthase (FAS), and Akt (Abcam, Cambridge,
MA, USA). Fluorescence visualization of the tissue slides was enhanced by secondary
antibodies conjugated with Alexa 488 fluorophore. Human tissue microarrays (US Biomax
Inc, MD, USA) were labeled with DAPI and cell proliferation marker, Ki67 tagged with
Alexa 488 fluorophore. Data acquisition was facilitated by the QED Invivo Software (Media
Cybernetics Inc., Silverspring, MD, USA). Serial images along X, Y were obtained and tiled
together to obtain the complete image of the entire specimen. Three-dimensional stacks of
images were obtained by collecting series of XY images over a defined Z-depth range (~100–
150 microns). Typical time of acquisition per image (1392 × 1040 pixels) was under 2 s.
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Data analysis
It is worth mentioning that this study focuses on not developing new image analysis
methods but in utilizing the currently available image analysis methods to address the vital
clinical question of tumor margin detection. Our long-term goal is to extend the scope of this
study to images obtained by any imaging system so that the method itself becomes
independent of any specific imaging platform. Tissue fluorescence images obtained by the
aforementioned protocols were analyzed for three morphometric parameters, namely,
nuclear size, circularity, and nuclear count. The rationale behind choosing these parameters
is the fact that tumors are most commonly associated with increased cell proliferation as
compared with the non-neoplastic (normal) regions which, in turn, leads to a higher nuclear
density as well. Furthermore, it is a common observation among the histopathologists that in
tumor regions, there is an increased nuclear-to-cytoplasmic ratio as compared with the
normal regions. In this article, we attempted to evaluate the feasibility of quantitative
characterization of nuclear architecture (as exemplified by the three parameters described
above) in breast tumors. Toward this direction, we applied a well-known algorithm, namely,
Watershed Algorithm—for automatic estimation of nuclear size and count in the
fluorescence images obtained. Watershed algorithm is one of the many methods of image
segmentation, i.e., the process of partitioning a digital image into multiple segments (sets of
pixels) [21-23]. The watershed transformation considers the gradient magnitude of an image
as a topographic surface. Pixels having the highest gradient magnitude intensities
correspond to watershed lines, which represent the region boundaries. Water placed on any
pixel enclosed by a common watershed line flows downhill to a common local intensity
minimum. Pixels draining to a common minimum form a catch basin, which represents a
segment. In this case, this approach is expected to segment the nuclear fluorescence images
and extract the statistics such as nuclear size and count. We used a custom-plugin written in
the popular ImageJ (NIH) program for the watershed analysis of the images
(http://rsbweb.nih.gov/ij/). We further tested another equivalent approach for achieving
automated nuclear statistics based on the topology of the digital images by the CellAnalyst
software program (http://www.assaysoft.com) [24-28]. In this approach, an image pixel is
defined to have four vertices (corners), four edges, and one face. Algebraic topology uses
algebraic operations with these objects to capture and count the number of completed cycles
—circular sequences of edges. The completion of a cycle indicates the presence of a cell (or
nuclei in our case). The topological nature of the algorithm makes it especially suitable for
nuclear counting since (a) the count of nuclei is independent of their locations, (b) the
measurements of nuclei are independent of their orientations with respect to the image grid,
and (c) the nuclei and other features are captured with no deformation, smoothing, blurring,
or approximation. In order to evaluate whether the difference in nuclear morphometry is
significant enough to serve as a reliable diagnosis criterion in situations that mimic the
intraoperative settings, we also computed the Nuclear Area Fraction in each image by using
a particle analyzer plugin written in the ImageJ software (http://rsbweb.nih.gov/ij/). This
parameter yields a comprehensive picture of nuclear distribution which takes into account
both the nuclear size/shape and the nuclear count. Finally, in order to measure the
complexity in the tissue images, we also measured an important topological parameter,
“fractal dimension” which measures the degree of connectedness. Fractal is typically a
rough and geometric shape that looks almost identical at arbitrarily various levels of
magnification. This feature stems from the principle of self-similarity and is a defining
characteristic of the spatial complexity. For the present purpose of understanding complex,
highly connected nuclear architecture in the fluorescence images of the breast tissues, it is
possible to quantify the tissue complexity by measuring the fractal dimension [29-32].
Fractal dimension, D, is a statistical quantity that gives an indication of how completely a
fractal appears to fill space, as one zooms down to finer and finer scales. We chose to
measure the fractal dimension to investigate whether this parameter can be a robust indicator

Nyirenda et al. Page 4

Breast Cancer Res Treat. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://rsbweb.nih.gov/ij/
http://www.assaysoft.com
http://rsbweb.nih.gov/ij/


of the breast tumor tissue complexity and if this parameter can also serve as a reliable
diagnostic criterion for margin assessment. This was measured by box-counting algorithm
written and available in the ImageJ software.

Statistical analysis
Morphological and topological data set from normal and tumor specimens from both Group
I and Group II were analyzed for statistical significance by performing Students’ t-test
(unpaired set with equal variance). In each group, specimens from at least five different
animals were included to address the issue of variations from animal-to-animal. The data
presented here had a p value, p < 0.0001.

Results
The basic premise of nuclear morphometry analysis is demonstrated in Fig. 1 which shows
the essential steps involved in extracting the required information (nuclear size/shape, count
etc.,) from the raw fluorescence image. A breast tissue is inherently heterogenous since it is
composed of multiple cell types (epithelial, fibroblasts, endothelial, and fatty tissue
components), and the resulting nuclear architecture can be fairly complex. It is, therefore,
imperative to validate the proposed nuclear morphometry analysis to confirm the variability
in analysis and the statistical significance of the extracted parameters. Figure 1a shows a
representative 2D image of fluorescent microbeads of different sizes and shapes. Image
processing (binary threshold) and image segmentation steps as demonstrated in Fig. 1b–d
yield the required nuclear parameters. We next tested whether the proposed nuclear
morphometric parameters can reliably discriminate tumor margins in breast tissue
specimens. In order to do this, we first chose thin sections of tissue specimens that were
known to contain tumor regions bordering with normal epithelium. Watershed and Edge
detection analysis were carried out on this set of specimens as follows: individual images of
915 × 686 μm size were subdivided into regular image units of 50 × 686 μm size. Nuclear
morphometric parameters were calculated on these individual image units. A representative
data set and the associated analyses are presented in Fig. 2: nuclear size and count
systematically decrease as one moves from tumor-rich regions to normal-only regions, as
graphically illustrated. Normal breast regions tend to have smaller nuclear size and lesser
nuclear count as compared to the tumor-filled breast regions. In contrast to the above two
parameters, nuclear circularity does not exhibit a significant difference between normal and
tumor regions. In light of this observation, we chose not to include nuclear circularity in the
later analysis of breast tissue morphometry. The increase in nuclear density in tumor-rich
regions of the tissue poses another technical challenge in the analysis of nuclear
morphometry. In some regions, as can be seen in Fig. 2a, the overlap of the neighboring
nuclei is high enough to introduce artifacts in nuclear counting since this may exceed the
best optical resolution that can be achieved (~0.20 μm). This potentially underestimates the
resulting nuclear count. Although this is an inherent limitation of optical imaging methods,
one can also derive another useful topological parameter from this situation: In tissue images
with high degree of overlap between individual nuclei (or cells in general), a topological
survey can be performed by measuring the degree of connectedness or nonlinearity in the
images. By measuring the fractal dimension of these images (as described in the “Materials
and Methods” section), one can infer the extent of complexity in the images. We computed
the fractal dimension in the individual image subunits as described above. Figure 2e
demonstrates that the computed fractal dimension changes from 1.6 (tumor) to 1.2 (normal)
mimicking the spatial profile of the nuclear morphometry (size and count) parameters. This
feature was observed in all the images analyzed. Having shown that nuclear morphometry
and tissue topology analysis can yield a robust measure of the spatial transition from normal
to tumor regions in breast tissue sections, we then analyzed multiple sets of images from
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normal and tumor tissue sections obtained from different animals with varying stages of
tumor growth. A rigorous statistical analysis of all the morphometric and topological
parameters was carried out. For clarity, a representative statistical analysis of nuclear size is
given in Fig. 3a. As can be seen, the mean nuclear size was found to be statistically different
between normal and tumor tissue sections.

In a typical lumpectomy procedure, the surgeon is guided by preoperative radiological
images of the tumor for locating the tumor in the patient’s breast and for removing the tumor
and the surrounding normal tissue. The immediate question is how much of this excised
tissue is clear of tumor cells in the periphery. It is useful to have a specific diagnosis
criterion that could potentially enable the surgeon in answering the above question. Based
on our statistical results from Figs. 2 and 3a, we investigated whether the nuclear size could
be such a diagnosis criterion. We tested this by the analyzing the tissue sections (n = 6) that
contained both normal and tumor regions in the same field of view, as exemplified in Fig.
2a. By using a diagnosis criterion based on the nuclear size threshold of 25 μm2 (as obtained
from Fig. 3a), we computed the sensitivity and specificity in detecting tumor regions within
a normal breast tissue (Table 1). In a binary classification scenario where the goal is to
detect tumor regions (true positive) in an otherwise normal tissue periphery (true negative),
sensitivity is the statistical measure of the proportion of true positives that are correctly
identified and specificity is the corresponding statistical measure of the proportion of the
true negatives that are correctly identified. This analysis is summarized in Fig. 3c where the
sensitivity and specificity of detecting tumor regions were 85 and 62.5%, respectively.
Although the difference in nuclear size was found to be statistically significant, we believe
this may not be a good diagnosis criterion for implementing in an intraoperative setting.
However, during the course of studies, we found that nuclear area fraction (which is a
combination of nuclear size and count) provided not only a statistically significant
difference between normal and tumor regions (Fig. 3b) but also yielded a very high
sensitivity and specificity in the analysis of specimens with both normal and tumor regions
(Fig. 3d). We believe this can be a simple, reliable, and reproducible diagnosis criterion that
can be implemented in tumor margin detection in excised tumor tissues. In order to test this
in more realistic (thick) breast tissues, we performed morphometric and topology analysis in
Group II specimens as mentioned above. Figure 4a shows the schematic of 3D data
acquisition. Representative montages of large field of view of normal and tumor breast
tissues show that the nuclear count is significantly higher in the tumor tissue as compared
with the normal counterpart. Computation of nuclear area fraction and fractal dimension in
multiple specimens demonstrate the feasibility of applying this proposed morphometric/
topological approach even thick excised tissues.

Finally we extended the scope of our preclinical observations to human breast tumor cases
where we asked the question if the proposed nuclear morphometry analysis can give insight
into the various tumor stages and/or aggressiveness. Figure 5 shows representative nuclear
fluorescence images on a tissue microarray (US Biomax Inc., #T085) labeled with cell
proliferation marker (Ki67) and nuclear marker (DAPI). As can be seen from Fig. 5b nuclear
count systematically increases in proportion to the aggressiveness of the breast cancer. As it
is evident from the images, the nuclear grade (heterogeneity in nuclear size and shape) is
also significantly different in breast carcinoma as compared with normal breast tissues
thereby offering additional quantitative measures for rapid diagnosis in intra-operative
settings.

Discussion
We demonstrated here the utility of measuring nuclear morphometric and tissue topology
parameters in discriminating normal and tumor tissues in a rat model of breast carcinoma.
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The rationale behind this study is based on the well-known, drastic increase in cell
proliferation that accompanies tumorigenesis. It is important to note that our major emphasis
in this study was not on developing any new imaging technology for tumor margin
assessment but on providing a novel and robust image analysis concept that can be
employed in a practically platform-independent manner. In earlier studies and even in
current practice of tumor histopathology, it is a commonplace observation that nuclear-to-
cytoplasmic ratio increases in specimens obtained from breast tumors. However, while
translating this observation to tissue specimens with both normal and tumor regions (as
judged by immunofluorescence studies, data not shown), we arrived at the conclusion that
nuclear size as a diagnostic criterion cannot yield good enough sensitivity and specificity in
reliably delineating tumor regions in an otherwise normal breast tissue. Our data clearly
precludes the utility of nuclear size as a reliable diagnostic criterion for tumor margin
assessment. On the other hand, nuclear area fraction addresses this issue very effectively
since it is a combination of both nuclear size and count in any given region of the analyzed
image, and thus yields high sensitivity and specificity (~97%) in tumor detection. This is
further substantiated by an independent parameter, fractal dimension, based on the tissue
topology.

In this study, our goal was to report a proof-of-concept demonstration of the clinical utility
of rapid assessment of nuclear morphometry and tissue topology and to propose a plausible
intraoperative tumor margin detection avenue. Our results also point to the fact that the
proposed diagnostic criterion is applicable not only in thin tissue sections but also in realistic
thick excised tissues. The CFI Plan Fluor DLL 20X (Nikon; 0.50 numerical aperture; 2.10
mm working distance) objective lens used in this study allowed us to reproducibly obtain
fluorescence signals up to 1.60 mm of the thick tissue sections. This reduction in “effective”
working distance (as compared to the expected 2.10 mm for the objective lens) can be
attributed to tissue absorption, shorter excitation wavelengths (~350 nm), as well as multiple
scattering events in the tissue sections. Although this limits deeper penetration, it is
important to note that the measurable tissue depth (~1.60 mm) is more than the typical depth
(~1 mm) where the positive tumor margin is typically defined. We are currently exploring a
multi-zoom macroscope (Nikon AZ100) and a low magnification objective lens (Nikon; AZ-
Plan Fluor 5X/0.50 Numerical Aperture/15 mm working distance) for its increase in field of
view as well as the speed. Finally, our data on human tissue microarrays further suggest that
it is also possible to extend the scope of the proposed diagnostic criterion from tumor margin
detection to preliminary tumor staging in operating rooms. The proposed method can rapidly
give a spatial map of nuclear distribution in the excised tissue from which one can obtain
information on potential “tumor-like” regions on the surface of the surgical specimen. In
order to increase the precision in margin assessment, it is possible to label these “tumor-
like” regions with cancer-specific antibodies tagged with fluorophores—without
compromising the intraoperative diagnosis features (such as speed, sensitivity, and
specificity) of the nuclear architecture imaging. It is equally important to conceive
appropriate specimen handling strategies while extending the scope of this study in
intraoperative settings to avoid commonly encountered problems such as specimen
shrinkage and related artifacts [33,34]. Recent studies have pointed out that the
intraoperative touch imprint cytology methods do have significant limitations in terms of
sensitivity in diagnosis as well as limited sampling issues [10,12,15,35]. We envision that
the strategy that is proposed in this manuscript can overcome these limitations since it is
possible to obtain images by scanning the entire surgical specimen with an overall high
sensitivity/specificity in diagnosis as illustrated in Fig. 4. Although the basic definition of
cancer as an uncontrolled cell growth entails a high nuclear density in tumor regions, a
simple but systematic exploration of nuclear distribution in thick tissues by nuclear
morphometry and tissue topology as performed in this study has never been carried out, to
the best of our knowledge. A logical next step of this study will be to test this idea in a
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clinical feasibility trial where the proposed method will be implemented to reliably identify
tumor margins in excised lumpectomy/mastectomy specimens in breast-conserving
surgeries.
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Fig. 1.
Nuclear morphometry/topology analysis schematic. A 2D image of fluorescent microbeads
of various sizes is shown (a). This situation mimics the nuclear distribution in a typical
tissue labeled with the intercalating dye, DAPI. Image segmentation process begins with
intensity thresholding of the raw image (b). This step addresses the heterogeneity in
fluorescence intensity across the field-of-view. The next step is to render the thresholded
binary image to detailed morphometric analysis by either of the two methods: edge detection
(c) or watershed algorithm (d). Morphometric parameters of relevance to this study are (i)
nuclear size, (ii) nuclear circularity, and (iii) nuclear area fraction as defined in the text and
exemplified in (e). In complex images where the nuclear area fraction is high, the above two
image segmentation approaches can yield an underestimate of the calculated nuclear volume
fractions. This situation occurs when the overlap of neighboring nuclei (e.g., tumor regions)
exceeds the optical resolution of the imaging system (~0.25 μm). In order to address this
inherent limitation, the processed images are also analyzed for topological information such
as connectedness and fractal dimension. See main text for more details. Together,
morphometric and topological analyses of the tissue fluorescence images provide a
comprehensive picture of the tissue architecture
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Fig. 2.
Nuclear morphometry/topology analysis in thin sections of breast tumor tissues.
Representative nuclear fluorescence image of a tumor tissue section with a bordering normal
epithelium (a) (Scale bar = 200 μm). The nuclear area fraction is significantly higher in the
tumor region as compared with that of the normal epithelium. In order to quantify these
differences, morphometric parameters were analyzed in multiple tissue sections and
presented here. See main text for discussion on statistical analysis. Image segmentation by
watershed algorithm (b) and edge-detection algorithm (c) yielded two different models for
quantifying the nuclear distribution in the images. The original image (915 μm × 684 μm)
was divided into regular subunits of size (20 μm × 684 μm). Mean nuclear count in each
image subunit by the two aforementioned algorithms as shown in (d). Although both the
algorithms yielded similar spatial profile of nuclear distribution in the tissue images, the
edge-detection approach was found to be more accurate in delineating the individual nuclei
in a cluster whose size was beyond the resolution of the optical imaging system. Fractal
dimension was also computed in these image subunits as described in the main text and
presented in (e). Mean nuclear size and circularity are shown in (f) and (g)
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Fig. 3.
Statistical analysis of nuclear morphometry parameters in breast tissues. Nuclear
morphometry parameters were calculated in multiple images of normal and breast-tumor
specimens as described in the “Material and methods” section. Each image (462 μm × 346
μm size) was divided into sub-images of size (50 μm × 50 μm), and the mean nuclear size
was computed. This step ensured that the entire image was sampled with uniform sampling
interval. Thus, every data point in the Fig. 3a, b represents mean nuclear size in the
predefined sub-image regions. Statistical data from six representative pairs of normal and
tumor regions are presented in (a). As can be seen, the observed difference in mean nuclear
size in the normal and tumor regions was found to be statistically significant. However, the
estimated sensitivity and specificity values from these data were only 85 and 62%,
respectively (c). In order to remedy this problem, we measured the nuclear area fraction (Af)
which parameterizes a combination of nuclear size and number in a given region-of-interest.
Statistical comparison of measured area fractions is shown in (b), and the corresponding
sensitivity/specificity comparison is shown in (d). These results suggest that it is possible to
achieve high sensitivity and high specificity in tumor diagnosis based on nuclear area
fractions. It is worth mentioning that the nuclear size criterion can be made highly specific at
the cost of decreasing sensitivity
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Fig. 4.
Three-dimensional nuclear imaging in excised breast tissues ex vivo. In contrast to the thin
tissue sections, actual surgical specimens are three-dimensional, turbid tissues. a Schematic
for obtaining 3D (x, y, z) image stacks from excised breast tissues. Image stacks were
obtained from each field of view (465 × 425 μm) for user-defined z-depths (100 μm). This
process is repeated at every field of view by translating the imaging stage systematically
along the X and Y axes. b Representative montages of normal and tumor breast tissues
(presented as a z-projection image from 20 images in each field of view; Scale bars = 1000
μm). c, d give the statistically significant differences in nuclear area fraction and fractal
dimension between normal and tumor regions. This statistical significance was computed
from the analysis of multiple images from different animals (n = 4 rats). As can be seen,
both nuclear morphometry (area fraction) and tissue topology (fractal dimension) reliably
discriminate the tumor regions from the normal tissue components obtained from the same
animal. The apparently higher values of area fraction in normal tissue arise possibly from
the other tissue components (ducts and fibrofatty components) in the normal breast of the
animal that were stained with DAPI. These regions (marked in red circles) typically
contribute to false negative values and can be reliably addressed by increasing the threshold
(or cut-off) of the area fraction/fractal dimension parameters in the data acquisition/analysis
system
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Fig. 5.
Nuclear morphometry imaging in human tissue microarray. a Representative images
showing the nuclear distribution in normal, human breast (fibrofatty) tissue as well as in
three breast carcinoma specimens with varying degrees of aggressiveness. The details of the
specimens are given in the accompanying table. b Nuclear count and hence the nuclear area
fraction increases progressively in accordance with the aggressiveness
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Table 1

Sensitivity and Specificity calculations based on two diagnosis criteria

Diagnosis criterion Nuclear size Threshold = 25 μm2 Nuclear area fraction Threshold =
20%

True positive (Tumor identified as tumor) 138/330 (41.1%) 49/82 (59.8%)

False positive (Normal identified as tumor) 16/330 (4.8%) 1/82 (1.2%)

True negative (Normal identified as normal) 92/330 (27.8%) 30/82 (36.5%)

False negative (Tumor identified as normal) 84/330 (25.5%) 2/82 (2.4%)

Sensitivity = [True positives/(true positives + false negatives)] 85.0 ± 2.5% 96.3 ± 1.5%

Specificity = [True negatives/(true negatives + false positives)] 62.5 ± 2.5% 97.0 ± 2.0%
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