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Abstract
Although the remarkable versatility and efficacy of recombinant adeno-associated virus 2 (AAV2)
vectors in transducing a wide variety of cells and tissues in vitro, and in numerous pre-clinical
animal models of human diseases in vivo, have been well established, the published literature is
replete with controversies with regard to the efficacy of AAV2 vectors in hematopoietic stem cell
(HSC) transduction. A number of factors have contributed to these controversies, the molecular
bases of which have begun to come to light in recent years. With the availability of several novel
serotypes (AAV1 through AAV12), rational design of AAV capsid mutants, and strategies (self-
complementary vector genomes, hematopoietic cell-specific promoters), it is indeed becoming
feasible to achieve efficient transduction of HSC by AAV vectors in a murine serial bone marrow
transplantation model in vivo, where stable integration of the proviral AAV genome does not lead
to any overt hematological abnormalities. Thus, a better understanding of the AAV-HSC
interactions, and the availability of a vast repertoire of novel serotype vectors, are likely to have
significant implications in the use of AAV vectors in high-efficiency transduction of HSCs as well
as in gene therapy applications involving the hematopoietic system.
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Gene therapy with vectors based on retroviruses and adenoviruses has been attempted in a
number of clinical trials [Edelstein et al., 2007]. Initially, retroviral vectors yielded
encouraging results, but the development of T cell lymphoma in non-human primates, and
more recently, the development of T-cell leukemia in three children in a clinical trial for
gene therapy of X-linked severe-combined immunodeficiency with these vectors has raised
serious safety concerns [Deichmann et al., 2007; Hacein-Bey-Abina et al., 2003; Kohn et al.,
2003]. Similarly, questions were raised with reference to efficacy of adenoviral vectors in
gene therapy of cystic fibrosis, and subsequently, the death of a patient in a clinical trial for
gene therapy of was attributed to the use of first-generation adenoviral vectors [Raper et al.,
2003].

A third group of viruses, termed parvoviruses, have to date not been associated with any
malignant disease. In fact, parvoviruses have been shown to possess anti-tumor properties
[Asokan and Samulski, 2005; Li et al., 2005]. Parvoviruses are among the smallest of known
viruses, which contain a single-stranded DNA genome, and infect all vertebrates. One
parvovirus of human origin, the adeno-associated virus 2 (AAV2), has been studied
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extensively [Berns and Bohenzky, 1987; Muzyczka et al., 1984]. Although ∼90% of the
human population is sero-positive for AAV2, no known disease has thus far been associated
with AAV2 infection. AAV2 requires co-infection with a helper-virus, such as adenovirus,
for its optimal replication, but in the absence of a helper-virus, the AAV2 genome integrates
site-specifically into the human chromosome 19. The non-pathogenic nature of AAV2,
coupled with the remarkable site-specificity of the proviral genome, were instrumental in the
development of recombinant AAV2 vectors. Recombinant AAV2 vectors have been shown
to efficiently transduce a variety of genes in a number of cell types in vitro, and their safety
and efficacy in mediating sustained transgene expression has been documented in several
small and large animal models in vivo [Griffey et al., 2006; Hermonat and Muzyczka, 1984;
McCown et al., 1996; Rolling et al., 2006]. A number of Phase I/II clinical trials with AAV2
vectors are currently underway, and additional trials will soon be initiated [Aitken et al.,
2001; Edelstein et al., 2007; Flotte et al., 1996; Flotte et al., 2004; Kay et al., 2000; Manno
et al., 2003; Snyder and Francis, 2005; Wagner et al., 2002].

Controversies regarding hematopoietic stem cell transduction by AAV2
vectors

Recombinant AAV2 vectors have been shown to transduce certain cell types, such as brain
and muscle, exceedingly well. However, controversies abound with reference to their
efficacy in transducing hematopoietic stem cells (HSCs). For example, in 1994, we first
reported successful transduction of CD34+ human primitive hematopoietic cells by
recombinant AAV2 vectors at a relatively low vector:cell ratio of 1,000 [Zhou et al., 1994].
Subsequently, similar results were reported by a number of investigators [Nathwani et al.,
2000; Santat et al., 2005]. However, others reported that AAV2-mediated transgene
expression in HSCs occurred only when the vector particle:cell exceeded 106 [Hargrove et
al., 1997; Malik et al., 1997], and one group concluded that human CD34+ cells were
impervious to transduction by recombinant AAV2 vectors [Alexander et al., 1997]. This
group also claimed that transgene expression observed by others was due to ‘pseudo-
transduction’ mediated by contaminants in the vector stocks [Alexander et al., 1997].

In systematic studies undertaken in our laboratory spanning the past decade have unraveled
the underlying bases of many, if not all, of the controversies related to HSC transduction by
AAV2 vectors, and has been described previously [Ponnazhagan et al., 1997; Zhong et al.,
2004; Zhong et al., 2006a], and reviewed recently [Srivastava, 2005; Zhong et al., 2006b]. In
essence, the following obstacles have been identified that limit high-efficiency AAV2-
mediated transduction of human HSCs: (i) variable levels of expression of the cell surface
receptor and co-receptor for AAV2; and (ii) lack of viral second-strand DNA synthesis to
yield transcriptionally-active vector genomes. The impaired viral second-strand DNA
synthesis also impacts on the efficiency of the proviral genome integration with the host
chromosomal DNA. For instance, two groups have reported that AAV2-mediated transgene
expression in CD34+ cells is transient presumably because of inefficient integration. On the
other hand, efficient integration of the proviral genome in human CD34+ cells and their
progenitors has been reported by others using a variety of techniques such as polymerase
chain reaction (PCR), Southern blotting, and fluorescence in situ hybridization (FISH).
Santat et al. have documented successful transduction of primitive human HSCs capable of
serial engraftment in immune-deficient mice, and Paz et al. recently demonstrated that
recombinant AAV2 vectors integrated more efficiently in the more quiescent subpopulations
of human CD34+ HSCs [Paz et al., 2007; Santat et al., 2005]. We have molecularly cloned
and determined the nucleotide sequences spanning the junctions between vector genomes
and host chromosomal DNA from long-term cultures of human CD34+ cells (data not
shown), which provide further evidence for successful transduction of, and proviral
integration into, primary human HSCs.
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Transduction of murine HSCs by recombinant AAV vectors
It was nearly two decades ago that transduction of primary murine HSCs by AAV2 vectors
was first reported by LaFace et al. [LaFace et al., 1988]. However, transgene expression
occurred in only ∼1.5% of progenitor cell colonies presumably because of the use of
relatively crude preparations of vector stocks, heterogeneous population of target cells, and
sub-optimal promoter and transgene cassette. A decade and a half ago, our laboratory
embarked on systematic studies to characterize the AAV2-murine HSC interaction in vitro
and in vivo. During the course of these studies, we observed that the following obstacles
limit high-efficiency AAV2-mediated transduction of murine HSCs: (i) sub-optimal levels
of expression of the cell surface receptor and co-receptor for AAV2; and (ii) impaired
intracellular trafficking and nuclear transport of AAV2 vectors; (iii) inefficient viral
uncoating in the nucleus; and (iv) lack of viral second-strand DNA synthesis to yield
transcriptionally-active vector genomes [Zhong et al., 2004; Srivastava, 2005; Zhong et al.,
2006a; Zhong et al., 2006b].

In retrospect, it has become increasingly clear that murine HSC transduction has been
attempted with AAV2 vectors, shown schematically in Fig. 1A, that are single-stranded, and
transcriptionally-inactive, contain a sub-optimal promoter, such as the cytomegalovirus
(CMV) immediate-early gene, which is known to be subjected to transcriptional silencing in
murine tissues, and the vector serotype, for which there is sub-optimal expression of the
receptor/co-receptor on HSC surface [Cordier et al., 2001;Zhong et al., 2004;Zhong et al.,
2006b]. Thus, we decided to alter each of these three parameters and generated recombinant
AAV vectors containing the enhanced green fluorescent protein (EGFP) reporter gene,
shown schematically in Fig. 1B, where we used double-stranded AAV genome, which
bypasses the need for viral second-strand DNA synthesis; used cellular (β-globin gene) and
viral (parvovirus B19) promoters known to be active in hematopoietic progenitor cells; and
some of the recently developed novel AAV serotypes (AAV1 through AAV12) [Gao et al.,
2002], having previously shown that single-stranded (ss) AAV1 vectors transduce murine
HSCs more efficiently than ssAAV2 vectors in vivo, and that self-complementary (sc)
AAV1, AAV7, AAV8, and AAV10 vectors transduce murine HSCs more efficiently than
scAAV2 vectors in vitro [Maina et al., 2008].

Bone marrow transplantation of murine HSCs transduced ex vivo with scAAV serotype
vectors into lethally-irradiated syngeneic recipient mice revealed the following: (i) the
transduction efficiency of AAV1 vectors was higher than that of AAV2 vectors, (ii) the
transduction efficient of AAV7 vectors was comparable to that of AAV1 vectors, (iii) the
B19p6 promoter was more efficient than the HS2-β-globin enhancer/promoter, and (iv)
AAV8 and AAV10 vectors were not significantly more efficient than AAV2 vectors [Maina
et al., 2008]. Lineage analysis of transgene expression mediated by scAAV serotype vectors
in murine hematopoietic progenitor cells 6-months post-primary transplantation, shown in
Table 1, clearly revealed that the use of the erythroid cell lineage-specific promoters led to
the transgene expression which was restricted to erythroid cells regardless of the AAV
serotype vector used. Secondary transplantation of bone marrow mononuclear cells from a
scAAV7-B19p6-EGFP vector-transduced primary recipient mouse used to transplant four
lethally-irradiated syngeneic mice revealed erythroid lineage-restricted expression in up to
30% of erythroid cells three months post-secondary transplantation. (Table 1).

Southern blot analysis using EGFP DNA as a probe further corroborated previously
published studies on stable integration of the proviral AAV genomes into host cell
chromosomal DNA, and morphological analyses of peripheral blood and bone marrow cells
following transplantation of HSCs following mock-transduction, or transduction with
scAAV serotype vectors indicated no deleterious effects of transduced transgene expression
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[Maina et al., 2008]. The used of scAAV1 and scAAV7 serotype shuttle vectors for
transduction of HSCs in a murine bone marrow transplant model further allowed
examination of AAV proviral integration pattern in the mouse genome, as well as recovery
and nucleotide sequence analyses of AAV-HSC DNA junction fragments. The proviral
integration pattern was observed to be random, and recombination sites were localized to
different chromosomes (Figure 2). None of the integration sites was found to be in a
transcribed gene or near an oncogene, and all animals followed for up to one year exhibited
no pathological abnormalities [Han et al., 2008]. Thus, AAV proviral integration-induced
risk of oncogenesis was not found in our studies, which provide functional confirmation of
stable transduction of self-renewing multipotential HSCs by scAAV vectors as well as show
promise for the use of these vectors in the potential treatment of disorders of the
hematopoietic system.

Information Gaps to be Filled
In my view, the following three broad areas of further investigations deserve greater
scrutiny:

(i) Development of hematopoietic stem/progenitor cell-specific AAV vectors
Our systematic studies during the past decade have not only unraveled several obstacles that
limit efficient transduction of HSCs by recombinant AAV2 vectors, but have also reinforced
the need to continue further studies focused on the basic understanding of all aspects of the
life cycle of AAV2 vectors at the molecular level [Srivastava, 2001; Srivastava, 2004; Wu et
al., 2007; Zhao et al., 2007; Zhong et al., 2006b]. Similar studies are also needed in order to
identify and characterize the optimal AAV serotype vector(s) to achieve efficient
transduction of HSC. In this context, it is important to note that endogenous AAV sequences
are the third most prevalent in the human bone marrow [Gao et al., 2004]. Thus, it would be
worthwhile to develop these serotypes into recombinant vectors, which may also be
instrumental in achieving high-efficiency transduction of primary human hematopoietic
stem and progenitor cells. In this context, it is noteworthy that in our recent studies [Zhong
et al., 2008], we have developed novel AAV2 vectors containing mutations in the surface-
exposed tyrosine residues that transduce HeLa cells ∼10-fold more efficiently in vitro
(Figure 3 A-C), and murine hepatocytes nearly 30-fold more efficiently in vivo at a log
lower vector dose (Figure 3 D,E). These vectors also allow the production of therapeutic
levels of human Factor IX (F.IX) an ∼10-fold reduced vector dose (Figure 3 F). In
preliminary studies, we have observed that primary murine and human hematopoietic stem/
progenitor cells can also be transduced more efficiently by these tyrosine-mutant AAV2
vectors in vitro, and respectively in syngeneic and NOD/SCID mice in vivo (unpublished
data). It is also noteworthy that with a few exceptions, these tyrosine residues are highly
conserved in AAV serotypes 1 through 12, and we have also begun to generate the tyrosine-
mutants of each of these serotypes. The availability of such a vast repertoire of novel
tyrosine-mutant AAV serotype vectors should allow us to gain a better understanding of the
role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle,
which is likely to have important implications in the optimal use of recombinant AAV
serotype tyrosine-mutant vectors in HSC transduction. It is also tempting to speculate that it
may eventually be feasible to develop recombinant AAV serotype vectors that allow
regulated transgene expression in each of the hematopoietic progenitor cell lineage.

(ii) Integration of the AAV proviral genome
It is generally assumed that recombinant AAV vector genomes remain episomal, but those
studies have been carried out in tissues that are post-mitotic [Duan et al., 1998; Inagaki et
al., 2007; Nakai et al., 2003; Zhong et al., 2006a]. In HSCs, which must divide to give rise
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to progenitor cells, the proviral genome would be lost if not stably integrated into host cell
chromosomal DNA. In our previous studies, we documented stable integration of the
proviral genome into chromosomal DNA in pluripotent HSC transduced with ssAAV1 and
AAV2 vectors in a small number of animals [Tan et al., 2001; Zhong et al., 2006a].
Therefore, further studies with a larger number of animals are needed to define this issue at
the molecular level. In addition, the integration patterns of ssAAV vectors versus scAAV
vectors should also be compared and contrasted. Detailed sequence analyses of integration
junctions in various cell lineages will be helpful in not only determining clonality, but also
in establishing whether the proviral integration occurs in transcriptionally-active versus the
non-transcribed regions of the genome. In our recent studies using a shuttle vector [Han et
al., 2008], we have attempted to address some of these issues, but further detailed
investigations are clearly warranted.

(iii) Possible insertional mutagenesis induced by AAV vectors
In view of a recent report of the development of hepatocellular carcinoma in mice injected
with a relatively high AAV2 vector dose neonatally [Donsante et al., 2007], it is crucial that
the safety and efficacy of the AAV serotype vectors be rigorously examined following
integration of the proviral genome into the host chromosomal DNA. It should be
emphasized, however, that other investigators found no evidence for AAV-induced
malignancy in large-scale studies involving adult mice or p53-deficient mice [Bell et al.,
2006; Bell et al., 2005; Schuettrumpf et al., 2007]. These discrepancies with the post-mitotic
tissues notwithstanding, the biological consequences of stable transduction and long-term
transgene expression in hematopoietic progenitor cells should nonetheless be examined
further.

Future Prospects
My prediction is that despite the lack of enthusiasm in the development of recombinant
AAV2 vectors for HSC transduction in the past, a more complete understanding of the virus-
host cell interactions, coupled with the availability of an ever-expanding vast repertoire of
novel AAV serotype vectors, will lead to high-efficiency transduction of HSC in not too
distant a future, which in turn, will provide a safer alternative to the more commonly used
retroviral vectors in hematopoietic stem cell gene therapy in humans.
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Figure 1.
Schematic representation of conventional, single-stranded AAV2 and double-stranded, self-
complementary AAV serotype vectors. ITR, inverted terminal repeat; CMVp,
cytomegalovirus immediate-early promoter; EGFP, enhanced green fluorescent protein;
SV40 pA, simian virus 40 polyadenylation signal; Mut ITR, mutant inverted terminal repeat;
HS2, DNA-hypersensitive site 2 enhancer; βp, β-globin promoter; ssAAV, single-stranded
AAV; scAAV, self-complementary AAV [Maina et al., 2008].
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Figure 2.
(A) Nucleotide sequences of AAV vector-mouse cellular DNA junctions. Parts of AAV-ITR
sequences are indicated in red, and the flanking mouse genomic DNA sequences are in blue.
The locations of each junction are indicated with nucleotide numbers obtained from the
NCBI database. Deletion sizes are noted under each provirus, and mouse chromosome
numbers are indicated at each end. (B) Chromosomal distribution of AAV integration sites.
A schematic mouse chromosome ideogram obtained from the NCBI is shown with AAV
vector integration sites. Red arrows denote the AAV targeted sites [Han et al., 2008].
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Figure 3.
Novel tyrosine-mutant AAV2 vectors. (A) The position of the seven surface-exposed
tyrosine residues on the AAV2 capsid surface, Y252, Y272, Y444, Y500, Y700, Y704, and
Y730, are indicated by the arrows. Site-directed mutations of these 7 tyrosine residues to
phenylalanine residues (tyrosine-phenylalanine, Y-F) were perfumed and tyrosine-mutant
capsid scAAV2-EGFP vectors were generated. (B) AAV2-mediated transgene expression in
HeLa cells following transduction with surface-exposed tyrosine-mutant capsid scAAV2-
EGFP vectors. (C) Quantitative analyses of AAV2 transduction efficiency. *P<0.01 vs. WT
scAAV2-EGFP. (D) AAV2-mediated transduction of hepatocytes from normal C57BL/6
mice injected via tail vein with tyrosine-mutant capsid scAAV2-EGFP vectors. (E)
Quantitative analyses of AAV2 transduction efficiency. *P<0.01 vs. WT scAAV2-EGFP.
(F) Comparative analyses of the WT or Y730F ssAAV2-ApoE/hAAT-hF.IX vector-
mediated transduction efficiency in hepatocytes in mice in vivo. Human F.IX (hF.IX)
expression in plasma as a function of time after injection of 1×1011 viral particles/animal in
BALB/c and C3H/HeJ mice via tail vein (tv), and 1×1010 viral particles/animal in C57BL/6
mice via tail vein (tv) or portal vein (pv). Fold-increase of hF.IX peak levels of Y730F
vectors compared to the WT capsid vectors is indicated for each panel [Zhong et al., 2008].

Srivastava Page 11

J Cell Biochem. Author manuscript; available in PMC 2010 November 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Srivastava Page 12

Ta
bl

e 
1

Pr
im

ar
y 

T
ra

ns
pl

an
ta

tio
n

T
 ly

m
ph

oc
yt

es
B

 ly
m

ph
oc

yt
es

M
ye

lo
id

E
ry

th
ro

bl
as

ts
M

at
ur

e 
R

B
C

s

M
oc

k
0.

1 
± 

0.
02

0.
1 

± 
0.

02
0.

1 
± 

0.
01

3 
± 

0.
7

0.
3 

± 
0.

01

sc
A

A
V

1-
H

S2
-β

p-
EG

FP
0.

1 
± 

0.
05

0.
3 

± 
0.

07
0.

2 
± 

0.
11

21
 ±

 1
2

0.
3 

± 
0.

06

sc
A

A
V

1-
B

19
p6

-E
G

FP
0.

2 
± 

0.
13

0.
5 

± 
0.

28
0.

3 
± 

0.
21

38
 ±

 1
0

0.
1 

± 
0.

08

sc
A

A
V

2-
H

S2
-β

p-
EG

FP
0.

2 
± 

0.
06

0.
3 

± 
0.

02
0.

2 
± 

0.
07

16
 ±

 0
.7

0.
3 

± 
0.

07

sc
A

A
V

2-
B

19
p6

-E
G

FP
0.

2 
± 

0.
03

0.
3 

± 
0.

03
0.

3 
± 

0.
03

19
 ±

 0
.9

0.
3 

± 
0.

07

sc
A

A
V

7-
H

S2
-β

p-
EG

FP
0.

2 
± 

0.
02

0.
2 

± 
0.

03
0.

1 
± 

0.
02

16
 ±

 4
0.

9 
± 

0.
03

sc
A

A
V

7-
B

19
p6

-E
G

FP
0.

1 
± 

0.
06

0.
2 

± 
0.

01
0.

2 
± 

0.
10

32
 ±

 2
1

0.
2 

± 
0.

04

sc
A

A
V

8-
H

S2
-β

p-
EG

FP
0.

 3
 ±

 0
.0

7
0.

3 
± 

0.
05

0.
1 

± 
0.

04
19

 ±
 6

0.
2 

± 
0.

01

sc
A

A
V

8-
B

19
p6

-E
G

FP
0.

3 
± 

0.
08

0.
3 

± 
0.

04
0.

1 
± 

0.
02

22
 ±

 8
0.

4 
± 

0.
1

sc
A

A
V

10
-H

S2
-β

p-
EG

FP
0.

2 
± 

0.
08

0.
2 

± 
0.

08
0.

2 
± 

0.
04

13
 ±

 2
0.

1 
± 

0.
02

sc
A

A
V

10
-B

19
p6

-E
G

FP
0.

2 
± 

0.
08

0.
1±

 0
.1

4
0.

1±
 0

.0
4

12
 ±

 4
0.

3 
± 

0.
07

Se
co

nd
ar

y 
T

ra
ns

pl
an

ta
tio

n
T

 ly
m

ph
oc

yt
es

B
 ly

m
ph

oc
yt

es
M

ye
lo

id
E

ry
th

ro
bl

as
ts

M
at

ur
e 

R
B

C
s

M
oc

k
0.

02
0.

01
0.

03
3.

0
0.

04

sc
A

A
V

7-
B

19
p6

-E
G

FP
 #

1
0.

05
0.

05
0.

04
22

.0
0.

08

sc
A

A
V

7-
B

19
p6

-E
G

FP
 #

2
0.

06
0.

05
0.

04
19

.0
0.

07

sc
A

A
V

7-
B

19
p6

-E
G

FP
 #

3
0.

04
0.

07
0.

05
32

.0
0.

08

sc
A

A
V

7-
B

19
p6

-E
G

FP
 #

4
0.

02
0.

04
0.

03
23

.0
0.

08

B
on

e 
m

ar
ro

w
 c

el
ls

 fr
om

 p
rim

ar
y 

tra
ns

pl
an

t r
ec

ip
ie

nt
 m

ic
e 

6-
m

on
th

s p
os

t-t
ra

ns
pl

an
ta

tio
n 

w
er

e 
in

cu
ba

te
d 

w
ith

 p
hy

co
er

yt
hr

in
 (P

E)
-c

on
ju

ga
te

d 
lin

ea
ge

 sp
ec

ifi
c 

ra
t a

nt
i-m

ou
se

 m
A

bs
 (a

nt
i-B

22
0 

fo
r B

ly
m

ph
oc

yt
es

; a
nt

i-C
D

4 
an

d 
an

ti-
C

D
8a

 fo
r T

 ly
m

ph
oc

yt
es

; a
nt

i-G
r-

1 
fo

r m
ye

lo
id

 c
el

ls
; a

nd
 a

nt
i-T

er
11

9 
fo

r m
at

ur
e 

R
B

C
s)

 se
pa

ra
te

ly
 a

nd
 a

na
ly

ze
d 

fo
r E

G
FP

 e
xp

re
ss

io
n 

by
 fl

ow
 c

yt
om

et
ry

. E
ry

th
ro

bl
as

ts
w

er
e 

st
ai

ne
d 

w
ith

 a
nt

i-c
-k

it-
PE

 a
nd

 a
nt

i-C
D

71
-P

E-
C

y5
 a

nt
ib

od
y.

 B
on

e 
m

ar
ro

w
 c

el
ls

 fr
om

 a
 sc

A
A

V
7-

B
19

p6
-E

G
FP

 v
ec

to
r-

tra
ns

du
ce

d 
pr

im
ar

y 
re

ci
pi

en
t m

ou
se

 w
er

e 
us

ed
 to

 tr
an

sp
la

nt
 4

 le
th

al
ly

-ir
ra

di
at

ed
sy

ng
en

ei
c 

m
ic

e 
(#

1-
#4

). 
Th

re
e 

m
on

th
s p

os
t-s

ec
on

da
ry

 tr
an

sp
la

nt
at

io
n,

 b
on

e 
m

ar
ro

w
 c

el
ls

 w
er

e 
an

al
yz

ed
 a

s d
es

cr
ib

ed
 a

bo
ve

.

J Cell Biochem. Author manuscript; available in PMC 2010 November 17.


