Abstract
In the title coordination polymer, [Cu(C2O4)(C12H8N2)]n, the CuII atom is six-coordinated by four O atoms from two oxalate ligands and two N atoms from one 1,10-phenanthroline (phen) ligand in a distorted octahedral coordination geometry. The oxalate anions act as bis-bidentate ligands, bridging the Cu–phen units in zigzag chains extending parallel to [100]. Interchain C—H⋯O hydrogen bonding and π–π stacking interactions [centroid–centroid distance = 3.7439 (17) Å] assemble neighboring chains, forming a three-dimensional supramolecular network.
Related literature
For the topologies and potential applications as functional materials of metal coordination polymers, see: Benneli & Gatteschi (2002 ▶); Qin et al. (2005 ▶); Qiu et al. (2007 ▶).
Experimental
Crystal data
[Cu(C2O4)(C12H8N2)]
M r = 331.76
Orthorhombic,
a = 9.1445 (8) Å
b = 10.1443 (9) Å
c = 13.3294 (11) Å
V = 1236.50 (18) Å3
Z = 4
Mo Kα radiation
μ = 1.78 mm−1
T = 298 K
0.42 × 0.35 × 0.29 mm
Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2008 ▶) T min = 0.544, T max = 0.612
6811 measured reflections
2618 independent reflections
2373 reflections with I > 2σ(I)
R int = 0.021
Refinement
R[F 2 > 2σ(F 2)] = 0.024
wR(F 2) = 0.059
S = 1.04
2618 reflections
190 parameters
1 restraint
H-atom parameters constrained
Δρmax = 0.29 e Å−3
Δρmin = −0.30 e Å−3
Absolute structure: Flack (1983 ▶), 1217 Friedel pairs
Flack parameter: 0.019 (14)
Data collection: APEX2 (Bruker, 2004 ▶); cell refinement: SAINT (Bruker, 2004 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: XP in SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035440/zl2304sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035440/zl2304Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C11—H11⋯O4i | 0.93 | 2.51 | 3.416 (4) | 166 |
| C9—H9⋯O1ii | 0.93 | 2.49 | 3.160 (3) | 129 |
| C2—H2⋯O2iii | 0.93 | 2.52 | 3.136 (3) | 124 |
| C1—H1⋯O4iv | 0.93 | 2.56 | 3.072 (3) | 115 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Acknowledgments
This work was supported financially by Zhongshan Polytechnic.
supplementary crystallographic information
Comment
The design and construction of metal coordination polymers based on metal ions and multifunctional bridging ligands is of great interest due to their intriguing topologies and potential applications as functional materials (Benneli & Gatteschi, 2002; Qiu et al., 2007). Copper, with its variable coordination numbers and flexible coordination geometry, provides unique opportunities for the discovery of unusual networks in this interesting and challenging field (Qin et al., 2005). We chose oxalate ligands as organic spacers since this rigid molecule has proven to be able to establish a bridge between metal centers. Herein, we present the structure of the title compound, [Cu(C2O4)(C12H8N2)]n.
The CuII atom exhibits a distorted octahedral configuration coordinated by four oxygen atoms from two oxalate ligands (Cu—O = 1.9753 (18)-2.3135 (18) Å) and two nitrogen atoms from one 1,10-phenanthroline ligand (Cu—N = 2.024 (2) and 2.049 (2) Å) (Fig. 1). The oxalate ligands bridge adjacent Cu-phen units to form a one-dimensional zigzag chain along the a-axis of the unit cell. The Cu—Cu separation is 5.529 (2) Å. Interchain π-π stacking interactions between phen ligands in neighboring chainslead to the formation of sheets of connected chains in the ab-plane. The centroid to centroid distances between neighboring 1,10-phenanthroline ligands is 3.7439 (17) Å [ring (C4-C9) to ring (N2, C1 to C5) (symmetry code: –1/2+x, 3/2–y, z)]. C–H···O hydrogen bonds interconnect these sheets to extend to a three-dimensional supramolecular network motif (Table 1; Fig. 2).
Experimental
A sample of cupric acetate (0.0399 g, 0.20 mmol), oxalic acid (0.1015 g, 0.50 mmol), 1,10-phenanthroline (0.2523 g, 0.50 mmol), were added to water (10 ml). The resultant mixture was sealed in a 25 ml stainless steel reactor with a Teflon liner and kept under autogenous pressure at 413 K for 78 h, and then cooled to room temperature at a rate of 0.5 K/min. Colorless blocky crystals of the title compound suitable for single-crystal X-ray diffraction analyses formed in a yield of approximately 65%.
Refinement
All H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 Å, and with Uiso(H) = 1.2 (C).
Figures
Fig. 1.
ORTEP represention of atom numbering diagram for the title complex, showing 30% probability displacement ellipsoids. Symmetry code: (i) –1/2 + x, 2.5–y, z.
Fig. 2.
View of the three-dimensional structure of the title compound.
Crystal data
| [Cu(C2O4)(C12H8N2)] | F(000) = 668 |
| Mr = 331.76 | Dx = 1.782 Mg m−3 |
| Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2c -2n | Cell parameters from 2618 reflections |
| a = 9.1445 (8) Å | θ = 2.5–27.0° |
| b = 10.1443 (9) Å | µ = 1.78 mm−1 |
| c = 13.3294 (11) Å | T = 298 K |
| V = 1236.50 (18) Å3 | Block, blue |
| Z = 4 | 0.42 × 0.35 × 0.29 mm |
Data collection
| Bruker APEXII CCD area-detector diffractometer | 2618 independent reflections |
| Radiation source: fine-focus sealed tube | 2373 reflections with I > 2σ(I) |
| graphite | Rint = 0.021 |
| φ and ω scan | θmax = 27.0°, θmin = 2.5° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2008) | h = −8→11 |
| Tmin = 0.544, Tmax = 0.612 | k = −10→12 |
| 6811 measured reflections | l = −16→15 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
| wR(F2) = 0.059 | w = 1/[σ2(Fo2) + (0.0289P)2] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max = 0.001 |
| 2618 reflections | Δρmax = 0.28 e Å−3 |
| 190 parameters | Δρmin = −0.30 e Å−3 |
| 1 restraint | Absolute structure: Flack (1983), 1217 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.019 (14) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.6938 (3) | 0.9764 (3) | −0.04988 (19) | 0.0407 (6) | |
| H1 | 0.6652 | 1.0617 | −0.0662 | 0.049* | |
| Cu1 | 0.87241 (3) | 1.09675 (2) | 0.11815 (4) | 0.03062 (9) | |
| N1 | 0.9474 (2) | 0.9310 (2) | 0.18929 (17) | 0.0352 (5) | |
| O1 | 1.0814 (2) | 1.12990 (18) | 0.02682 (14) | 0.0377 (4) | |
| C2 | 0.6422 (3) | 0.8724 (3) | −0.1095 (2) | 0.0486 (7) | |
| H2 | 0.5818 | 0.8883 | −0.1643 | 0.058* | |
| N2 | 0.7802 (2) | 0.9598 (2) | 0.02762 (16) | 0.0325 (4) | |
| O2 | 0.98329 (19) | 1.21773 (18) | 0.20589 (13) | 0.0377 (4) | |
| C3 | 0.6829 (3) | 0.7475 (3) | −0.0849 (2) | 0.0472 (7) | |
| H3 | 0.6506 | 0.6770 | −0.1237 | 0.057* | |
| O3 | 1.1635 (2) | 1.36277 (17) | 0.21108 (14) | 0.0358 (4) | |
| C4 | 0.7727 (3) | 0.7242 (2) | −0.0022 (2) | 0.0386 (6) | |
| O4 | 1.2795 (2) | 1.25638 (18) | 0.04136 (14) | 0.0376 (4) | |
| C5 | 0.8190 (3) | 0.8351 (2) | 0.05270 (19) | 0.0321 (5) | |
| C6 | 0.9086 (2) | 0.8194 (2) | 0.13957 (17) | 0.0307 (6) | |
| C7 | 0.9518 (3) | 0.6918 (3) | 0.1703 (2) | 0.0404 (6) | |
| C8 | 0.9027 (3) | 0.5816 (2) | 0.1130 (4) | 0.0500 (7) | |
| H8 | 0.9293 | 0.4971 | 0.1330 | 0.060* | |
| C9 | 0.8186 (4) | 0.5967 (2) | 0.0306 (3) | 0.0485 (7) | |
| H9 | 0.7899 | 0.5226 | −0.0055 | 0.058* | |
| C10 | 1.0386 (3) | 0.6850 (3) | 0.2567 (2) | 0.0498 (7) | |
| H10 | 1.0723 | 0.6038 | 0.2794 | 0.060* | |
| C11 | 1.0740 (4) | 0.7970 (3) | 0.3077 (3) | 0.0555 (8) | |
| H11 | 1.1295 | 0.7922 | 0.3660 | 0.067* | |
| C12 | 1.0266 (3) | 0.9184 (3) | 0.2720 (2) | 0.0471 (7) | |
| H12 | 1.0515 | 0.9940 | 0.3076 | 0.056* | |
| C13 | 1.1578 (3) | 1.2130 (2) | 0.07154 (19) | 0.0303 (5) | |
| C14 | 1.0979 (3) | 1.2700 (2) | 0.17167 (19) | 0.0288 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0439 (15) | 0.0420 (14) | 0.0362 (14) | 0.0018 (12) | −0.0088 (12) | −0.0036 (12) |
| Cu1 | 0.03102 (14) | 0.02964 (14) | 0.03119 (13) | −0.00071 (10) | −0.00153 (13) | −0.00414 (16) |
| N1 | 0.0315 (11) | 0.0393 (11) | 0.0347 (12) | 0.0005 (9) | −0.0041 (9) | −0.0007 (9) |
| O1 | 0.0370 (10) | 0.0409 (9) | 0.0350 (10) | −0.0020 (8) | 0.0025 (8) | −0.0107 (8) |
| C2 | 0.0555 (19) | 0.0558 (17) | 0.0346 (15) | 0.0010 (14) | −0.0120 (13) | −0.0089 (13) |
| N2 | 0.0336 (10) | 0.0323 (10) | 0.0317 (11) | 0.0008 (8) | −0.0013 (9) | −0.0039 (9) |
| O2 | 0.0365 (11) | 0.0433 (10) | 0.0335 (10) | −0.0101 (8) | 0.0092 (8) | −0.0118 (9) |
| C3 | 0.0500 (18) | 0.0539 (17) | 0.0376 (16) | −0.0090 (14) | −0.0026 (14) | −0.0157 (13) |
| O3 | 0.0382 (10) | 0.0329 (9) | 0.0361 (10) | −0.0043 (8) | 0.0007 (8) | −0.0064 (8) |
| C4 | 0.0393 (14) | 0.0370 (13) | 0.0395 (15) | −0.0068 (11) | 0.0064 (11) | −0.0096 (12) |
| O4 | 0.0363 (10) | 0.0388 (9) | 0.0377 (10) | −0.0026 (8) | 0.0102 (8) | −0.0030 (8) |
| C5 | 0.0320 (13) | 0.0337 (13) | 0.0307 (13) | −0.0018 (11) | 0.0058 (11) | −0.0035 (10) |
| C6 | 0.0288 (12) | 0.0328 (12) | 0.0305 (16) | 0.0004 (9) | 0.0055 (9) | −0.0016 (9) |
| C7 | 0.0375 (14) | 0.0414 (15) | 0.0424 (15) | 0.0040 (12) | 0.0059 (12) | 0.0067 (12) |
| C8 | 0.0599 (17) | 0.0306 (12) | 0.0593 (18) | 0.0031 (10) | 0.011 (2) | 0.0032 (18) |
| C9 | 0.0581 (18) | 0.0317 (15) | 0.056 (2) | −0.0092 (12) | 0.0074 (16) | −0.0072 (13) |
| C10 | 0.0491 (18) | 0.0495 (18) | 0.0509 (19) | 0.0092 (13) | 0.0012 (14) | 0.0111 (14) |
| C11 | 0.0519 (19) | 0.068 (2) | 0.0465 (19) | 0.0056 (17) | −0.0099 (15) | 0.0107 (17) |
| C12 | 0.0499 (17) | 0.0496 (16) | 0.0417 (16) | 0.0011 (13) | −0.0124 (13) | −0.0052 (13) |
| C13 | 0.0327 (13) | 0.0285 (12) | 0.0296 (12) | 0.0062 (10) | −0.0010 (11) | 0.0017 (10) |
| C14 | 0.0293 (12) | 0.0297 (12) | 0.0274 (12) | 0.0011 (10) | −0.0030 (10) | −0.0022 (11) |
Geometric parameters (Å, °)
| C1—N2 | 1.311 (3) | O3—Cu1ii | 2.3135 (18) |
| C1—C2 | 1.403 (4) | C4—C5 | 1.407 (3) |
| C1—H1 | 0.9300 | C4—C9 | 1.428 (4) |
| Cu1—O2 | 1.9753 (18) | O4—C13 | 1.263 (3) |
| Cu1—O4i | 1.9973 (19) | O4—Cu1ii | 1.9973 (19) |
| Cu1—N2 | 2.024 (2) | C5—C6 | 1.428 (3) |
| Cu1—N1 | 2.049 (2) | C6—C7 | 1.414 (3) |
| Cu1—O1 | 2.2909 (19) | C7—C10 | 1.401 (4) |
| Cu1—O3i | 2.3135 (18) | C7—C8 | 1.426 (5) |
| N1—C12 | 1.325 (4) | C8—C9 | 1.350 (6) |
| N1—C6 | 1.359 (3) | C8—H8 | 0.9300 |
| O1—C13 | 1.247 (3) | C9—H9 | 0.9300 |
| C2—C3 | 1.360 (5) | C10—C11 | 1.363 (4) |
| C2—H2 | 0.9300 | C10—H10 | 0.9300 |
| N2—C5 | 1.356 (3) | C11—C12 | 1.390 (4) |
| O2—C14 | 1.260 (3) | C11—H11 | 0.9300 |
| C3—C4 | 1.395 (4) | C12—H12 | 0.9300 |
| C3—H3 | 0.9300 | C13—C14 | 1.554 (3) |
| O3—C14 | 1.234 (3) | ||
| N2—C1—C2 | 123.5 (2) | C3—C4—C9 | 124.7 (3) |
| N2—C1—H1 | 118.3 | C5—C4—C9 | 118.4 (3) |
| C2—C1—H1 | 118.3 | C13—O4—Cu1ii | 118.13 (17) |
| O2—Cu1—O4i | 93.34 (8) | N2—C5—C4 | 122.6 (2) |
| O2—Cu1—N2 | 173.31 (8) | N2—C5—C6 | 117.0 (2) |
| O4i—Cu1—N2 | 91.68 (9) | C4—C5—C6 | 120.4 (2) |
| O2—Cu1—N1 | 93.68 (8) | N1—C6—C7 | 123.3 (2) |
| O4i—Cu1—N1 | 172.68 (8) | N1—C6—C5 | 116.9 (2) |
| N2—Cu1—N1 | 81.49 (9) | C7—C6—C5 | 119.8 (2) |
| O2—Cu1—O1 | 78.18 (7) | C10—C7—C6 | 116.2 (2) |
| O4i—Cu1—O1 | 88.46 (7) | C10—C7—C8 | 125.5 (3) |
| N2—Cu1—O1 | 97.55 (7) | C6—C7—C8 | 118.3 (3) |
| N1—Cu1—O1 | 95.01 (8) | C9—C8—C7 | 121.7 (3) |
| O2—Cu1—O3i | 89.80 (7) | C9—C8—H8 | 119.1 |
| O4i—Cu1—O3i | 77.92 (7) | C7—C8—H8 | 119.1 |
| N2—Cu1—O3i | 95.57 (7) | C8—C9—C4 | 121.3 (3) |
| N1—Cu1—O3i | 100.03 (8) | C8—C9—H9 | 119.3 |
| O1—Cu1—O3i | 161.33 (6) | C4—C9—H9 | 119.3 |
| C12—N1—C6 | 117.9 (2) | C11—C10—C7 | 120.2 (3) |
| C12—N1—Cu1 | 130.30 (19) | C11—C10—H10 | 119.9 |
| C6—N1—Cu1 | 111.77 (16) | C7—C10—H10 | 119.9 |
| C13—O1—Cu1 | 108.21 (16) | C10—C11—C12 | 119.6 (3) |
| C3—C2—C1 | 118.2 (3) | C10—C11—H11 | 120.2 |
| C3—C2—H2 | 120.9 | C12—C11—H11 | 120.2 |
| C1—C2—H2 | 120.9 | N1—C12—C11 | 122.7 (3) |
| C1—N2—C5 | 118.1 (2) | N1—C12—H12 | 118.6 |
| C1—N2—Cu1 | 129.22 (18) | C11—C12—H12 | 118.6 |
| C5—N2—Cu1 | 112.62 (16) | O1—C13—O4 | 125.2 (2) |
| C14—O2—Cu1 | 118.30 (16) | O1—C13—C14 | 117.7 (2) |
| C2—C3—C4 | 120.6 (3) | O4—C13—C14 | 117.1 (2) |
| C2—C3—H3 | 119.7 | O3—C14—O2 | 124.9 (2) |
| C4—C3—H3 | 119.7 | O3—C14—C13 | 118.5 (2) |
| C14—O3—Cu1ii | 108.00 (16) | O2—C14—C13 | 116.6 (2) |
| C3—C4—C5 | 116.9 (2) |
Symmetry codes: (i) x−1/2, −y+5/2, z; (ii) x+1/2, −y+5/2, z.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C11—H11···O4iii | 0.93 | 2.51 | 3.416 (4) | 166 |
| C9—H9···O1iv | 0.93 | 2.49 | 3.160 (3) | 129 |
| C2—H2···O2v | 0.93 | 2.52 | 3.136 (3) | 124 |
| C1—H1···O4i | 0.93 | 2.56 | 3.072 (3) | 115 |
Symmetry codes: (iii) −x+5/2, y−1/2, z+1/2; (iv) x−1/2, −y+3/2, z; (v) −x+3/2, y−1/2, z−1/2; (i) x−1/2, −y+5/2, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2304).
References
- Benneli, C. & Gatteschi, D. (2002). Chem. Rev.102, 2369–2388. [DOI] [PubMed]
- Bruker (2004). APEX2 and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Qin, C., Wang, X. L., Wang, E. B. & Su, Z. M. (2005). Inorg. Chem.44, 7122–7129. [DOI] [PubMed]
- Qiu, Y. C., Wang, K. N., Liu, Y., Deng, H., Sun, F. & Cai, Y. P. (2007). Inorg. Chim. Acta, 360, 1819–1824.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810035440/zl2304sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810035440/zl2304Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


