Abstract
The molecule of the title compound, C13H24S4, has C2 symmetry and it crystallizes as a racemate. The structure displays two six-membered rings exhibiting chair conformations, with the isopropyl substituents in equatorial positions. In the crystal structure, weak intermolecular C—H⋯S interactions are observed, leading to a channel-like arrangement along the c axis.
Related literature
For background to the chemistry of spirans, see: Cismaş et al. (2005 ▶); Eliel & Wilen (1994 ▶); Grosu et al. (1995 ▶, 1997 ▶); Terec et al. (2001 ▶, 2004 ▶). For other studies regarding the synthesis and stereochemistry of spiranes bearing 1,3-dithiane units, see: Backer & Evenhuis (1937 ▶); Gâz et al. (2008 ▶); Mitkin et al. (2001 ▶). For the crystal structure of a spiran beaing 1,3-dithiane unit atoms, see: Zhou et al. (2001 ▶).
Experimental
Crystal data
C13H24S4
M r = 308.56
Monoclinic,
a = 16.701 (5) Å
b = 10.241 (3) Å
c = 12.063 (3) Å
β = 128.418 (4)°
V = 1616.5 (8) Å3
Z = 4
Mo Kα radiation
μ = 0.57 mm−1
T = 297 K
0.32 × 0.31 × 0.28 mm
Data collection
Bruker SMART APEX CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000 ▶) T min = 0.839, T max = 0.857
7606 measured reflections
1432 independent reflections
1311 reflections with I > 2σ(I)
R int = 0.035
Refinement
R[F 2 > 2σ(F 2)] = 0.068
wR(F 2) = 0.153
S = 1.27
1432 reflections
80 parameters
H-atom parameters constrained
Δρmax = 0.36 e Å−3
Δρmin = −0.28 e Å−3
Data collection: SMART (Bruker, 2000 ▶); cell refinement: SAINT-Plus (Bruker, 2001 ▶); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 (Farrugia, 1997 ▶) and DIAMOND (Brandenburg & Putz, 2004 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037281/jh2201sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037281/jh2201Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C7—H7C⋯S1i | 0.96 | 2.93 | 3.827 (6) | 156 (1) |
Symmetry code: (i)
.
Acknowledgments
This work was supported by CNCSIS–UEFISCSU, project number PNII–IDEI515/2007. We also thank the National Centre for X-Ray Diffraction, Cluj-Napoca, for support with the solid-state structure determination.
supplementary crystallographic information
Comment
Despite the rich literature dealing with spiro compounds (Cismaş et al., 2005; Eliel & Wilen, 1994; Grosu et al., 1995, 1997; Terec et al., 2001, 2004) new papers were written recently especially including spiro derivatives having sulfur or selenium heteroatoms. Only few spirans bearing 1,3 dithiane units were reported (Backer & Evenhuis, 1937; Gâz et al., 2008; Mitkin et al., 2001) and only 2 crystals were obtained so far (Zhou et al., 2001). The title compound (Fig. 1) exhibits a C2 symmetry unit with chair conformation for both six-membered rings.
Due to the space arrangement there are differences between positions 2, 4 and 2', 4'. Due to these differencies positions 4 and 4' which are oriented towards the other 1,3-dithiane ring are named methylene inside, while the other two CH2 groups (positions 2 and 2') are oriented in opposite direction and they are named methylene outside groups.
In the crystal packing (Fig. 2 and Fig. 3) the sulfur atom from a neighbour molecule is hydrogen-bonded (weak interactions) via a intermolecular C7—H7c ···S1 connection (Table 1).
These weak interactions stabilize the lattice and form a three-dimensional network as a channel-like arrangement along the c axis.
Experimental
The synthesis of I has been described elsewhere (Gâz et al., 2008). Crystal were obtained from dichloromethane, by slow evaporation at room temperature.
Refinement
All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and with Uiso = 1.5Ueq (C) for H. The methyl groups were allowed to rotate but not to tip.
Figures
Fig. 1.
ORTEP digram of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
Fig. 2.
A view of the molecular structure exhibiting the hydrogen bonding interactions.
Fig. 3.
The crystal packing viewed along c axis, exhibiting channel-like arrangement formed most probably by weak interaction between the methyl group H atoms and the sulfur atom from a neighbour molecule.
Crystal data
| C13H24S4 | F(000) = 664 |
| Mr = 308.56 | Dx = 1.268 Mg m−3 |
| Monoclinic, C2/c | Melting point = 416–418 K |
| Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
| a = 16.701 (5) Å | Cell parameters from 3441 reflections |
| b = 10.241 (3) Å | θ = 2.5–28.1° |
| c = 12.063 (3) Å | µ = 0.57 mm−1 |
| β = 128.418 (4)° | T = 297 K |
| V = 1616.5 (8) Å3 | Block, colourless |
| Z = 4 | 0.32 × 0.31 × 0.28 mm |
Data collection
| Bruker SMART APEX CCD area-detector diffractometer | 1432 independent reflections |
| Radiation source: fine-focus sealed tube | 1311 reflections with I > 2σ(I) |
| graphite | Rint = 0.035 |
| φ and ω scans | θmax = 25.0°, θmin = 2.5° |
| Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −19→19 |
| Tmin = 0.839, Tmax = 0.857 | k = −12→12 |
| 7606 measured reflections | l = −14→14 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.068 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.153 | H-atom parameters constrained |
| S = 1.27 | w = 1/[σ2(Fo2) + (0.0592P)2 + 2.605P] where P = (Fo2 + 2Fc2)/3 |
| 1432 reflections | (Δ/σ)max < 0.001 |
| 80 parameters | Δρmax = 0.36 e Å−3 |
| 0 restraints | Δρmin = −0.28 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.5000 | 0.7036 (5) | 1.2500 | 0.0439 (11) | |
| C2 | 0.4969 (3) | 0.6137 (4) | 1.1462 (4) | 0.0596 (11) | |
| H2A | 0.4357 | 0.5606 | 1.0981 | 0.071* | |
| H2B | 0.5551 | 0.5551 | 1.2001 | 0.071* | |
| C3 | 0.3816 (3) | 0.7866 (4) | 0.9229 (4) | 0.0486 (9) | |
| H3 | 0.3245 | 0.7260 | 0.8842 | 0.058* | |
| C4 | 0.4026 (3) | 0.7860 (4) | 1.1697 (4) | 0.0484 (9) | |
| H4A | 0.4024 | 0.8353 | 1.2382 | 0.058* | |
| H4B | 0.3444 | 0.7273 | 1.1218 | 0.058* | |
| C5 | 0.3655 (3) | 0.8601 (4) | 0.7999 (4) | 0.0585 (11) | |
| H5 | 0.4243 | 0.9179 | 0.8388 | 0.070* | |
| C6 | 0.3597 (5) | 0.7656 (6) | 0.6974 (5) | 0.103 (2) | |
| H6A | 0.2997 | 0.7123 | 0.6529 | 0.154* | |
| H6B | 0.4193 | 0.7110 | 0.7483 | 0.154* | |
| H6C | 0.3564 | 0.8140 | 0.6266 | 0.154* | |
| C7 | 0.2696 (4) | 0.9437 (6) | 0.7207 (5) | 0.0846 (16) | |
| H7A | 0.2571 | 0.9797 | 0.6377 | 0.127* | |
| H7B | 0.2786 | 1.0132 | 0.7809 | 0.127* | |
| H7C | 0.2124 | 0.8908 | 0.6934 | 0.127* | |
| S1 | 0.49848 (9) | 0.69295 (11) | 1.01407 (11) | 0.0627 (4) | |
| S2 | 0.38431 (7) | 0.89852 (9) | 1.04130 (10) | 0.0529 (4) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.050 (3) | 0.036 (3) | 0.041 (3) | 0.000 | 0.026 (2) | 0.000 |
| C2 | 0.076 (3) | 0.050 (2) | 0.049 (2) | 0.016 (2) | 0.037 (2) | 0.0054 (18) |
| C3 | 0.047 (2) | 0.048 (2) | 0.044 (2) | −0.0022 (16) | 0.0251 (18) | 0.0052 (16) |
| C4 | 0.040 (2) | 0.055 (2) | 0.046 (2) | −0.0010 (16) | 0.0251 (17) | −0.0052 (17) |
| C5 | 0.055 (2) | 0.061 (2) | 0.050 (2) | −0.0053 (19) | 0.028 (2) | 0.0109 (19) |
| C6 | 0.139 (5) | 0.112 (5) | 0.061 (3) | 0.014 (4) | 0.064 (4) | 0.018 (3) |
| C7 | 0.062 (3) | 0.102 (4) | 0.068 (3) | 0.014 (3) | 0.029 (2) | 0.039 (3) |
| S1 | 0.0744 (8) | 0.0695 (7) | 0.0527 (6) | 0.0285 (6) | 0.0437 (6) | 0.0142 (5) |
| S2 | 0.0497 (6) | 0.0444 (6) | 0.0520 (6) | 0.0097 (4) | 0.0254 (5) | 0.0033 (4) |
Geometric parameters (Å, °)
| C1—C4i | 1.529 (4) | C4—H4A | 0.9700 |
| C1—C4 | 1.529 (4) | C4—H4B | 0.9700 |
| C1—C2 | 1.529 (5) | C5—C7 | 1.520 (6) |
| C1—C2i | 1.529 (5) | C5—C6 | 1.524 (7) |
| C2—S1 | 1.803 (4) | C5—H5 | 0.9800 |
| C2—H2A | 0.9700 | C6—H6A | 0.9600 |
| C2—H2B | 0.9700 | C6—H6B | 0.9600 |
| C3—C5 | 1.531 (5) | C6—H6C | 0.9600 |
| C3—S1 | 1.809 (4) | C7—H7A | 0.9600 |
| C3—S2 | 1.810 (4) | C7—H7B | 0.9600 |
| C3—H3 | 0.9800 | C7—H7C | 0.9600 |
| C4—S2 | 1.798 (4) | ||
| C4i—C1—C4 | 113.0 (4) | S2—C4—H4B | 108.2 |
| C4i—C1—C2 | 109.4 (2) | H4A—C4—H4B | 107.4 |
| C4—C1—C2 | 109.4 (2) | C7—C5—C6 | 109.7 (4) |
| C4i—C1—C2i | 109.4 (2) | C7—C5—C3 | 111.6 (4) |
| C4—C1—C2i | 109.4 (2) | C6—C5—C3 | 111.0 (4) |
| C2—C1—C2i | 106.0 (4) | C7—C5—H5 | 108.2 |
| C1—C2—S1 | 116.2 (3) | C6—C5—H5 | 108.2 |
| C1—C2—H2A | 108.2 | C3—C5—H5 | 108.2 |
| S1—C2—H2A | 108.2 | C5—C6—H6A | 109.5 |
| C1—C2—H2B | 108.2 | C5—C6—H6B | 109.5 |
| S1—C2—H2B | 108.2 | H6A—C6—H6B | 109.5 |
| H2A—C2—H2B | 107.4 | C5—C6—H6C | 109.5 |
| C5—C3—S1 | 108.9 (3) | H6A—C6—H6C | 109.5 |
| C5—C3—S2 | 110.9 (3) | H6B—C6—H6C | 109.5 |
| S1—C3—S2 | 111.59 (19) | C5—C7—H7A | 109.5 |
| C5—C3—H3 | 108.5 | C5—C7—H7B | 109.5 |
| S1—C3—H3 | 108.5 | H7A—C7—H7B | 109.5 |
| S2—C3—H3 | 108.5 | C5—C7—H7C | 109.5 |
| C1—C4—S2 | 116.3 (2) | H7A—C7—H7C | 109.5 |
| C1—C4—H4A | 108.2 | H7B—C7—H7C | 109.5 |
| S2—C4—H4A | 108.2 | C2—S1—C3 | 99.99 (18) |
| C1—C4—H4B | 108.2 | C4—S2—C3 | 100.49 (17) |
| C4i—C1—C2—S1 | −59.6 (4) | S1—C3—C5—C6 | 58.7 (4) |
| C4—C1—C2—S1 | 64.8 (4) | S2—C3—C5—C6 | −178.1 (3) |
| C2i—C1—C2—S1 | −177.4 (4) | C1—C2—S1—C3 | −61.4 (3) |
| C4i—C1—C4—S2 | 58.00 (19) | C5—C3—S1—C2 | −178.1 (3) |
| C2—C1—C4—S2 | −64.2 (4) | S2—C3—S1—C2 | 59.1 (2) |
| C2i—C1—C4—S2 | −179.8 (2) | C1—C4—S2—C3 | 60.4 (3) |
| S1—C3—C5—C7 | −178.6 (3) | C5—C3—S2—C4 | 179.5 (3) |
| S2—C3—C5—C7 | −55.5 (4) | S1—C3—S2—C4 | −58.9 (2) |
Symmetry codes: (i) −x+1, y, −z+5/2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C7—H7C···S1ii | 0.96 | 2.93 | 3.827 (6) | 156 (1) |
Symmetry codes: (ii) x−1/2, −y+3/2, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2201).
References
- Backer, H. J. & Evenhuis, N. (1937). Recl Trav. Chim. Pays-Bas, 56, 681–690.
- Brandenburg, K. & Putz, H. (2004). DIAMOND University of Bonn, Germany.
- Bruker (2000). SADABS and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
- Cismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem.9, 1287–1314.
- Eliel, E. L. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds New York: John Wiley & Sons.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Gâz, Ş. A., Condamine, E., Bogdan, N., Terec, A., Bogdan, E., Ramondenc, Y. & Grosu, I. (2008). Tetrahedron, 64, 3–12.
- Grosu, I., Mager, S. & Plé, G. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1351–1357.
- Grosu, I., Plé, G., Mager, S., Martinez, R., Mesaroş, C. & Camacho, B. del C. (1997). Tetrahedron, 53, 6215–6232.
- Mitkin, O. D., Wan, Y., Kurchan, A. N. & Kutateladze, A. G. (2001). Synthesis, pp. 1133–1142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Terec, A., Grosu, I., Condamine, E., Breau, L., Plé, G., Ramondenc, Y., Rochon, F. D., Peulon-Agasse, V. & Opriş, D. (2004). Tetrahedron, 60, 3173–3189.
- Terec, A., Grosu, I., Muntean, L., Toupet, L., Plé, G., Socaci, C. & Mager, S. (2001). Tetrahedron, 57, 8751–8758.
- Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
- Zhou, Z.-R., Xu, W., Xia, Y., Wang, Q.-R., Ding, Z.-B., Chen, M.-Q., Hua, Z.-Y. & Tao, F.-G. (2001). Acta Cryst. C57, 471–472. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037281/jh2201sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037281/jh2201Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



