Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Sep 25;66(Pt 10):o2618. doi: 10.1107/S1600536810037281

3,9-Diisopropyl-2,4,8,10-tetra­thia­spiro­[5.5]undeca­ne

Şerban Andrei Gâz a, Ioana Dobra a, Adrian Woiczechowski-Pop a, Richard A Varga b, Ion Grosu a,*
PMCID: PMC2983234  PMID: 21587592

Abstract

The mol­ecule of the title compound, C13H24S4, has C2 symmetry and it crystallizes as a racemate. The structure displays two six-membered rings exhibiting chair conformations, with the isopropyl substituents in equatorial positions. In the crystal structure, weak inter­molecular C—H⋯S inter­actions are observed, leading to a channel-like arrangement along the c axis.

Related literature

For background to the chemistry of spirans, see: Cismaş et al. (2005); Eliel & Wilen (1994); Grosu et al. (1995, 1997); Terec et al. (2001, 2004). For other studies regarding the synthesis and stereochemistry of spiranes bearing 1,3-dithiane units, see: Backer & Evenhuis (1937); Gâz et al. (2008); Mitkin et al. (2001). For the crystal structure of a spiran beaing 1,3-dithiane unit atoms, see: Zhou et al. (2001).graphic file with name e-66-o2618-scheme1.jpg

Experimental

Crystal data

  • C13H24S4

  • M r = 308.56

  • Monoclinic, Inline graphic

  • a = 16.701 (5) Å

  • b = 10.241 (3) Å

  • c = 12.063 (3) Å

  • β = 128.418 (4)°

  • V = 1616.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.57 mm−1

  • T = 297 K

  • 0.32 × 0.31 × 0.28 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.839, T max = 0.857

  • 7606 measured reflections

  • 1432 independent reflections

  • 1311 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.153

  • S = 1.27

  • 1432 reflections

  • 80 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037281/jh2201sup1.cif

e-66-o2618-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037281/jh2201Isup2.hkl

e-66-o2618-Isup2.hkl (70.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯S1i 0.96 2.93 3.827 (6) 156 (1)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by CNCSIS–UEFISCSU, project number PNII–IDEI515/2007. We also thank the National Centre for X-Ray Diffraction, Cluj-Napoca, for support with the solid-state structure determination.

supplementary crystallographic information

Comment

Despite the rich literature dealing with spiro compounds (Cismaş et al., 2005; Eliel & Wilen, 1994; Grosu et al., 1995, 1997; Terec et al., 2001, 2004) new papers were written recently especially including spiro derivatives having sulfur or selenium heteroatoms. Only few spirans bearing 1,3 dithiane units were reported (Backer & Evenhuis, 1937; Gâz et al., 2008; Mitkin et al., 2001) and only 2 crystals were obtained so far (Zhou et al., 2001). The title compound (Fig. 1) exhibits a C2 symmetry unit with chair conformation for both six-membered rings.

Due to the space arrangement there are differences between positions 2, 4 and 2', 4'. Due to these differencies positions 4 and 4' which are oriented towards the other 1,3-dithiane ring are named methylene inside, while the other two CH2 groups (positions 2 and 2') are oriented in opposite direction and they are named methylene outside groups.

In the crystal packing (Fig. 2 and Fig. 3) the sulfur atom from a neighbour molecule is hydrogen-bonded (weak interactions) via a intermolecular C7—H7c ···S1 connection (Table 1).

These weak interactions stabilize the lattice and form a three-dimensional network as a channel-like arrangement along the c axis.

Experimental

The synthesis of I has been described elsewhere (Gâz et al., 2008). Crystal were obtained from dichloromethane, by slow evaporation at room temperature.

Refinement

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and with Uiso = 1.5Ueq (C) for H. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.

Fig. 1.

ORTEP digram of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

A view of the molecular structure exhibiting the hydrogen bonding interactions.

Fig. 3.

Fig. 3.

The crystal packing viewed along c axis, exhibiting channel-like arrangement formed most probably by weak interaction between the methyl group H atoms and the sulfur atom from a neighbour molecule.

Crystal data

C13H24S4 F(000) = 664
Mr = 308.56 Dx = 1.268 Mg m3
Monoclinic, C2/c Melting point = 416–418 K
Hall symbol: -C 2yc Mo Kα radiation, λ = 0.71073 Å
a = 16.701 (5) Å Cell parameters from 3441 reflections
b = 10.241 (3) Å θ = 2.5–28.1°
c = 12.063 (3) Å µ = 0.57 mm1
β = 128.418 (4)° T = 297 K
V = 1616.5 (8) Å3 Block, colourless
Z = 4 0.32 × 0.31 × 0.28 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 1432 independent reflections
Radiation source: fine-focus sealed tube 1311 reflections with I > 2σ(I)
graphite Rint = 0.035
φ and ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −19→19
Tmin = 0.839, Tmax = 0.857 k = −12→12
7606 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.0592P)2 + 2.605P] where P = (Fo2 + 2Fc2)/3
1432 reflections (Δ/σ)max < 0.001
80 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5000 0.7036 (5) 1.2500 0.0439 (11)
C2 0.4969 (3) 0.6137 (4) 1.1462 (4) 0.0596 (11)
H2A 0.4357 0.5606 1.0981 0.071*
H2B 0.5551 0.5551 1.2001 0.071*
C3 0.3816 (3) 0.7866 (4) 0.9229 (4) 0.0486 (9)
H3 0.3245 0.7260 0.8842 0.058*
C4 0.4026 (3) 0.7860 (4) 1.1697 (4) 0.0484 (9)
H4A 0.4024 0.8353 1.2382 0.058*
H4B 0.3444 0.7273 1.1218 0.058*
C5 0.3655 (3) 0.8601 (4) 0.7999 (4) 0.0585 (11)
H5 0.4243 0.9179 0.8388 0.070*
C6 0.3597 (5) 0.7656 (6) 0.6974 (5) 0.103 (2)
H6A 0.2997 0.7123 0.6529 0.154*
H6B 0.4193 0.7110 0.7483 0.154*
H6C 0.3564 0.8140 0.6266 0.154*
C7 0.2696 (4) 0.9437 (6) 0.7207 (5) 0.0846 (16)
H7A 0.2571 0.9797 0.6377 0.127*
H7B 0.2786 1.0132 0.7809 0.127*
H7C 0.2124 0.8908 0.6934 0.127*
S1 0.49848 (9) 0.69295 (11) 1.01407 (11) 0.0627 (4)
S2 0.38431 (7) 0.89852 (9) 1.04130 (10) 0.0529 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.050 (3) 0.036 (3) 0.041 (3) 0.000 0.026 (2) 0.000
C2 0.076 (3) 0.050 (2) 0.049 (2) 0.016 (2) 0.037 (2) 0.0054 (18)
C3 0.047 (2) 0.048 (2) 0.044 (2) −0.0022 (16) 0.0251 (18) 0.0052 (16)
C4 0.040 (2) 0.055 (2) 0.046 (2) −0.0010 (16) 0.0251 (17) −0.0052 (17)
C5 0.055 (2) 0.061 (2) 0.050 (2) −0.0053 (19) 0.028 (2) 0.0109 (19)
C6 0.139 (5) 0.112 (5) 0.061 (3) 0.014 (4) 0.064 (4) 0.018 (3)
C7 0.062 (3) 0.102 (4) 0.068 (3) 0.014 (3) 0.029 (2) 0.039 (3)
S1 0.0744 (8) 0.0695 (7) 0.0527 (6) 0.0285 (6) 0.0437 (6) 0.0142 (5)
S2 0.0497 (6) 0.0444 (6) 0.0520 (6) 0.0097 (4) 0.0254 (5) 0.0033 (4)

Geometric parameters (Å, °)

C1—C4i 1.529 (4) C4—H4A 0.9700
C1—C4 1.529 (4) C4—H4B 0.9700
C1—C2 1.529 (5) C5—C7 1.520 (6)
C1—C2i 1.529 (5) C5—C6 1.524 (7)
C2—S1 1.803 (4) C5—H5 0.9800
C2—H2A 0.9700 C6—H6A 0.9600
C2—H2B 0.9700 C6—H6B 0.9600
C3—C5 1.531 (5) C6—H6C 0.9600
C3—S1 1.809 (4) C7—H7A 0.9600
C3—S2 1.810 (4) C7—H7B 0.9600
C3—H3 0.9800 C7—H7C 0.9600
C4—S2 1.798 (4)
C4i—C1—C4 113.0 (4) S2—C4—H4B 108.2
C4i—C1—C2 109.4 (2) H4A—C4—H4B 107.4
C4—C1—C2 109.4 (2) C7—C5—C6 109.7 (4)
C4i—C1—C2i 109.4 (2) C7—C5—C3 111.6 (4)
C4—C1—C2i 109.4 (2) C6—C5—C3 111.0 (4)
C2—C1—C2i 106.0 (4) C7—C5—H5 108.2
C1—C2—S1 116.2 (3) C6—C5—H5 108.2
C1—C2—H2A 108.2 C3—C5—H5 108.2
S1—C2—H2A 108.2 C5—C6—H6A 109.5
C1—C2—H2B 108.2 C5—C6—H6B 109.5
S1—C2—H2B 108.2 H6A—C6—H6B 109.5
H2A—C2—H2B 107.4 C5—C6—H6C 109.5
C5—C3—S1 108.9 (3) H6A—C6—H6C 109.5
C5—C3—S2 110.9 (3) H6B—C6—H6C 109.5
S1—C3—S2 111.59 (19) C5—C7—H7A 109.5
C5—C3—H3 108.5 C5—C7—H7B 109.5
S1—C3—H3 108.5 H7A—C7—H7B 109.5
S2—C3—H3 108.5 C5—C7—H7C 109.5
C1—C4—S2 116.3 (2) H7A—C7—H7C 109.5
C1—C4—H4A 108.2 H7B—C7—H7C 109.5
S2—C4—H4A 108.2 C2—S1—C3 99.99 (18)
C1—C4—H4B 108.2 C4—S2—C3 100.49 (17)
C4i—C1—C2—S1 −59.6 (4) S1—C3—C5—C6 58.7 (4)
C4—C1—C2—S1 64.8 (4) S2—C3—C5—C6 −178.1 (3)
C2i—C1—C2—S1 −177.4 (4) C1—C2—S1—C3 −61.4 (3)
C4i—C1—C4—S2 58.00 (19) C5—C3—S1—C2 −178.1 (3)
C2—C1—C4—S2 −64.2 (4) S2—C3—S1—C2 59.1 (2)
C2i—C1—C4—S2 −179.8 (2) C1—C4—S2—C3 60.4 (3)
S1—C3—C5—C7 −178.6 (3) C5—C3—S2—C4 179.5 (3)
S2—C3—C5—C7 −55.5 (4) S1—C3—S2—C4 −58.9 (2)

Symmetry codes: (i) −x+1, y, −z+5/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7C···S1ii 0.96 2.93 3.827 (6) 156 (1)

Symmetry codes: (ii) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2201).

References

  1. Backer, H. J. & Evenhuis, N. (1937). Recl Trav. Chim. Pays-Bas, 56, 681–690.
  2. Brandenburg, K. & Putz, H. (2004). DIAMOND University of Bonn, Germany.
  3. Bruker (2000). SADABS and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem.9, 1287–1314.
  6. Eliel, E. L. & Wilen, S. H. (1994). Stereochemistry of Organic Compounds New York: John Wiley & Sons.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Gâz, Ş. A., Condamine, E., Bogdan, N., Terec, A., Bogdan, E., Ramondenc, Y. & Grosu, I. (2008). Tetrahedron, 64, 3–12.
  9. Grosu, I., Mager, S. & Plé, G. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 1351–1357.
  10. Grosu, I., Plé, G., Mager, S., Martinez, R., Mesaroş, C. & Camacho, B. del C. (1997). Tetrahedron, 53, 6215–6232.
  11. Mitkin, O. D., Wan, Y., Kurchan, A. N. & Kutateladze, A. G. (2001). Synthesis, pp. 1133–1142.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Terec, A., Grosu, I., Condamine, E., Breau, L., Plé, G., Ramondenc, Y., Rochon, F. D., Peulon-Agasse, V. & Opriş, D. (2004). Tetrahedron, 60, 3173–3189.
  14. Terec, A., Grosu, I., Muntean, L., Toupet, L., Plé, G., Socaci, C. & Mager, S. (2001). Tetrahedron, 57, 8751–8758.
  15. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  16. Zhou, Z.-R., Xu, W., Xia, Y., Wang, Q.-R., Ding, Z.-B., Chen, M.-Q., Hua, Z.-Y. & Tao, F.-G. (2001). Acta Cryst. C57, 471–472. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810037281/jh2201sup1.cif

e-66-o2618-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810037281/jh2201Isup2.hkl

e-66-o2618-Isup2.hkl (70.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES