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Both transfer RNA (tRNA) and cyto-
chrome c are essential to cellular 

function: tRNA mediates protein syn-
thesis while cytochrome c is required for 
oxidative phosphorylation and apopto-
sis induction. tRNA has recently been 
implicated as a direct regulator of the 
well-conserved apoptotic role of cyto-
chrome c. Interaction between these 
molecules could potentially coordinate 
biosynthesis, energy production and 
apoptosis. Here we review the diversity 
and dynamics of tRNA and how this 
class of non-coding RNAs may regulate 
the role of cytochrome c in apoptosis. 
We comment on unanswered questions 
in the cell biology of this interaction and 
how answers may influence our under-
standing of disease.

tRNA: The Genetic Interpreter

tRNA interprets the genetic code by phys-
ically connecting nucleic acid codons to 
amino acids. The human nuclear genome 
codes for over 500 tRNAs. Nuclear 
tRNAs are transcribed as longer pre-
tRNAs by RNA polymerase III, trimmed 
at each end, and spliced to remove introns 
as necessary.1 All mature tRNAs are 73 to 
93 ribonucleotides and fold into similar 
tertiary structures. tRNAs are activated 
by conjugation to amino acids at a CCA 
trinucleotide sequence at their 3' ends. 
Opposite this end in the folded structure 
of tRNA, a three nucleotide anti-codon 
sequence can pair with mRNA codons on 
the ribosome. tRNA must interact tran-
siently rather than stably with cellular 
proteins to function in protein synthesis. 
This unique requirement for tRNAs may 
allow them more functional versatility 

tRNA and cytochrome c in cell death and beyond

Yide Mei,1 Jeongsik Yong,2 Aaron Stonestrom1 and Xiaolu Yang1,*
1Department of Cancer Biology and Abramson Family Cancer Research Institute; 2Department of Biochemistry and Biophysics; University of Pennsylvania 

School of Medicine; Philadelphia, PA USA

than other small non-coding RNAs. 
This is exemplified by the way in which 
the human immunodeficiency virus uses 
tRNA to prime reverse transcription of its 
RNA genome.2

The process of tRNA maturation 
involves extensive modification in both 
the nucleus and cytoplasm. Approximately 
100 chemically distinct modifications 
have been reported; most functionally 
undefined.1 It was until recently believed 
that following maturation, nuclear tRNAs 
localized exclusively to the cytosol. 
However, new studies have showed that 
under stress conditions such as nutrient 
deprivation, mature tRNAs can undergo 
retrograde translocation to the nucleus.3

The human mitochondrial genome 
codes for 22 tRNAs. Unlike many other 
organisms, these include a complete set 
able to specify all common amino acids. 
Most mitochondrial tRNA are expected to 
be present in the matrix where mitochon-
drial protein synthesis occurs. It was gen-
erally thought that human mitochondrial 
and nuclear tRNA systems are completely 
separate until a recent paper challenged 
this idea by showing that human mito-
chondria can import cytosolic tRNA with 
the addition of ATP.4

Small tRNA-derived fragments (tRFs) 
were recently recognized as a major RNA 
species in human cells. Remarkably, one 
pre-tRNA-derived fragment was shown 
to be required for cell proliferation.5 
Interestingly, several lines of evidence 
showed that endonucleolytic cleavage 
of tRNAs exists in cells under a variety 
of stress conditions. Particularly, tRNA 
cleavage occurs during oxidative stress.6,7 
tRNA halves are present in human cells, 
Drosophila cells, and likely those of many 
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Interaction Between tRNA and 
cytochrome c May Inform Our 

Understanding of Disease

The realization of the Cytochrome 
c:tRNA interaction may shed important 
light on diseases associated with genetic 
mutations in tRNA. Point mutations in 
human mitochondrial tRNA genes cause 
a range of neurological, neuromuscular 
and neurodegenerative syndromes.24,25 
It is generally assumed that these result 
from deficits in mitochondrial protein 
synthesis. However, protein synthesis 
defects cannot always be detected.26 The 
association of mitochondrial tRNA with 
cytochrome c is a potentially unexplored 
aspect of pathogenesis in these cases. For 
example, mitochondrial tRNA mutations 
might affect cytochrome c binding and 
alter apoptotic threshold or energy genera-
tion via electron transfer. Characterization 
of the interacting domains of cytochrome 
c and tRNA should reveal any genotype-
phenotype correlations in either molecule 
resulting from effects on the function of 
the other.

Inhibition of apoptosis is an essential 
part of cancer pathogenesis.27 As tRNAs 
are highly expressed in tumor cells,28 this 
may represent a mechanism by which 
tumor cells protect themselves from 
death. While high tRNA levels are a gen-
eral requirement of rapid protein synthe-
sis commonly occurring in tumor cells, 
the overexpression of tRNA in cancer 
can exceed that of normal cells growing 
at similar rates, and tRNAs in malignant 
cells may differ form those in normal 
cells of the same origin.29-31 The activity 
of Pol III—mediated tRNA transcrip-
tion is markedly enhanced by oncogenic 
cMyc, mTOR and Ras pathways.32-34 The 
tumor suppressor p53 potently inhibits 
the activity of Pol III and tRNA synthe-
sis is strongly enhanced in p53 deficient 
cells.35 Similarly, the tumor suppressor 
Rb inhibits the activity of Pol III.28,36 
Deregulation of RNA Pol III leads to a 
dramatic increase in the levels of tRNA 
in tumor cells. The causal effect of high 
levels of tRNA on cellular transforma-
tion was established by a recent study 
from Robert White’s group showing that 
overexpression of an initiator methionine 
tRNA by itself can transform 3T3 cells.37

combined action of at least three proteins: 
the tumor suppressor PHAPI, cellular 
apoptosis susceptibility protein (CAS) and 
heat shock protein 70 (Hsp70).16 A range 
of cellular factors oppose apoptosome for-
mation, including high levels of the cat-
ions potassium and calcium, as well as the 
action of the proteins HSP27, HSP90 and 
prothymosin-α (ProT).12,13 Low levels of 
dATP also promote apoptosome forma-
tion but high levels of dATP inhibit it.17

The ability of cytochrome c to initiate 
apoptosis depends on numerous cellular 
factors including the intracellular redox 
environment. Oxidized but not reduced 
cytochrome c activates caspases and pro-
motes apoptosis.18-20 Intracellular gluta-
thione (GSH) generated via the pentose 
phosphate pathway is necessary to inhibit 
prop-apoptotic cytochrome c function by 
maintaining it in a reduced form at least in 
some neurons and cancer cells.21

Discovery of Interaction Between-
tRNA and Cytochrome c

The role of nucleotides in cytochrome 
c-mediated caspase activation led us to 
speculate that RNA could be involved 
in this process. Treatment of mamma-
lian S100 extracts with RNase strongly 
increased cytochrome c-induced caspase-9 
activation, while the addition of RNA to 
the extracts impaired caspase-9 activation. 
These results suggested that one or more 
RNA species inhibit a factor required for 
caspase-9 activation. Systemic evaluation 
of the steps leading to caspase-9 activation 
revealed that RNA-mediated inhibition 
occurs at the level of cytochrome c. We 
stabilized RNA-protein complexes inside 
intact cells with low formaldehyde con-
centration and then lysed cells in buffer 
containing the strong detergent Empigen 
BB to prevent non-specific interaction 
that might occur during cell lysis.22 This 
analysis showed that several cytosolic and 
mitochondrial tRNAs specifically associ-
ate with cytochrome c. Microinjection of 
tRNA blunted the ability of cytochrome 
c to induce apoptosis, while degradation 
of tRNA by an RNase that preferentially 
degrades tRNA, Onconase, enhanced 
apoptosis via the intrinsic pathway. This 
finding reveals a direct role for tRNA in 
regulating apoptosis (Fig. 1).23

other organisms.8,9 These fragments 
may inhibit protein synthesis as “cleaved 
tRNAs” which are nicked but other-
wise fully folded.10 While intriguing, the 
importance of tRNA halves on cell physi-
ology and the mechanism and regulation 
of this process remain largely unproven.

Cytochrome c: An Apoptotic 
Death Inducer

The most conserved role of cytochrome c 
is in the electron transport chain powering 
oxidative phosphorylation. Cytochrome c 
carries electrons from the mitochondrial 
inner membrane protein complex III to 
complex IV and is essential for the gen-
eration of the mitochondrial membrane 
potential (∆ψ) that drives the formation 
of ATP. In human and other vertebrate 
cells, cytochrome c is also a central apop-
totic effecter. In these cells two major 
apoptotic pathways have been described: 
the extrinsic pathway and the intrinsic 
pathway. Cytochrome c release into the 
cytosol is particularly associated with 
activation of the intrinsic pathway, which 
responds to intracellular stimuli such as 
DNA damage, lineage information and 
oncogene activation. Once in the cytosol 
cytochrome c binds the adaptor protein 
Apaf-1 (apoptotic protease-activating fac-
tor 1) and assembles the apoptosome com-
plex,11 causing recruitment and activation 
of the initiator caspase-9.12,13 The subse-
quent proteolytic cascade effects the mor-
phological changes that define apoptosis 
including cellular shrinkage, membrane 
blebbing, nuclear condensation and frag-
mentation of cells into apoptotic bodies 
that can be rapidly cleared.

Formation of the apoptosome is intri-
cately regulated. Prior to cytochrome 
c binding, Apaf-1 is tightly associated 
with dATP,14,15 which contacts multiple 
domains of Apaf-1 and helps keep Apaf-1 in 
its inactive form. Binding of cytochrome c 
leads to the hydrolysis of the bound dATP 
to dADP, and subsequent exchange of the 
Apaf-1-bound dADP with a free dATP. 
Apaf-1 can then assemble into a func-
tional heptameric platform. This platform 
recruits multiple procaspase-9 molecules, 
leading to their oligomerization and sub-
sequent auto-proteolytic processing. The 
hydrolysis of dATP is enhanced by the 
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interaction in healthy cells occurs in the 
inner membrane space. The association of 
cytochrome c with tRNA in healthy cells 
may affect the function of cytochrome c 
in electron transfer. If so, the cytochrome 
c-tRNA connection may represent a link 
between protein translation and ATP pro-
duction. During apoptosis, the association 
of cytochrome c with cytosolic tRNAs 
is expected to increase as cytochrome c 
enters the cytosol. Cytosolic tRNAs level 
may regulate a threshold of apoptotic sen-
sitivity toward cytochrome c thus coor-
dinating protein synthesis with cellular 
survival. One corollary of this would be 
that retrograde nuclear translocation of 
tRNA as in some stress conditions would 
lower the a cytochrome c-determined 
apoptotic threshold.
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Transfer RNA (middle) may interact with cytochrome c and prevent association with Apaf-1, block-
ing formation of the apoptosome complex (upper right). When active, the apoptosome begins a 
proteolytic cascade that results in membrane blebbing, nuclear condensation and irreversible cell 
death.
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