Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 27;66(Pt 3):o717. doi: 10.1107/S160053681000704X

4′-(2,4-Dichloro­phen­yl)-1,1′-dimethyl­piperidine-3-spiro-3′-pyrrolidine-2′-spiro-3′′-indoline-4,2′′-dione

S Nagamuthu a, R Sribala a, R Ranjithkumar b, R V Krishnakumar a, N Srinivasan a,*
PMCID: PMC2983500  PMID: 21580454

Abstract

In the title compound, C23H23Cl2N3O2, the pyrroline ring adopts an envelope conformation and the piperidinone ring assumes a slightly twisted chair form. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate an R 2 8 graph-set motif and a short Cl⋯Cl contact of 3.478 (1) Å occurs.

Related literature

For the effect on halogens on the conformations of organic mol­ecules, see: Awwadi et al. (2006). For the biological properties of pyrroles, see: Watson et al. (2001). For graph-set notation, see: Etter et al. (1990). For puckering parameters, see: Cremer & Pople (1975). graphic file with name e-66-0o717-scheme1.jpg

Experimental

Crystal data

  • C23H23Cl2N3O2

  • M r = 444.34

  • Triclinic, Inline graphic

  • a = 7.9398 (2) Å

  • b = 10.8747 (3) Å

  • c = 13.5367 (4) Å

  • α = 66.561 (2)°

  • β = 77.873 (1)°

  • γ = 83.203 (2)°

  • V = 1047.64 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 300 K

  • 0.27 × 0.15 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.94, T max = 0.96

  • 27365 measured reflections

  • 6685 independent reflections

  • 5249 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.130

  • S = 1.03

  • 6685 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000704X/ng2738sup1.cif

e-66-0o717-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000704X/ng2738Isup2.hkl

e-66-0o717-Isup2.hkl (320.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1B⋯O2i 0.86 2.02 2.8547 (15) 164

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Dr Babu Varghese, Sophiticated Analytical Instrumentation Facility, Indian Institute of Technology, Chennai, for the data collection.

supplementary crystallographic information

Comment

Pyrrolo ring compounds are prevalent in a variety of biologically active compounds (Watson et al., 2001) and find utility in the treatment of diseases such as diabetes, cancer and viral infections. Since the biological activity depends on the conformation of rings that constitute a molecule, precise description, at atomic resolution, of the title compound is expected to supplement further studies on structure-activity relationships on these compounds. Also, the effect of halogen- subsitutions on the conformation of the molecule and consequently on the packing modes remains an area of immense interest in crystallography (Awwadi et al., 2006).

In the title compound (I), the 5-membered methyl substitued pyrroline ring adopts the envelope conformation with C5 deviating from the plane defined by the rest of the atoms of the ring by 0.639 (2) A° The puckering parameters (Cremer & Pople, 1975) of this ring are Q = 0.431 (2)Å and φ = 331.2 °. The piperidinone ring adopts a slightly twisted chair conformation with the N1A and C4A atoms deviating by about 0.712 (2) and -0.523 (2) A°, respectively, from the plane defined by C2A,C3,C5A and C6A with an r.m.s. deviation of 0.041 A°. The chair conformation is also evident from the corresponding puckering amplitudes [Q=0.561 (2) A°, /q = 16.0 (2)°, /f = 30.8 (6)°]. The oxindole and the dichloro substituted phenyl rings are planar.

A relatively strong intermolecular [N1B—H1B···O2(-x, -y, 1-z)] hydrogen bond relates centrrosymmetric pairs of molecules (Fig.2). These N—H···O hydrogen bonds form R82 graph set motifs (Etter et al., 1990) which are interconnected through Cl···Cl interactions [Cl1···.Cl2 (x-1, y, z) 3.478 (1) A°] leading to columns of molecules parallel to the a-axis (Fig.3). These columns resemble a 'ladder-like' arrangement of molecules much similar to the one seen in DNA, except for the twist. These columns of molecules have interactions that are van der Waals in nature.

Experimental

A mixture of 1-methyl-3-[(E)-(2,4-dichlorophenyl)methylidene] tetrahydro-4(1H)pyridinone (1 mmol), isatin (1 mmol) and sarcosine (1 mmol) were refluxed in methanol (15 ml) for 4 h. After completion of the reaction (TLC), the mixture was poured into water (30 ml) and the precipitate was filtered off and washed with water to obtain the product as white solid (0.28 g, 85%), m.p. 190–191 °C

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

A view of the molecular aggregation down the a-axis. C-bound H atoms have been omitted for clarity.

Crystal data

C23H23Cl2N3O2 Z = 2
Mr = 444.34 F(000) = 464
Triclinic, P1 Dx = 1.409 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9398 (2) Å Cell parameters from 5536 reflections
b = 10.8747 (3) Å θ = 5.7–61.9°
c = 13.5367 (4) Å µ = 0.34 mm1
α = 66.561 (2)° T = 300 K
β = 77.873 (1)° Needle, colourless
γ = 83.203 (2)° 0.27 × 0.15 × 0.12 mm
V = 1047.64 (5) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 6685 independent reflections
Radiation source: fine-focus sealed tube 5249 reflections with I > 2σ(I)
graphite Rint = 0.025
ω and φ scan θmax = 31.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→11
Tmin = 0.94, Tmax = 0.96 k = −15→15
27365 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0652P)2 + 0.3075P] where P = (Fo2 + 2Fc2)/3
6685 reflections (Δ/σ)max = 0.001
273 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.05606 (6) 0.11850 (5) −0.16644 (3) 0.05328 (12)
Cl2 0.52639 (5) 0.22216 (6) −0.08290 (4) 0.05850 (14)
O1 0.59398 (16) 0.37748 (14) 0.13813 (10) 0.0564 (3)
O2 0.01383 (13) 0.08370 (10) 0.35005 (9) 0.0392 (2)
N1 0.07639 (15) 0.36986 (11) 0.21024 (10) 0.0342 (2)
N1A 0.40225 (16) 0.01730 (11) 0.32854 (10) 0.0369 (2)
N1B 0.09730 (16) 0.15644 (12) 0.46891 (9) 0.0372 (3)
H1B 0.0533 0.0947 0.5293 0.045*
C1A 0.3736 (3) −0.12482 (15) 0.36383 (15) 0.0521 (4)
H7 0.4034 −0.1725 0.4350 0.078*
H8 0.4440 −0.1588 0.3127 0.078*
H9 0.2544 −0.1368 0.3671 0.078*
C2 0.19382 (16) 0.28182 (11) 0.28156 (10) 0.0277 (2)
C2A 0.35737 (18) 0.09368 (13) 0.22132 (11) 0.0330 (3)
H1 0.2483 0.0647 0.2182 0.040*
H2 0.4449 0.0771 0.1657 0.040*
C2B 0.09267 (16) 0.15968 (12) 0.36880 (10) 0.0312 (2)
C3 0.34300 (15) 0.24405 (12) 0.19834 (10) 0.0275 (2)
C4 0.29884 (17) 0.33178 (13) 0.08305 (10) 0.0317 (2)
H4 0.4047 0.3711 0.0334 0.038*
C4A 0.51969 (17) 0.28084 (14) 0.20663 (11) 0.0354 (3)
C4B 0.24667 (17) 0.34208 (13) 0.35377 (11) 0.0321 (2)
C5 0.1825 (2) 0.44231 (13) 0.10524 (11) 0.0383 (3)
H5A 0.2488 0.5087 0.1098 0.046*
H5B 0.1127 0.4863 0.0489 0.046*
C5A 0.5987 (2) 0.18768 (17) 0.30320 (14) 0.0442 (3)
H51 0.5450 0.2069 0.3671 0.053*
H52 0.7204 0.2048 0.2887 0.053*
C5B 0.18216 (18) 0.26551 (14) 0.46247 (11) 0.0347 (3)
C6A 0.5790 (2) 0.04095 (17) 0.32825 (14) 0.0475 (4)
H61 0.6566 0.0149 0.2736 0.057*
H62 0.6093 −0.0134 0.3992 0.057*
C6B 0.3263 (2) 0.45973 (15) 0.32860 (14) 0.0451 (3)
H6B 0.3695 0.5129 0.2563 0.054*
C7B 0.3409 (3) 0.49719 (19) 0.41348 (18) 0.0583 (5)
H7B 0.3940 0.5763 0.3976 0.070*
C8B 0.2777 (3) 0.4188 (2) 0.52044 (17) 0.0591 (5)
H8B 0.2893 0.4457 0.5758 0.071*
C9B 0.1972 (2) 0.30098 (19) 0.54744 (14) 0.0496 (4)
H9B 0.1550 0.2477 0.6198 0.060*
C11 −0.0503 (2) 0.45116 (18) 0.25448 (16) 0.0506 (4)
H11A −0.1084 0.3957 0.3257 0.076*
H11B −0.1328 0.4910 0.2068 0.076*
H11C 0.0066 0.5205 0.2603 0.076*
C41 0.21203 (16) 0.26281 (13) 0.03025 (10) 0.0303 (2)
C42 0.03314 (17) 0.25080 (14) 0.05212 (11) 0.0338 (3)
H42 −0.0324 0.2744 0.1079 0.041*
C43 −0.04964 (18) 0.20518 (15) −0.00610 (12) 0.0375 (3)
H43 −0.1689 0.1990 0.0101 0.045*
C44 0.04591 (19) 0.16899 (14) −0.08833 (11) 0.0362 (3)
C45 0.22301 (19) 0.17398 (16) −0.11040 (12) 0.0407 (3)
H45 0.2879 0.1472 −0.1646 0.049*
C46 0.30248 (17) 0.21960 (15) −0.05036 (11) 0.0360 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0568 (2) 0.0684 (3) 0.0460 (2) −0.01210 (19) −0.01697 (18) −0.02727 (19)
Cl2 0.02974 (17) 0.0955 (4) 0.0552 (2) −0.00686 (19) 0.00060 (15) −0.0370 (2)
O1 0.0472 (6) 0.0649 (8) 0.0476 (6) −0.0279 (6) −0.0104 (5) −0.0039 (6)
O2 0.0388 (5) 0.0369 (5) 0.0401 (5) −0.0137 (4) −0.0071 (4) −0.0095 (4)
N1 0.0374 (6) 0.0304 (5) 0.0346 (5) 0.0055 (4) −0.0123 (4) −0.0115 (4)
N1A 0.0425 (6) 0.0310 (5) 0.0334 (6) 0.0047 (4) −0.0116 (5) −0.0077 (4)
N1B 0.0422 (6) 0.0363 (6) 0.0279 (5) −0.0105 (5) 0.0006 (4) −0.0080 (4)
C1A 0.0657 (11) 0.0321 (7) 0.0479 (9) 0.0045 (7) −0.0105 (8) −0.0058 (6)
C2 0.0312 (5) 0.0245 (5) 0.0260 (5) −0.0040 (4) −0.0068 (4) −0.0068 (4)
C2A 0.0387 (6) 0.0298 (6) 0.0299 (6) 0.0005 (5) −0.0078 (5) −0.0107 (5)
C2B 0.0296 (5) 0.0298 (6) 0.0311 (6) −0.0048 (4) −0.0041 (4) −0.0080 (5)
C3 0.0289 (5) 0.0270 (5) 0.0247 (5) −0.0039 (4) −0.0063 (4) −0.0064 (4)
C4 0.0345 (6) 0.0319 (6) 0.0251 (5) −0.0082 (5) −0.0074 (4) −0.0044 (4)
C4A 0.0309 (6) 0.0414 (7) 0.0347 (6) −0.0059 (5) −0.0068 (5) −0.0137 (5)
C4B 0.0360 (6) 0.0301 (6) 0.0318 (6) −0.0034 (5) −0.0085 (5) −0.0118 (5)
C5 0.0516 (8) 0.0264 (6) 0.0342 (6) −0.0011 (5) −0.0176 (6) −0.0042 (5)
C5A 0.0366 (7) 0.0537 (9) 0.0452 (8) 0.0010 (6) −0.0187 (6) −0.0171 (7)
C5B 0.0356 (6) 0.0377 (6) 0.0318 (6) −0.0004 (5) −0.0058 (5) −0.0148 (5)
C6A 0.0436 (8) 0.0490 (8) 0.0475 (8) 0.0132 (7) −0.0194 (7) −0.0145 (7)
C6B 0.0556 (9) 0.0349 (7) 0.0478 (8) −0.0114 (6) −0.0114 (7) −0.0154 (6)
C7B 0.0708 (12) 0.0480 (9) 0.0728 (12) −0.0092 (8) −0.0219 (10) −0.0343 (9)
C8B 0.0691 (12) 0.0685 (12) 0.0616 (11) −0.0013 (9) −0.0188 (9) −0.0448 (10)
C9B 0.0564 (9) 0.0613 (10) 0.0385 (8) −0.0003 (8) −0.0084 (7) −0.0275 (7)
C11 0.0498 (9) 0.0479 (9) 0.0586 (10) 0.0166 (7) −0.0174 (7) −0.0263 (8)
C41 0.0312 (6) 0.0328 (6) 0.0238 (5) −0.0038 (4) −0.0070 (4) −0.0059 (4)
C42 0.0313 (6) 0.0396 (7) 0.0306 (6) −0.0019 (5) −0.0057 (5) −0.0132 (5)
C43 0.0304 (6) 0.0449 (7) 0.0379 (7) −0.0035 (5) −0.0085 (5) −0.0149 (6)
C44 0.0400 (7) 0.0389 (7) 0.0312 (6) −0.0039 (5) −0.0127 (5) −0.0111 (5)
C45 0.0405 (7) 0.0514 (8) 0.0329 (7) −0.0016 (6) −0.0050 (5) −0.0198 (6)
C46 0.0284 (6) 0.0461 (7) 0.0313 (6) −0.0028 (5) −0.0036 (5) −0.0129 (5)

Geometric parameters (Å, °)

Cl1—C44 1.7326 (14) C4B—C5B 1.3894 (19)
Cl2—C46 1.7402 (14) C5—H5A 0.9700
O1—C4A 1.2057 (18) C5—H5B 0.9700
O2—C2B 1.2226 (16) C5A—C6A 1.514 (2)
N1—C11 1.4524 (19) C5A—H51 0.9700
N1—C5 1.4539 (19) C5A—H52 0.9700
N1—C2 1.4661 (16) C5B—C9B 1.381 (2)
N1A—C2A 1.4531 (17) C6A—H61 0.9700
N1A—C6A 1.455 (2) C6A—H62 0.9700
N1A—C1A 1.456 (2) C6B—C7B 1.392 (2)
N1B—C2B 1.3498 (17) C6B—H6B 0.9300
N1B—C5B 1.3966 (18) C7B—C8B 1.374 (3)
N1B—H1B 0.8600 C7B—H7B 0.9300
C1A—H7 0.9600 C8B—C9B 1.381 (3)
C1A—H8 0.9600 C8B—H8B 0.9300
C1A—H9 0.9600 C9B—H9B 0.9300
C2—C4B 1.5192 (17) C11—H11A 0.9600
C2—C2B 1.5524 (16) C11—H11B 0.9600
C2—C3 1.5916 (17) C11—H11C 0.9600
C2A—C3 1.5329 (17) C41—C46 1.3879 (19)
C2A—H1 0.9700 C41—C42 1.3995 (17)
C2A—H2 0.9700 C42—C43 1.3801 (19)
C3—C4A 1.5413 (17) C42—H42 0.9300
C3—C4 1.5604 (17) C43—C44 1.376 (2)
C4—C5 1.515 (2) C43—H43 0.9300
C4—C41 1.5180 (17) C44—C45 1.378 (2)
C4—H4 0.9800 C45—C46 1.384 (2)
C4A—C5A 1.507 (2) C45—H45 0.9300
C4B—C6B 1.3811 (19)
C11—N1—C5 115.62 (12) H5A—C5—H5B 109.2
C11—N1—C2 117.09 (12) C4A—C5A—C6A 113.15 (13)
C5—N1—C2 106.73 (11) C4A—C5A—H51 108.9
C2A—N1A—C6A 110.22 (12) C6A—C5A—H51 108.9
C2A—N1A—C1A 111.33 (12) C4A—C5A—H52 108.9
C6A—N1A—C1A 111.91 (13) C6A—C5A—H52 108.9
C2B—N1B—C5B 111.76 (11) H51—C5A—H52 107.8
C2B—N1B—H1B 124.1 C9B—C5B—C4B 122.56 (14)
C5B—N1B—H1B 124.2 C9B—C5B—N1B 127.53 (14)
N1A—C1A—H7 109.5 C4B—C5B—N1B 109.84 (12)
N1A—C1A—H8 109.5 N1A—C6A—C5A 110.31 (12)
H7—C1A—H8 109.5 N1A—C6A—H61 109.6
N1A—C1A—H9 109.5 C5A—C6A—H61 109.6
H7—C1A—H9 109.5 N1A—C6A—H62 109.6
H8—C1A—H9 109.5 C5A—C6A—H62 109.6
N1—C2—C4B 113.50 (10) H61—C6A—H62 108.1
N1—C2—C2B 108.33 (10) C4B—C6B—C7B 118.74 (16)
C4B—C2—C2B 101.02 (10) C4B—C6B—H6B 120.6
N1—C2—C3 102.91 (9) C7B—C6B—H6B 120.6
C4B—C2—C3 117.36 (10) C8B—C7B—C6B 120.87 (16)
C2B—C2—C3 113.80 (10) C8B—C7B—H7B 119.6
N1A—C2A—C3 110.54 (10) C6B—C7B—H7B 119.6
N1A—C2A—H1 109.5 C7B—C8B—C9B 121.36 (15)
C3—C2A—H1 109.5 C7B—C8B—H8B 119.3
N1A—C2A—H2 109.5 C9B—C8B—H8B 119.3
C3—C2A—H2 109.5 C8B—C9B—C5B 117.24 (16)
H1—C2A—H2 108.1 C8B—C9B—H9B 121.4
O2—C2B—N1B 125.61 (12) C5B—C9B—H9B 121.4
O2—C2B—C2 125.83 (12) N1—C11—H11A 109.5
N1B—C2B—C2 108.44 (10) N1—C11—H11B 109.5
C2A—C3—C4A 106.08 (10) H11A—C11—H11B 109.5
C2A—C3—C4 112.94 (10) N1—C11—H11C 109.5
C4A—C3—C4 109.87 (10) H11A—C11—H11C 109.5
C2A—C3—C2 113.02 (10) H11B—C11—H11C 109.5
C4A—C3—C2 110.45 (10) C46—C41—C42 115.70 (12)
C4—C3—C2 104.55 (10) C46—C41—C4 122.16 (12)
C5—C4—C41 111.19 (11) C42—C41—C4 121.86 (12)
C5—C4—C3 102.12 (10) C43—C42—C41 122.42 (13)
C41—C4—C3 116.79 (10) C43—C42—H42 118.8
C5—C4—H4 108.8 C41—C42—H42 118.8
C41—C4—H4 108.8 C44—C43—C42 119.36 (13)
C3—C4—H4 108.8 C44—C43—H43 120.3
O1—C4A—C5A 121.14 (13) C42—C43—H43 120.3
O1—C4A—C3 122.06 (13) C43—C44—C45 120.56 (13)
C5A—C4A—C3 116.78 (11) C43—C44—Cl1 120.14 (11)
C6B—C4B—C5B 119.22 (13) C45—C44—Cl1 119.29 (11)
C6B—C4B—C2 131.56 (13) C44—C45—C46 118.75 (13)
C5B—C4B—C2 108.82 (11) C44—C45—H45 120.6
N1—C5—C4 102.60 (10) C46—C45—H45 120.6
N1—C5—H5A 111.2 C45—C46—C41 123.11 (12)
C4—C5—H5A 111.2 C45—C46—Cl2 115.88 (11)
N1—C5—H5B 111.2 C41—C46—Cl2 121.01 (11)
C4—C5—H5B 111.2
C11—N1—C2—C4B −36.10 (17) N1—C2—C4B—C5B 115.04 (12)
C5—N1—C2—C4B 95.27 (12) C2B—C2—C4B—C5B −0.69 (14)
C11—N1—C2—C2B 75.23 (15) C3—C2—C4B—C5B −125.00 (12)
C5—N1—C2—C2B −153.40 (11) C11—N1—C5—C4 179.57 (12)
C11—N1—C2—C3 −163.97 (12) C2—N1—C5—C4 47.39 (13)
C5—N1—C2—C3 −32.60 (12) C41—C4—C5—N1 84.59 (12)
C6A—N1A—C2A—C3 −69.88 (14) C3—C4—C5—N1 −40.70 (12)
C1A—N1A—C2A—C3 165.32 (13) O1—C4A—C5A—C6A −136.43 (17)
C5B—N1B—C2B—O2 −173.19 (13) C3—C4A—C5A—C6A 41.83 (19)
C5B—N1B—C2B—C2 3.01 (16) C6B—C4B—C5B—C9B −1.3 (2)
N1—C2—C2B—O2 55.31 (17) C2—C4B—C5B—C9B −174.82 (14)
C4B—C2—C2B—O2 174.82 (13) C6B—C4B—C5B—N1B 176.05 (14)
C3—C2—C2B—O2 −58.48 (17) C2—C4B—C5B—N1B 2.48 (16)
N1—C2—C2B—N1B −120.88 (12) C2B—N1B—C5B—C9B 173.59 (15)
C4B—C2—C2B—N1B −1.37 (13) C2B—N1B—C5B—C4B −3.54 (17)
C3—C2—C2B—N1B 125.33 (11) C2A—N1A—C6A—C5A 61.70 (16)
N1A—C2A—C3—C4A 58.36 (13) C1A—N1A—C6A—C5A −173.83 (14)
N1A—C2A—C3—C4 178.76 (10) C4A—C5A—C6A—N1A −47.18 (19)
N1A—C2A—C3—C2 −62.80 (13) C5B—C4B—C6B—C7B 0.6 (2)
N1—C2—C3—C2A −117.16 (11) C2—C4B—C6B—C7B 172.46 (16)
C4B—C2—C3—C2A 117.44 (11) C4B—C6B—C7B—C8B 0.1 (3)
C2B—C2—C3—C2A −0.17 (14) C6B—C7B—C8B—C9B −0.3 (3)
N1—C2—C3—C4A 124.19 (11) C7B—C8B—C9B—C5B −0.3 (3)
C4B—C2—C3—C4A −1.21 (14) C4B—C5B—C9B—C8B 1.1 (3)
C2B—C2—C3—C4A −118.83 (11) N1B—C5B—C9B—C8B −175.70 (16)
N1—C2—C3—C4 6.05 (11) C5—C4—C41—C46 142.59 (13)
C4B—C2—C3—C4 −119.35 (11) C3—C4—C41—C46 −100.79 (14)
C2B—C2—C3—C4 123.03 (10) C5—C4—C41—C42 −30.98 (16)
C2A—C3—C4—C5 144.01 (11) C3—C4—C41—C42 85.64 (15)
C4A—C3—C4—C5 −97.78 (12) C46—C41—C42—C43 −3.1 (2)
C2—C3—C4—C5 20.75 (12) C4—C41—C42—C43 170.90 (13)
C2A—C3—C4—C41 22.49 (15) C41—C42—C43—C44 0.5 (2)
C4A—C3—C4—C41 140.71 (12) C42—C43—C44—C45 2.0 (2)
C2—C3—C4—C41 −100.77 (12) C42—C43—C44—Cl1 −177.15 (11)
C2A—C3—C4A—O1 132.58 (15) C43—C44—C45—C46 −1.8 (2)
C4—C3—C4A—O1 10.21 (19) Cl1—C44—C45—C46 177.43 (11)
C2—C3—C4A—O1 −104.62 (16) C44—C45—C46—C41 −1.1 (2)
C2A—C3—C4A—C5A −45.66 (16) C44—C45—C46—Cl2 179.75 (12)
C4—C3—C4A—C5A −168.03 (12) C42—C41—C46—C45 3.4 (2)
C2—C3—C4A—C5A 77.15 (15) C4—C41—C46—C45 −170.57 (13)
N1—C2—C4B—C6B −57.5 (2) C42—C41—C46—Cl2 −177.48 (10)
C2B—C2—C4B—C6B −173.18 (16) C4—C41—C46—Cl2 8.58 (18)
C3—C2—C4B—C6B 62.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1B—H1B···O2i 0.86 2.02 2.8547 (15) 164

Symmetry codes: (i) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2738).

References

  1. Awwadi, F. F., Willet, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J.12, 8952–8960. [DOI] [PubMed]
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681000704X/ng2738sup1.cif

e-66-0o717-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053681000704X/ng2738Isup2.hkl

e-66-0o717-Isup2.hkl (320.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES