Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 13;66(Pt 3):o625. doi: 10.1107/S1600536810005477

2-Butyl-11-phenyl-5,10-dihydro-1H-benzo[e]imidazo[1,5-a][1,4]diazepine-1,3(2H)-dione

Gary S Nichol a,*, Steven Gunawan b, Justin Dietrich b, Christopher Hulme b
PMCID: PMC2983587  PMID: 21580382

Abstract

The title compound, C21H21N3O2, was obtained following a five-step synthetic procedure yielding weakly diffracting rod and needle-shaped crystals which crystallized concomitantly. Structural analysis of a rod-shaped crystal showed that the central seven-membered heterocyclic ring adopts a conformation that is perhaps best described as a distorted boat, with the H-bearing (CH2 and NH) atoms lying well out of the least-squares mean plane fitted through the other five atoms in the ring (r.m.s. deviation 0.075 Å). In the crystal, the compound packs as a twisted chain, which propagates along the b axis by means of an R 1 2(6) motif formed by one of the carbonyl O atoms acting as a bifurcated acceptor in an N—H⋯O and C—H⋯O inter­action. No diffraction was observed from the needle-shaped crystals.

Related literature

For background to the synthetic procedure, see: Hulme & Gore (2003); Hulme et al. (2000). For graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995).graphic file with name e-66-0o625-scheme1.jpg

Experimental

Crystal data

  • C21H21N3O2

  • M r = 347.41

  • Monoclinic, Inline graphic

  • a = 12.192 (4) Å

  • b = 7.638 (2) Å

  • c = 18.514 (6) Å

  • β = 95.494 (5)°

  • V = 1716.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.29 × 0.14 × 0.08 mm

Data collection

  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 1996) T min = 0.975, T max = 0.993

  • 14047 measured reflections

  • 2724 independent reflections

  • 1908 reflections with I > 2σ(I)

  • R int = 0.067

  • θmax = 24.1°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.181

  • S = 1.03

  • 2724 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810005477/bh2272sup1.cif

e-66-0o625-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005477/bh2272Isup2.hkl

e-66-0o625-Isup2.hkl (133.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.86 (4) 2.10 (4) 2.944 (3) 165 (3)
C8—H8⋯O1i 0.95 2.57 3.326 (4) 136

Symmetry code: (i) Inline graphic.

Acknowledgments

The diffractometer was purchased with funding from NSF grant No. CHE-0741837.

supplementary crystallographic information

Comment

We recently investigated a three step solution phase protocol for the synthesis of arrays of tricyclic fused hydantoin-benzodiazepines as part of broader research on multi-component reactions (Figure 1). Interestingly, the major product of this unique synthetic route was the tautomer 5 derived from the originally desired product 4, the structure being confirmed by X-ray crystallography. The methodology employs ortho-N-Boc benzylamines 1 and phenylglyoxaldehydes 2 in the rarely used five component Ugi reaction with CO2 to assemble desired diversity in product 3 (Hulme et al., 2000). Acid treatment unmasks an internal amino nucleophile and promotes rapid formation of the diazepine ring of generic structure 4. Subsequent base treatment employs the amidic NH of the Ugi scaffold as a second internal nucleophile promoting hydantoin formation and an unexpected 1,3-H shift to give 5. As such the methodology represents an example of a post-condensation Ugi modification (Hulme & Gore, 2003) that employs two internal nucleophiles in distinct operations, generating a novel scaffold of high complexity in three succinct functional operations.

Two types of crystals were formed: very fine yellow needles together with a few slightly larger rod-shaped pale yellow crystals. The needles did not give any measurable diffraction and the rod crystals showed weak diffraction with 60 second exposure times; a resolution cutoff of 0.87Å was applied to the dataset. The identity of the needle crystals was not established. The molecular structure of 5 is shown in Figure 2. Molecular dimensions are unexceptional. The amine hydrogen atom was located in a difference Fourier map and its presence is confirmed by participation in hydrogen bonding discussed below. The central 7-membered heterocyclic ring adopts a conformation that is perhaps best described as a distorted boat with the H-bearing (C3 and N3) atoms lying well out of a least squares mean plane fitted through the other five atoms in the ring [r.m.s. deviation 0.075 Å; C3 deviates by 0.679 (5) Å and N3 deviates by 0.301 (4) Å]. The compound packs as a twisted chain which propagates along the b axis by means of an R12(6) motif (Bernstein et al., 1995) formed by one of the carbonyl oxygen atoms acting as bifurcated acceptor in an N–H···O and C–H···O interaction (Figure 3).

Experimental

Ugi reaction (For R1, R2=H, R3= n-butyl)

CO2 gas was bubbled through a stirring solution of MeOH for 25 minutes to generate methyl carbonic acid. In a separate 25 ml flask, phenyl glyoxal 2 (226 mg, 1.687 mmol) was added to BOC-2-aminobenyzlamine 1 (250 mg, 1.125 mmol). Methyl carbonic acid (10 ml) and N-butyl isonitrile (0.237 ml, 2.252 mmol) were then added to the latter flask. The reaction was stirred at room temperature under an atmosphere of CO2 for 16 h. The solvent was evaporated in vacuo and the crude product purified with a Biotage Isolera4TM system (hexane/EtOAc 10-30%) to afford the Ugi product 3 (218 mg, 0.438 mmol, 39%) as a yellow oil.

De-BOC and Cyclization

3 (0.180 g, 0.362 mmol) was treated with a 5 ml 10% TFA solution in 1,2-dichloroethane which was irradiated in a Biotage InitiatorTM at 80°C for 20 min. The resulting orange solution was washed with 1M NaHCO3 (4 × 2.5 ml) and the organic layer dried (Na2SO4), filtered and evaporated in vacuo. MeOH (1.5 ml), THF (0.75 ml), H2O (0.5 ml) were added to the crude product 4 (0.102 g, 0.269 mmol) followed by a 1 g/1 ml solution of KOH in H2O (0.03 ml). The solution was irradiated at 100°C for 20 min and resultant orange solution partitioned between EtOAc (5 ml) and 1M NaHCO3 (5 ml). The organic layer was dried (Na2SO4), filtered and evaporated in vacuo. Final crude product was purified with a Biotage Isolera4TM (hexane/EtOAc 30%) to afford the final product 5 (0.074 g, 0.214 mmol, 80%) as a yellow solid. FT-ICR calculated for C21H22N3O2 [M+H]+: 348.1707, found: 348.1707.

Refinement

A resolution cutoff of 0.87 Å was applied to the dataset due to unobserved diffraction beyond this point. Nevertheless the N—H hydrogen atom was located in a difference Fourier map and the N—H distance freely refined to 0.86 (4) Å with Uiso(H) = 1.2 Ueq(N). C—H atoms were refined with Uiso(H) = 1.5 Ueq(C) (methyl) or Uiso(H) = 1.2 Ueq(C) (all others) with constrained C—H distances in the range 0.95–0.99 Å. The largest residual peak, 0.7 e.Å-3, is approximately 1.53 Å from C21.

Figures

Fig. 1.

Fig. 1.

Synthetic route to 5.

Fig. 2.

Fig. 2.

The molecular structure of 5 with displacement ellipsoids at the 50% probability level.

Fig. 3.

Fig. 3.

An a-axis projection of 5 showing the twisted hydrogen-bonded chain (blue dotted lines; red dotted lines indicate continuation).

Crystal data

C21H21N3O2 F(000) = 736
Mr = 347.41 Dx = 1.345 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2525 reflections
a = 12.192 (4) Å θ = 2.2–24.8°
b = 7.638 (2) Å µ = 0.09 mm1
c = 18.514 (6) Å T = 100 K
β = 95.494 (5)° Rod, yellow
V = 1716.1 (9) Å3 0.29 × 0.14 × 0.08 mm
Z = 4

Data collection

Bruker Kappa APEXII DUO CCD diffractometer 2724 independent reflections
Radiation source: fine-focus sealed tube with Miracol optics 1908 reflections with I > 2σ(I)
graphite Rint = 0.067
φ and ω scans θmax = 24.1°, θmin = 1.9°
Absorption correction: numerical (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.975, Tmax = 0.993 k = −8→5
14047 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: difference Fourier map
wR(F2) = 0.181 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.1146P)2 + 0.6555P] where P = (Fo2 + 2Fc2)/3
2724 reflections (Δ/σ)max = 0.001
239 parameters Δρmax = 0.71 e Å3
0 restraints Δρmin = −0.29 e Å3
0 constraints

Special details

Experimental. 1H NMR (300 MHz, CDCl3) δ ppm 0.89 (t, J = 7.2 Hz, 3H), 1.28 (m, 2H), 1.56 (m, 2H), 3.49 (t, J = 7.3 Hz, 2H), 4.98 (s, 2H), 5.95 (s, 1H), 6.89 (d, J = 7.8 Hz, 1H), 7.06 (t, J = 7.2 Hz, 1H), 7.28 (t, J = 7.7 Hz, 1H), 7.34 (d, J = 7.5 Hz, 1H), 7.52 (m, 5H).13C NMR (75 MHz, CDCl3) δ ppm 14.1, 20.5, 30.7, 39.0, 45.7, 109.4, 120.7, 123.9, 126.4, 129.1, 129.6, 129.7, 130.5, 130.6, 134.6, 135.4, 142.5, 153.7, 161.9.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.88328 (17) 0.0841 (3) 0.87585 (11) 0.0267 (6)
O2 0.61570 (19) 0.1425 (3) 1.03172 (11) 0.0346 (6)
N1 0.7648 (2) 0.0891 (4) 0.96528 (13) 0.0249 (6)
N2 0.62702 (19) 0.2468 (3) 0.91468 (13) 0.0221 (6)
N3 0.6120 (2) 0.4044 (4) 0.76450 (14) 0.0253 (7)
H3N 0.625 (3) 0.466 (5) 0.7271 (19) 0.030*
C1 0.7968 (3) 0.1375 (4) 0.89869 (16) 0.0243 (8)
C2 0.6618 (3) 0.1580 (5) 0.97655 (17) 0.0282 (8)
C3 0.5292 (3) 0.3561 (5) 0.90814 (17) 0.0290 (8)
H3A 0.5519 0.4803 0.9130 0.035*
H3B 0.4843 0.3285 0.9485 0.035*
C4 0.4598 (2) 0.3329 (5) 0.83796 (17) 0.0272 (8)
C5 0.3498 (3) 0.2811 (5) 0.83711 (18) 0.0308 (8)
H5 0.3222 0.2501 0.8816 0.037*
C6 0.2800 (3) 0.2733 (5) 0.77408 (18) 0.0316 (8)
H6 0.2060 0.2351 0.7752 0.038*
C7 0.3188 (3) 0.3216 (5) 0.70925 (18) 0.0295 (8)
H7 0.2707 0.3223 0.6658 0.035*
C8 0.4285 (3) 0.3690 (4) 0.70802 (17) 0.0274 (8)
H8 0.4551 0.4017 0.6634 0.033*
C9 0.4995 (2) 0.3694 (4) 0.77089 (17) 0.0241 (8)
C10 0.7038 (2) 0.3312 (4) 0.80057 (16) 0.0239 (8)
C11 0.7095 (2) 0.2491 (4) 0.86567 (16) 0.0215 (7)
C12 0.8299 (3) −0.0207 (5) 1.01778 (16) 0.0291 (8)
H12A 0.8060 0.0008 1.0666 0.035*
H12B 0.9083 0.0136 1.0189 0.035*
C13 0.8194 (3) −0.2160 (5) 1.00075 (16) 0.0290 (8)
H13A 0.7411 −0.2509 0.9997 0.035*
H13B 0.8435 −0.2381 0.9520 0.035*
C14 0.8874 (3) −0.3268 (5) 1.05583 (17) 0.0297 (8)
H14A 0.8702 −0.2937 1.1052 0.036*
H14B 0.9666 −0.3032 1.0523 0.036*
C15 0.8653 (3) −0.5210 (5) 1.04422 (19) 0.0377 (9)
H15A 0.7890 −0.5471 1.0531 0.057*
H15B 0.9157 −0.5887 1.0779 0.057*
H15C 0.8768 −0.5525 0.9942 0.057*
C16 0.8047 (2) 0.3506 (4) 0.76174 (16) 0.0231 (7)
C17 0.8030 (2) 0.2989 (5) 0.68966 (16) 0.0256 (8)
H17 0.7377 0.2506 0.6654 0.031*
C18 0.8963 (3) 0.3177 (5) 0.65308 (16) 0.0279 (8)
H18 0.8943 0.2830 0.6037 0.033*
C19 0.9920 (3) 0.3863 (5) 0.68772 (17) 0.0292 (8)
H19 1.0559 0.3979 0.6625 0.035*
C20 0.9944 (3) 0.4382 (4) 0.75934 (17) 0.0272 (8)
H20 1.0601 0.4852 0.7835 0.033*
C21 0.9005 (2) 0.4217 (4) 0.79611 (17) 0.0256 (8)
H21 0.9022 0.4594 0.8451 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0233 (12) 0.0323 (14) 0.0259 (12) 0.0001 (10) 0.0093 (9) −0.0012 (10)
O2 0.0315 (13) 0.0513 (17) 0.0230 (12) −0.0006 (11) 0.0132 (10) 0.0038 (11)
N1 0.0252 (14) 0.0305 (17) 0.0200 (13) 0.0005 (12) 0.0063 (11) 0.0030 (11)
N2 0.0193 (13) 0.0305 (17) 0.0179 (13) 0.0017 (11) 0.0093 (10) 0.0011 (11)
N3 0.0213 (14) 0.0332 (18) 0.0226 (14) −0.0016 (12) 0.0080 (11) 0.0057 (12)
C1 0.0251 (17) 0.028 (2) 0.0209 (16) −0.0040 (14) 0.0075 (13) −0.0026 (14)
C2 0.0274 (18) 0.034 (2) 0.0242 (18) −0.0042 (15) 0.0092 (14) −0.0018 (15)
C3 0.0250 (17) 0.036 (2) 0.0281 (17) 0.0057 (14) 0.0145 (14) −0.0007 (15)
C4 0.0240 (17) 0.035 (2) 0.0244 (17) 0.0043 (14) 0.0109 (13) −0.0012 (14)
C5 0.0239 (17) 0.041 (2) 0.0297 (18) 0.0028 (15) 0.0147 (14) 0.0035 (15)
C6 0.0176 (16) 0.044 (2) 0.0348 (19) −0.0002 (15) 0.0084 (14) 0.0032 (16)
C7 0.0222 (17) 0.038 (2) 0.0293 (18) 0.0033 (15) 0.0059 (13) 0.0009 (15)
C8 0.0256 (17) 0.031 (2) 0.0274 (17) 0.0024 (14) 0.0093 (14) 0.0030 (14)
C9 0.0223 (16) 0.023 (2) 0.0285 (17) 0.0013 (13) 0.0112 (13) 0.0003 (14)
C10 0.0216 (17) 0.026 (2) 0.0253 (17) 0.0004 (13) 0.0084 (13) −0.0035 (14)
C11 0.0197 (16) 0.027 (2) 0.0193 (15) −0.0018 (13) 0.0082 (12) −0.0033 (13)
C12 0.0282 (18) 0.038 (2) 0.0221 (16) 0.0009 (15) 0.0079 (13) 0.0041 (15)
C13 0.0294 (18) 0.040 (2) 0.0183 (16) −0.0014 (15) 0.0059 (13) 0.0011 (14)
C14 0.0256 (17) 0.036 (2) 0.0279 (17) 0.0005 (15) 0.0063 (14) 0.0023 (15)
C15 0.040 (2) 0.038 (2) 0.036 (2) −0.0037 (17) 0.0099 (16) −0.0002 (17)
C16 0.0218 (16) 0.027 (2) 0.0207 (16) 0.0008 (13) 0.0058 (12) 0.0031 (13)
C17 0.0219 (16) 0.034 (2) 0.0220 (16) 0.0008 (14) 0.0060 (13) 0.0016 (14)
C18 0.0276 (17) 0.037 (2) 0.0199 (16) 0.0041 (15) 0.0078 (13) 0.0012 (15)
C19 0.0289 (18) 0.031 (2) 0.0299 (18) 0.0049 (15) 0.0152 (14) 0.0062 (15)
C20 0.0238 (17) 0.030 (2) 0.0285 (17) −0.0012 (14) 0.0045 (13) 0.0048 (14)
C21 0.0266 (17) 0.029 (2) 0.0227 (16) 0.0023 (14) 0.0091 (13) 0.0024 (14)

Geometric parameters (Å, °)

O1—C1 1.241 (4) C10—C11 1.355 (4)
O2—C2 1.218 (4) C10—C16 1.491 (4)
N1—C1 1.379 (4) C12—H12A 0.990
N1—C2 1.396 (4) C12—H12B 0.990
N1—C12 1.459 (4) C12—C13 1.528 (5)
N2—C2 1.363 (4) C13—H13A 0.990
N2—C3 1.452 (4) C13—H13B 0.990
N2—C11 1.417 (4) C13—C14 1.510 (5)
N3—H3N 0.86 (4) C14—H14A 0.990
N3—C9 1.413 (4) C14—H14B 0.990
N3—C10 1.367 (4) C14—C15 1.519 (5)
C1—C11 1.453 (5) C15—H15A 0.980
C3—H3A 0.990 C15—H15B 0.980
C3—H3B 0.990 C15—H15C 0.980
C3—C4 1.492 (5) C16—C17 1.390 (4)
C4—C5 1.396 (5) C16—C21 1.387 (5)
C4—C9 1.403 (4) C17—H17 0.950
C5—H5 0.950 C17—C18 1.386 (4)
C5—C6 1.379 (5) C18—H18 0.950
C6—H6 0.950 C18—C19 1.380 (5)
C6—C7 1.382 (5) C19—H19 0.950
C7—H7 0.950 C19—C20 1.381 (5)
C7—C8 1.387 (4) C20—H20 0.950
C8—H8 0.950 C20—C21 1.392 (4)
C8—C9 1.383 (5) C21—H21 0.950
C1—N1—C2 111.6 (3) C1—C11—C10 128.3 (3)
C1—N1—C12 124.5 (3) N1—C12—H12A 108.9
C2—N1—C12 123.8 (2) N1—C12—H12B 108.9
C2—N2—C3 122.9 (2) N1—C12—C13 113.2 (3)
C2—N2—C11 111.2 (2) H12A—C12—H12B 107.7
C3—N2—C11 124.5 (3) H12A—C12—C13 108.9
H3N—N3—C9 115 (2) H12B—C12—C13 108.9
H3N—N3—C10 115 (2) C12—C13—H13A 109.2
C9—N3—C10 129.6 (3) C12—C13—H13B 109.2
O1—C1—N1 122.6 (3) C12—C13—C14 112.2 (3)
O1—C1—C11 131.4 (3) H13A—C13—H13B 107.9
N1—C1—C11 105.9 (3) H13A—C13—C14 109.2
O2—C2—N1 125.6 (3) H13B—C13—C14 109.2
O2—C2—N2 128.5 (3) C13—C14—H14A 109.2
N1—C2—N2 105.9 (2) C13—C14—H14B 109.2
N2—C3—H3A 108.9 C13—C14—C15 111.9 (3)
N2—C3—H3B 108.9 H14A—C14—H14B 107.9
N2—C3—C4 113.4 (3) H14A—C14—C15 109.2
H3A—C3—H3B 107.7 H14B—C14—C15 109.2
H3A—C3—C4 108.9 C14—C15—H15A 109.5
H3B—C3—C4 108.9 C14—C15—H15B 109.5
C3—C4—C5 120.5 (3) C14—C15—H15C 109.5
C3—C4—C9 122.2 (3) H15A—C15—H15B 109.5
C5—C4—C9 117.3 (3) H15A—C15—H15C 109.5
C4—C5—H5 118.8 H15B—C15—H15C 109.5
C4—C5—C6 122.5 (3) C10—C16—C17 119.8 (3)
H5—C5—C6 118.8 C10—C16—C21 121.0 (3)
C5—C6—H6 120.4 C17—C16—C21 119.1 (3)
C5—C6—C7 119.2 (3) C16—C17—H17 119.9
H6—C6—C7 120.4 C16—C17—C18 120.1 (3)
C6—C7—H7 120.2 H17—C17—C18 119.9
C6—C7—C8 119.7 (3) C17—C18—H18 119.7
H7—C7—C8 120.2 C17—C18—C19 120.6 (3)
C7—C8—H8 119.6 H18—C18—C19 119.7
C7—C8—C9 120.9 (3) C18—C19—H19 120.2
H8—C8—C9 119.6 C18—C19—C20 119.6 (3)
N3—C9—C4 122.1 (3) H19—C19—C20 120.2
N3—C9—C8 117.7 (3) C19—C20—H20 120.0
C4—C9—C8 120.2 (3) C19—C20—C21 120.1 (3)
N3—C10—C11 126.4 (3) H20—C20—C21 120.0
N3—C10—C16 113.5 (3) C16—C21—C20 120.5 (3)
C11—C10—C16 120.1 (3) C16—C21—H21 119.8
N2—C11—C1 105.0 (2) C20—C21—H21 119.8
N2—C11—C10 126.6 (3)
C2—N1—C1—O1 −176.4 (3) C9—N3—C10—C16 158.5 (3)
C2—N1—C1—C11 1.5 (4) N3—C10—C11—N2 −10.9 (6)
C12—N1—C1—O1 3.5 (5) N3—C10—C11—C1 165.3 (3)
C12—N1—C1—C11 −178.5 (3) C16—C10—C11—N2 168.2 (3)
C3—N2—C2—O2 6.5 (5) C16—C10—C11—C1 −15.6 (5)
C3—N2—C2—N1 −172.0 (3) C2—N2—C11—C1 5.7 (4)
C11—N2—C2—O2 173.7 (3) C2—N2—C11—C10 −177.3 (3)
C11—N2—C2—N1 −4.8 (4) C3—N2—C11—C1 172.7 (3)
C1—N1—C2—O2 −176.7 (3) C3—N2—C11—C10 −10.4 (5)
C1—N1—C2—N2 2.0 (4) O1—C1—C11—N2 173.5 (3)
C12—N1—C2—O2 3.4 (5) O1—C1—C11—C10 −3.4 (6)
C12—N1—C2—N2 −178.0 (3) N1—C1—C11—N2 −4.2 (3)
C2—N2—C3—C4 −136.8 (3) N1—C1—C11—C10 178.9 (3)
C11—N2—C3—C4 57.7 (4) C1—N1—C12—C13 −80.8 (4)
N2—C3—C4—C5 121.8 (3) C2—N1—C12—C13 99.1 (3)
N2—C3—C4—C9 −61.3 (4) N1—C12—C13—C14 −180.0 (2)
C3—C4—C5—C6 174.0 (3) C12—C13—C14—C15 172.6 (3)
C9—C4—C5—C6 −3.1 (5) N3—C10—C16—C17 −52.2 (4)
C4—C5—C6—C7 −1.3 (5) N3—C10—C16—C21 127.0 (3)
C5—C6—C7—C8 3.1 (5) C11—C10—C16—C17 128.6 (3)
C6—C7—C8—C9 −0.3 (5) C11—C10—C16—C21 −52.2 (5)
C7—C8—C9—N3 174.6 (3) C10—C16—C17—C18 179.6 (3)
C7—C8—C9—C4 −4.3 (5) C21—C16—C17—C18 0.3 (5)
C3—C4—C9—N3 9.9 (5) C16—C17—C18—C19 0.5 (5)
C3—C4—C9—C8 −171.2 (3) C17—C18—C19—C20 −0.6 (5)
C5—C4—C9—N3 −173.1 (3) C18—C19—C20—C21 −0.2 (5)
C5—C4—C9—C8 5.8 (5) C10—C16—C21—C20 179.7 (3)
C10—N3—C9—C4 37.7 (5) C17—C16—C21—C20 −1.1 (5)
C10—N3—C9—C8 −141.3 (3) C19—C20—C21—C16 1.1 (5)
C9—N3—C10—C11 −22.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3N···O1i 0.86 (4) 2.10 (4) 2.944 (3) 165 (3)
C8—H8···O1i 0.95 2.57 3.326 (4) 136

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2272).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Hulme, C. & Gore, V. (2003). Curr. Med. Chem.10, 51–80. [DOI] [PubMed]
  5. Hulme, C., Ma, L., Romano, J. J., Morton, G., Tang, S.-Y., Cherrier, M.-P., Choi, S., Salvino, J. & Labaudiniere, R. (2000). Tetrahedron Lett.41, 1889–1893.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810005477/bh2272sup1.cif

e-66-0o625-sup1.cif (20.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810005477/bh2272Isup2.hkl

e-66-0o625-Isup2.hkl (133.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES