Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Feb 6;66(Pt 3):o542. doi: 10.1107/S1600536810003831

N′-(2-Methoxy­benzyl­idene)nicotinohydrazide

Ping Wang a, Cong Li a, Yong-Qing Su a,*
PMCID: PMC2983706  PMID: 21580313

Abstract

The title compound, C14H13N3O2, was prepared by the reaction of 2-methoxy­benzyaldehyde with nicotinic acid hydrazide in methanol. The dihedral angle between the benzene and pyridine rings is 5.9 (3)°. In the crystal structure, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds, leading to the formation of chains along the c axis; adjacent chains are linked via C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

For general background to Schiff base compounds, see: Archibald et al. (1994); Harada et al. (1999); Ogawa et al. (1998). For related structures, see: Mohd Lair et al. (2009); Sun et al. (2009); Wen et al. (2009).graphic file with name e-66-0o542-scheme1.jpg

Experimental

Crystal data

  • C14H13N3O2

  • M r = 255.27

  • Tetragonal, Inline graphic

  • a = 9.3264 (13) Å

  • c = 15.594 (3) Å

  • V = 1356.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.983, T max = 0.985

  • 6623 measured reflections

  • 1519 independent reflections

  • 1313 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.084

  • S = 1.06

  • 1519 reflections

  • 176 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003831/ci5028sup1.cif

e-66-0o542-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003831/ci5028Isup2.hkl

e-66-0o542-Isup2.hkl (74.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.90 (1) 2.05 (2) 2.897 (2) 157 (3)
C4—H4⋯O1ii 0.93 2.58 3.469 (3) 160
C11—H11⋯N3iii 0.93 2.53 3.429 (4) 164
C13—H13⋯N1i 0.93 2.56 3.487 (3) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors acknowledge support by the Science and Technology Department of Yunnan Province, the Program of Yunnan Province’s Young-Middle Aged Reserve Scientific and Technological Principal Culture Plan (grant No. 2006PY01–50) and the fund of Yunnan Province’s Applied Research Plan (grant No. 2006E0032M).

supplementary crystallographic information

Comment

Schiff bases have been received much attention in recent years (Ogawa et al., 1998; Archibald et al., 1994; Harada et al., 1999). As a further investigation of the structures of Schiff base compounds, the title new compound is reported here.

In the title compound, the dihedral angle between the benzene ring and the pyridine ring is 5.9 (3)°. All the bond lengths are comparable with the similar Schiff bases reported previously (Wen et al., 2009; Mohd Lair et al., 2009; Sun et al., 2009).

In the crystal structure, molecules form chains running along the c axis through intermolecular N—H···O hydrogen bonds (Table 1 and Fig. 2).

Experimental

2-Methoxybenzaldehyde (1.0 mmol, 136 mg) and nicotinic acid hydrazide (1.0 mmol, 137 mg) were dissolved in methanol (30 ml). The mixture was stirred at room temperature for 1 h to give a colourless solution. After keeping the solution in air for 3 d, colourless block shaped crystals were formed.

Refinement

Atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93-0.96 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C). In the absence of significant anomalous dispersion effects, Friedel pairs were merged before the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C14H13N3O2 Dx = 1.250 Mg m3
Mr = 255.27 Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43 Cell parameters from 2214 reflections
Hall symbol: P 4cw θ = 2.5–25.3°
a = 9.3264 (13) Å µ = 0.09 mm1
c = 15.594 (3) Å T = 298 K
V = 1356.4 (4) Å3 Block, colourless
Z = 4 0.20 × 0.20 × 0.18 mm
F(000) = 536

Data collection

Bruker APEXII CCD area-detector diffractometer 1519 independent reflections
Radiation source: fine-focus sealed tube 1313 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scans θmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −11→10
Tmin = 0.983, Tmax = 0.985 k = −4→11
6623 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.084P] where P = (Fo2 + 2Fc2)/3
1519 reflections (Δ/σ)max = 0.001
176 parameters Δρmax = 0.09 e Å3
2 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.54565 (17) 0.50653 (18) 0.21981 (11) 0.0443 (4)
N2 0.41517 (19) 0.53627 (19) 0.18161 (11) 0.0457 (4)
N3 0.0801 (2) 0.6980 (3) 0.03464 (14) 0.0763 (7)
O1 0.84079 (19) 0.3686 (2) 0.05708 (12) 0.0681 (5)
O2 0.33671 (17) 0.66164 (18) 0.29682 (10) 0.0586 (4)
C1 0.7782 (2) 0.4068 (2) 0.20059 (15) 0.0454 (5)
C2 0.8837 (2) 0.3667 (2) 0.14119 (15) 0.0508 (5)
C3 1.0208 (3) 0.3312 (3) 0.1677 (2) 0.0635 (7)
H3 1.0901 0.3046 0.1279 0.076*
C4 1.0535 (3) 0.3360 (3) 0.2543 (2) 0.0662 (7)
H4 1.1455 0.3123 0.2724 0.079*
C5 0.9519 (3) 0.3753 (3) 0.31421 (19) 0.0621 (6)
H5 0.9751 0.3784 0.3722 0.075*
C6 0.8156 (3) 0.4098 (2) 0.28694 (15) 0.0516 (5)
H6 0.7469 0.4358 0.3273 0.062*
C7 0.6357 (2) 0.4433 (2) 0.17089 (15) 0.0466 (5)
H7 0.6091 0.4202 0.1151 0.056*
C8 0.3205 (2) 0.6206 (2) 0.22245 (13) 0.0420 (5)
C9 0.1932 (2) 0.6646 (2) 0.17108 (14) 0.0428 (5)
C10 0.0723 (3) 0.7159 (3) 0.21159 (16) 0.0623 (7)
H10 0.0690 0.7228 0.2710 0.075*
C11 −0.0433 (3) 0.7567 (4) 0.1626 (2) 0.0797 (9)
H11 −0.1265 0.7907 0.1884 0.096*
C12 −0.0339 (3) 0.7463 (4) 0.07564 (19) 0.0779 (9)
H12 −0.1125 0.7749 0.0432 0.093*
C13 0.1914 (3) 0.6590 (3) 0.08281 (14) 0.0571 (6)
H13 0.2732 0.6259 0.0550 0.069*
C14 0.9423 (4) 0.3294 (4) −0.0070 (2) 0.0921 (11)
H14A 1.0234 0.3926 −0.0041 0.138*
H14B 0.8987 0.3366 −0.0626 0.138*
H14C 0.9734 0.2325 0.0026 0.138*
H2 0.394 (3) 0.496 (3) 0.1309 (11) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0447 (10) 0.0450 (9) 0.0430 (10) 0.0038 (8) −0.0060 (8) −0.0027 (8)
N2 0.0473 (10) 0.0510 (10) 0.0387 (10) 0.0048 (8) −0.0067 (8) −0.0073 (8)
N3 0.0612 (14) 0.118 (2) 0.0500 (13) 0.0151 (13) −0.0096 (11) 0.0096 (13)
O1 0.0652 (10) 0.0875 (12) 0.0516 (10) −0.0048 (9) 0.0080 (9) −0.0131 (9)
O2 0.0685 (10) 0.0673 (10) 0.0399 (8) 0.0156 (8) −0.0110 (8) −0.0140 (8)
C1 0.0491 (12) 0.0404 (11) 0.0468 (12) −0.0005 (9) 0.0015 (9) −0.0005 (9)
C2 0.0522 (12) 0.0462 (11) 0.0538 (14) −0.0060 (9) 0.0038 (10) −0.0048 (10)
C3 0.0490 (13) 0.0615 (14) 0.0799 (18) −0.0002 (11) 0.0098 (13) −0.0091 (13)
C4 0.0479 (13) 0.0646 (16) 0.086 (2) 0.0025 (11) −0.0054 (14) 0.0038 (14)
C5 0.0647 (15) 0.0641 (15) 0.0576 (15) 0.0002 (12) −0.0114 (13) 0.0085 (12)
C6 0.0554 (13) 0.0517 (12) 0.0478 (13) 0.0016 (10) 0.0009 (10) 0.0040 (10)
C7 0.0519 (12) 0.0485 (11) 0.0395 (10) 0.0022 (9) −0.0030 (10) −0.0042 (9)
C8 0.0492 (11) 0.0405 (10) 0.0361 (11) 0.0013 (8) −0.0022 (9) −0.0018 (8)
C9 0.0449 (11) 0.0421 (10) 0.0414 (11) −0.0001 (8) −0.0009 (9) −0.0020 (9)
C10 0.0606 (16) 0.0807 (17) 0.0458 (14) 0.0162 (12) 0.0040 (12) −0.0068 (13)
C11 0.0526 (14) 0.111 (2) 0.076 (2) 0.0233 (14) 0.0058 (14) −0.0014 (19)
C12 0.0502 (15) 0.114 (2) 0.0692 (19) 0.0146 (14) −0.0098 (13) 0.0141 (17)
C13 0.0467 (13) 0.0809 (16) 0.0439 (13) 0.0107 (11) 0.0008 (10) 0.0058 (11)
C14 0.080 (2) 0.127 (3) 0.069 (2) −0.0180 (19) 0.0249 (16) −0.0256 (19)

Geometric parameters (Å, °)

N1—C7 1.279 (3) C5—C6 1.379 (3)
N1—N2 1.383 (2) C5—H5 0.93
N2—C8 1.343 (3) C6—H6 0.93
N2—H2 0.897 (10) C7—H7 0.93
N3—C12 1.320 (4) C8—C9 1.489 (3)
N3—C13 1.332 (3) C9—C13 1.378 (3)
O1—C2 1.371 (3) C9—C10 1.378 (3)
O1—C14 1.424 (3) C10—C11 1.375 (4)
O2—C8 1.231 (2) C10—H10 0.93
C1—C6 1.391 (3) C11—C12 1.362 (4)
C1—C2 1.402 (3) C11—H11 0.93
C1—C7 1.448 (3) C12—H12 0.93
C2—C3 1.385 (3) C13—H13 0.93
C3—C4 1.385 (4) C14—H14A 0.96
C3—H3 0.93 C14—H14B 0.96
C4—C5 1.380 (4) C14—H14C 0.96
C4—H4 0.93
C7—N1—N2 114.42 (17) C1—C7—H7 119.3
C8—N2—N1 119.46 (17) O2—C8—N2 123.23 (19)
C8—N2—H2 120.9 (19) O2—C8—C9 121.28 (18)
N1—N2—H2 119.6 (19) N2—C8—C9 115.49 (17)
C12—N3—C13 116.6 (2) C13—C9—C10 117.4 (2)
C2—O1—C14 118.3 (2) C13—C9—C8 122.5 (2)
C6—C1—C2 118.0 (2) C10—C9—C8 120.1 (2)
C6—C1—C7 122.3 (2) C11—C10—C9 118.9 (2)
C2—C1—C7 119.7 (2) C11—C10—H10 120.6
O1—C2—C3 123.9 (2) C9—C10—H10 120.6
O1—C2—C1 115.1 (2) C12—C11—C10 118.8 (3)
C3—C2—C1 121.0 (2) C12—C11—H11 120.6
C4—C3—C2 119.1 (2) C10—C11—H11 120.6
C4—C3—H3 120.4 N3—C12—C11 124.0 (3)
C2—C3—H3 120.4 N3—C12—H12 118.0
C5—C4—C3 121.1 (2) C11—C12—H12 118.0
C5—C4—H4 119.4 N3—C13—C9 124.3 (2)
C3—C4—H4 119.4 N3—C13—H13 117.9
C6—C5—C4 119.1 (3) C9—C13—H13 117.9
C6—C5—H5 120.4 O1—C14—H14A 109.5
C4—C5—H5 120.4 O1—C14—H14B 109.5
C5—C6—C1 121.7 (2) H14A—C14—H14B 109.5
C5—C6—H6 119.2 O1—C14—H14C 109.5
C1—C6—H6 119.2 H14A—C14—H14C 109.5
N1—C7—C1 121.4 (2) H14B—C14—H14C 109.5
N1—C7—H7 119.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2i 0.90 (1) 2.05 (2) 2.897 (2) 157 (3)
C4—H4···O1ii 0.93 2.58 3.469 (3) 160
C11—H11···N3iii 0.93 2.53 3.429 (4) 164
C13—H13···N1i 0.93 2.56 3.487 (3) 176

Symmetry codes: (i) −y+1, x, z−1/4; (ii) y+1, −x+1, z+1/4; (iii) y−1, −x+1, z+1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5028).

References

  1. Archibald, S. J., Blake, A. J., Schroder, M. & Winpenny, R. E. P. (1994). Chem. Commun. pp. 1669–1670.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc.121, 5809–5810.
  4. Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189. [DOI] [PMC free article] [PubMed]
  5. Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc.120, 7107–7108.
  6. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sun, Y., Li, H.-G., Wang, X., Fu, S. & Wang, D. (2009). Acta Cryst. E65, o262. [DOI] [PMC free article] [PubMed]
  9. Wen, L., Yin, H., Li, W. & Li, K. (2009). Acta Cryst. E65, o2623. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810003831/ci5028sup1.cif

e-66-0o542-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810003831/ci5028Isup2.hkl

e-66-0o542-Isup2.hkl (74.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES