Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2010 Mar 20;66(Pt 4):o893. doi: 10.1107/S1600536810010056

Methyl 3-(4-methoxy­phen­yl)-1-methyl-1,2,3,3a,4,11b-hexa­hydro­benzo[f]chromeno[4,3-b]pyrrole-3a-carboxyl­ate

S Thenmozhi a, A SubbiahPandi a,*, S Kathiravan b, R Raghunathan b
PMCID: PMC2983994  PMID: 21580710

Abstract

In the title compound, C25H25NO4, the pyrrolidine ring exhibits an envelope conformation and the tetra­hydro­pyran ring exhibits a half-chair conformation. The crystal structure is stabilized by inter­molecular C–H⋯π inter­actions.

Related literature

For general background to the applications and biological activity of chromenopyrrole compounds, see: Caine (1993); Carlson (1993); Sokoloff et al. (1990); Wilner (1985); Biava et al. (2005); Fernandes et al. (2004); Borthwick et al. (2000); Jiang et al. (2004). For a related structure, see: Nirmala et al. (2009). For ring puckering analysis, see: Cremer & Pople (1975); Nardelli (1983).graphic file with name e-66-0o893-scheme1.jpg

Experimental

Crystal data

  • C25H25NO4

  • M r = 403.46

  • Triclinic, Inline graphic

  • a = 7.9287 (5) Å

  • b = 10.8707 (6) Å

  • c = 11.6884 (7) Å

  • α = 95.662 (3)°

  • β = 92.332 (4)°

  • γ = 91.797 (4)°

  • V = 1001.05 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.981, T max = 0.985

  • 21741 measured reflections

  • 4776 independent reflections

  • 3836 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.164

  • S = 1.05

  • 4776 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010056/bt5203sup1.cif

e-66-0o893-sup1.cif (23.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010056/bt5203Isup2.hkl

e-66-0o893-Isup2.hkl (229.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C1/C6–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17BCg4i 0.97 2.94 3.502 (2) 119

Symmetry code: (i) Inline graphic.

Acknowledgments

ST and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

Comment

Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993), parkinson's disease (Carlson, 1993), psychoses, memory disorders (Sokoloff et al., 1990), anxiety and depression (Wilner, 1985). Pyrrole derivatives have good in vitro activities against mycobacteria and candidae (Biava et al., 2005). These derivatives also possess anti-inflammatory (Fernandes et al., 2004) and antiviral (Borthwick et al., 2000) activities. It has also been shown that N-substituted pyrrole derivatives inhibit human immuno deficiency virus type-I (HIV-I) (Jiang et al., 2004). Against this background, and in order to obtain detailed information on molecular conformation in the solid state, an X-ray study of the title compounds has been carried out.

The geometric parameters of the title molecule (Fig. 1) agree well with those reported for a similar structure (Nirmala et al., 2009). The naphthalene ring system (C1—C10) and the benzene ring (C19—C24) are oriented at an angle of 71.1 (6)° with respect to each other. The pyrrolidine ring makes dihedral angles of 57.7 (7), 60.2 (7) and 64.0 (8)° with the naphthalene ring system and the tetrahydropyran and phenyl rings, respectively.

The pyrrolodine ring adopt an envelope conformation, with the puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters,Δ, (Nardelli, 1983) as follows: q2=0.4285 (14) Å, φ=222.37 (19)°, Δs(C13)= 3.46 (11) and the tetrahydropyran ring adopt a half-chair conformation, with the puckering parameters q2 and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters,Δ, (Nardelli, 1983) as follows: q2=0.3644 (14) Å, φ=73.5 (2)°, Δs(C14)= 12.11 (13).

The crystal packing is stabilized by C–H···π (Table. 1) hydrogen bonds

Experimental

A mixture of (2)-methyl-4-(1-formyl naphthalen-2-ylony)-3-(4-methoxy phenyl) but-2-enoate and sarcosine were refluxed in benzene for 20hr and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. Crystals were obtained by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of showing the atom-numbering scheme and intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C25H25NO4 Z = 2
Mr = 403.46 F(000) = 428
Triclinic, P1 Dx = 1.339 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.9287 (5) Å Cell parameters from 4776 reflections
b = 10.8707 (6) Å θ = 1.8–28°
c = 11.6884 (7) Å µ = 0.09 mm1
α = 95.662 (3)° T = 293 K
β = 92.332 (4)° Block, colourless
γ = 91.797 (4)° 0.25 × 0.22 × 0.19 mm
V = 1001.05 (10) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 4776 independent reflections
Radiation source: fine-focus sealed tube 3836 reflections with I > 2σ(I)
graphite Rint = 0.050
ω and φ scans θmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.981, Tmax = 0.985 k = −14→14
21741 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.099P)2 + 0.1502P] where P = (Fo2 + 2Fc2)/3
4776 reflections (Δ/σ)max < 0.001
274 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.28588 (16) 0.64583 (12) 0.75782 (11) 0.0302 (3)
C2 0.3939 (2) 0.54431 (14) 0.75627 (13) 0.0390 (3)
H2 0.4605 0.5336 0.8216 0.047*
C3 0.4023 (2) 0.46191 (16) 0.66078 (15) 0.0517 (4)
H3 0.4730 0.3954 0.6628 0.062*
C4 0.3065 (3) 0.47564 (17) 0.56016 (15) 0.0549 (5)
H4 0.3152 0.4200 0.4951 0.066*
C5 0.2008 (2) 0.57083 (16) 0.55850 (14) 0.0467 (4)
H5 0.1366 0.5797 0.4917 0.056*
C6 0.18576 (18) 0.65693 (13) 0.65573 (12) 0.0356 (3)
C7 0.0693 (2) 0.75203 (15) 0.65447 (13) 0.0411 (4)
H7 0.0030 0.7590 0.5881 0.049*
C8 0.05266 (19) 0.83293 (15) 0.74783 (13) 0.0407 (3)
H8 −0.0254 0.8948 0.7458 0.049*
C9 0.15365 (17) 0.82395 (13) 0.84889 (12) 0.0322 (3)
C10 0.27031 (16) 0.73371 (12) 0.85626 (11) 0.0281 (3)
C11 0.36725 (15) 0.72609 (11) 0.96946 (11) 0.0269 (3)
H11 0.3837 0.6393 0.9817 0.032*
C12 0.57832 (17) 0.81208 (16) 1.10401 (12) 0.0403 (4)
H12A 0.6351 0.8921 1.1238 0.048*
H12B 0.6540 0.7484 1.1240 0.048*
C13 0.41479 (16) 0.80366 (13) 1.16870 (11) 0.0311 (3)
H13 0.4151 0.7246 1.2024 0.037*
C14 0.27455 (15) 0.79025 (12) 1.07047 (11) 0.0280 (3)
C15 0.22197 (17) 0.91646 (12) 1.03958 (12) 0.0331 (3)
H15A 0.1609 0.9565 1.1023 0.040*
H15B 0.3224 0.9673 1.0304 0.040*
C16 0.12443 (17) 0.71790 (14) 1.10765 (12) 0.0349 (3)
C17 0.0270 (3) 0.52672 (19) 1.1624 (2) 0.0776 (7)
H17A 0.0029 0.5627 1.2381 0.116*
H17B 0.0641 0.4440 1.1666 0.116*
H17C −0.0732 0.5248 1.1132 0.116*
C18 0.66502 (17) 0.73843 (15) 0.91570 (13) 0.0394 (3)
H18A 0.7666 0.7891 0.9293 0.059*
H18B 0.6331 0.7310 0.8351 0.059*
H18C 0.6842 0.6578 0.9396 0.059*
C19 0.38660 (16) 0.90191 (13) 1.26574 (11) 0.0304 (3)
C20 0.43808 (19) 1.02529 (14) 1.26490 (12) 0.0375 (3)
H20 0.4962 1.0494 1.2028 0.045*
C21 0.4050 (2) 1.11255 (14) 1.35383 (13) 0.0410 (3)
H21 0.4418 1.1943 1.3516 0.049*
C22 0.31722 (18) 1.07914 (14) 1.44666 (12) 0.0367 (3)
C23 0.26739 (18) 0.95725 (15) 1.45086 (12) 0.0393 (3)
H23 0.2102 0.9334 1.5135 0.047*
C24 0.30326 (18) 0.87017 (14) 1.36077 (12) 0.0365 (3)
H24 0.2701 0.7879 1.3645 0.044*
C25 0.1930 (2) 1.1439 (2) 1.62332 (14) 0.0566 (5)
H25A 0.0839 1.1100 1.5958 0.085*
H25B 0.1796 1.2175 1.6741 0.085*
H25C 0.2513 1.0843 1.6641 0.085*
N1 0.53080 (13) 0.79497 (11) 0.98078 (9) 0.0307 (3)
O1 0.11812 (13) 0.90921 (10) 0.93631 (9) 0.0414 (3)
O2 −0.00673 (14) 0.76045 (13) 1.13242 (13) 0.0625 (4)
O3 0.15812 (16) 0.59997 (11) 1.11635 (13) 0.0602 (4)
O4 0.28770 (16) 1.17310 (11) 1.52900 (10) 0.0519 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0296 (6) 0.0321 (6) 0.0298 (6) −0.0027 (5) 0.0054 (5) 0.0073 (5)
C2 0.0454 (8) 0.0389 (7) 0.0336 (7) 0.0070 (6) 0.0048 (6) 0.0056 (6)
C3 0.0669 (11) 0.0452 (9) 0.0437 (9) 0.0145 (8) 0.0089 (8) 0.0019 (7)
C4 0.0749 (12) 0.0513 (10) 0.0367 (9) 0.0022 (9) 0.0062 (8) −0.0065 (7)
C5 0.0546 (10) 0.0527 (9) 0.0317 (8) −0.0054 (8) −0.0013 (7) 0.0024 (6)
C6 0.0364 (7) 0.0404 (7) 0.0304 (7) −0.0057 (6) 0.0025 (5) 0.0073 (6)
C7 0.0394 (8) 0.0520 (9) 0.0325 (7) 0.0001 (7) −0.0067 (6) 0.0113 (6)
C8 0.0359 (7) 0.0474 (8) 0.0404 (8) 0.0099 (6) −0.0026 (6) 0.0120 (6)
C9 0.0300 (6) 0.0353 (7) 0.0320 (7) 0.0030 (5) 0.0010 (5) 0.0068 (5)
C10 0.0252 (6) 0.0313 (6) 0.0288 (6) 0.0005 (5) 0.0028 (5) 0.0072 (5)
C11 0.0239 (6) 0.0301 (6) 0.0279 (6) 0.0043 (5) 0.0040 (5) 0.0070 (5)
C12 0.0250 (6) 0.0628 (10) 0.0322 (7) 0.0038 (6) 0.0005 (5) 0.0003 (6)
C13 0.0277 (6) 0.0376 (7) 0.0288 (6) 0.0042 (5) 0.0018 (5) 0.0061 (5)
C14 0.0239 (6) 0.0327 (6) 0.0280 (6) 0.0034 (5) 0.0032 (5) 0.0034 (5)
C15 0.0308 (6) 0.0344 (7) 0.0339 (7) 0.0069 (5) −0.0009 (5) 0.0008 (5)
C16 0.0291 (7) 0.0443 (8) 0.0309 (7) −0.0018 (6) 0.0049 (5) 0.0012 (6)
C17 0.0787 (15) 0.0543 (11) 0.1033 (18) −0.0161 (10) 0.0519 (13) 0.0120 (11)
C18 0.0269 (7) 0.0548 (9) 0.0378 (7) 0.0067 (6) 0.0085 (6) 0.0064 (6)
C19 0.0251 (6) 0.0402 (7) 0.0262 (6) 0.0019 (5) 0.0001 (5) 0.0052 (5)
C20 0.0391 (7) 0.0441 (8) 0.0302 (7) −0.0039 (6) 0.0053 (6) 0.0085 (6)
C21 0.0476 (8) 0.0380 (7) 0.0371 (8) −0.0034 (6) −0.0010 (6) 0.0052 (6)
C22 0.0341 (7) 0.0460 (8) 0.0287 (7) 0.0051 (6) −0.0044 (5) −0.0010 (6)
C23 0.0360 (7) 0.0540 (9) 0.0280 (7) −0.0030 (6) 0.0058 (6) 0.0050 (6)
C24 0.0384 (7) 0.0408 (7) 0.0305 (7) −0.0043 (6) 0.0024 (6) 0.0066 (6)
C25 0.0484 (9) 0.0837 (13) 0.0347 (8) 0.0121 (9) 0.0016 (7) −0.0109 (8)
N1 0.0221 (5) 0.0412 (6) 0.0296 (6) 0.0029 (4) 0.0037 (4) 0.0051 (4)
O1 0.0434 (6) 0.0443 (6) 0.0364 (6) 0.0202 (5) −0.0060 (4) 0.0007 (4)
O2 0.0303 (6) 0.0720 (9) 0.0899 (10) 0.0074 (5) 0.0210 (6) 0.0215 (7)
O3 0.0556 (7) 0.0393 (6) 0.0896 (10) −0.0023 (5) 0.0395 (7) 0.0125 (6)
O4 0.0600 (7) 0.0559 (7) 0.0375 (6) 0.0077 (6) 0.0027 (5) −0.0085 (5)

Geometric parameters (Å, °)

C1—C2 1.4171 (19) C14—C15 1.5193 (18)
C1—C6 1.4234 (19) C15—O1 1.4274 (16)
C1—C10 1.4331 (18) C15—H15A 0.9700
C2—C3 1.366 (2) C15—H15B 0.9700
C2—H2 0.9300 C16—O2 1.1864 (17)
C3—C4 1.397 (3) C16—O3 1.3304 (19)
C3—H3 0.9300 C17—O3 1.444 (2)
C4—C5 1.353 (3) C17—H17A 0.9600
C4—H4 0.9300 C17—H17B 0.9600
C5—C6 1.411 (2) C17—H17C 0.9600
C5—H5 0.9300 C18—N1 1.4503 (16)
C6—C7 1.408 (2) C18—H18A 0.9600
C7—C8 1.346 (2) C18—H18B 0.9600
C7—H7 0.9300 C18—H18C 0.9600
C8—C9 1.413 (2) C19—C24 1.3823 (19)
C8—H8 0.9300 C19—C20 1.391 (2)
C9—O1 1.3547 (17) C20—C21 1.376 (2)
C9—C10 1.3757 (18) C20—H20 0.9300
C10—C11 1.5137 (17) C21—C22 1.385 (2)
C11—N1 1.4715 (17) C21—H21 0.9300
C11—C14 1.5365 (17) C22—O4 1.3652 (17)
C11—H11 0.9800 C22—C23 1.377 (2)
C12—N1 1.4661 (18) C23—C24 1.389 (2)
C12—C13 1.5321 (19) C23—H23 0.9300
C12—H12A 0.9700 C24—H24 0.9300
C12—H12B 0.9700 C25—O4 1.415 (2)
C13—C19 1.5078 (18) C25—H25A 0.9600
C13—C14 1.5584 (18) C25—H25B 0.9600
C13—H13 0.9800 C25—H25C 0.9600
C14—C16 1.5083 (19)
C2—C1—C6 116.85 (13) C11—C14—C13 102.15 (9)
C2—C1—C10 123.60 (12) O1—C15—C14 112.60 (11)
C6—C1—C10 119.53 (12) O1—C15—H15A 109.1
C3—C2—C1 121.38 (14) C14—C15—H15A 109.1
C3—C2—H2 119.3 O1—C15—H15B 109.1
C1—C2—H2 119.3 C14—C15—H15B 109.1
C2—C3—C4 121.19 (16) H15A—C15—H15B 107.8
C2—C3—H3 119.4 O2—C16—O3 122.75 (14)
C4—C3—H3 119.4 O2—C16—C14 125.01 (14)
C5—C4—C3 119.19 (15) O3—C16—C14 112.14 (11)
C5—C4—H4 120.4 O3—C17—H17A 109.5
C3—C4—H4 120.4 O3—C17—H17B 109.5
C4—C5—C6 121.58 (15) H17A—C17—H17B 109.5
C4—C5—H5 119.2 O3—C17—H17C 109.5
C6—C5—H5 119.2 H17A—C17—H17C 109.5
C7—C6—C5 120.90 (14) H17B—C17—H17C 109.5
C7—C6—C1 119.31 (13) N1—C18—H18A 109.5
C5—C6—C1 119.77 (14) N1—C18—H18B 109.5
C8—C7—C6 120.99 (13) H18A—C18—H18B 109.5
C8—C7—H7 119.5 N1—C18—H18C 109.5
C6—C7—H7 119.5 H18A—C18—H18C 109.5
C7—C8—C9 120.09 (13) H18B—C18—H18C 109.5
C7—C8—H8 120.0 C24—C19—C20 117.15 (13)
C9—C8—H8 120.0 C24—C19—C13 119.33 (12)
O1—C9—C10 124.81 (12) C20—C19—C13 123.51 (12)
O1—C9—C8 113.03 (12) C21—C20—C19 121.51 (13)
C10—C9—C8 122.12 (13) C21—C20—H20 119.2
C9—C10—C1 117.93 (12) C19—C20—H20 119.2
C9—C10—C11 118.97 (12) C20—C21—C22 120.28 (14)
C1—C10—C11 122.96 (11) C20—C21—H21 119.9
N1—C11—C10 114.52 (10) C22—C21—H21 119.9
N1—C11—C14 101.23 (10) O4—C22—C23 124.85 (14)
C10—C11—C14 111.22 (10) O4—C22—C21 115.66 (14)
N1—C11—H11 109.9 C23—C22—C21 119.49 (13)
C10—C11—H11 109.9 C22—C23—C24 119.42 (13)
C14—C11—H11 109.9 C22—C23—H23 120.3
N1—C12—C13 106.97 (11) C24—C23—H23 120.3
N1—C12—H12A 110.3 C19—C24—C23 122.11 (14)
C13—C12—H12A 110.3 C19—C24—H24 118.9
N1—C12—H12B 110.3 C23—C24—H24 118.9
C13—C12—H12B 110.3 O4—C25—H25A 109.5
H12A—C12—H12B 108.6 O4—C25—H25B 109.5
C19—C13—C12 118.15 (12) H25A—C25—H25B 109.5
C19—C13—C14 115.05 (10) O4—C25—H25C 109.5
C12—C13—C14 103.36 (10) H25A—C25—H25C 109.5
C19—C13—H13 106.5 H25B—C25—H25C 109.5
C12—C13—H13 106.5 C18—N1—C12 110.87 (11)
C14—C13—H13 106.5 C18—N1—C11 115.47 (11)
C16—C14—C15 110.32 (11) C12—N1—C11 106.57 (10)
C16—C14—C11 114.99 (11) C9—O1—C15 118.16 (10)
C15—C14—C11 108.79 (10) C16—O3—C17 115.85 (14)
C16—C14—C13 109.58 (11) C22—O4—C25 117.54 (14)
C15—C14—C13 110.74 (11)
C6—C1—C2—C3 0.6 (2) C12—C13—C14—C15 −87.13 (13)
C10—C1—C2—C3 178.95 (14) C19—C13—C14—C11 158.84 (11)
C1—C2—C3—C4 1.0 (3) C12—C13—C14—C11 28.58 (13)
C2—C3—C4—C5 −1.5 (3) C16—C14—C15—O1 −69.67 (14)
C3—C4—C5—C6 0.4 (3) C11—C14—C15—O1 57.34 (14)
C4—C5—C6—C7 −176.93 (16) C13—C14—C15—O1 168.84 (10)
C4—C5—C6—C1 1.3 (2) C15—C14—C16—O2 −14.5 (2)
C2—C1—C6—C7 176.53 (13) C11—C14—C16—O2 −137.97 (16)
C10—C1—C6—C7 −1.9 (2) C13—C14—C16—O2 107.68 (17)
C2—C1—C6—C5 −1.7 (2) C15—C14—C16—O3 169.18 (12)
C10—C1—C6—C5 179.87 (13) C11—C14—C16—O3 45.69 (16)
C5—C6—C7—C8 178.81 (15) C13—C14—C16—O3 −68.65 (15)
C1—C6—C7—C8 0.6 (2) C12—C13—C19—C24 −145.25 (14)
C6—C7—C8—C9 0.5 (2) C14—C13—C19—C24 92.10 (15)
C7—C8—C9—O1 −177.94 (14) C12—C13—C19—C20 35.71 (18)
C7—C8—C9—C10 −0.3 (2) C14—C13—C19—C20 −86.94 (16)
O1—C9—C10—C1 176.35 (12) C24—C19—C20—C21 −1.1 (2)
C8—C9—C10—C1 −1.0 (2) C13—C19—C20—C21 177.95 (13)
O1—C9—C10—C11 0.5 (2) C19—C20—C21—C22 −0.7 (2)
C8—C9—C10—C11 −176.85 (12) C20—C21—C22—O4 −178.57 (13)
C2—C1—C10—C9 −176.25 (13) C20—C21—C22—C23 1.8 (2)
C6—C1—C10—C9 2.07 (19) O4—C22—C23—C24 179.22 (13)
C2—C1—C10—C11 −0.6 (2) C21—C22—C23—C24 −1.2 (2)
C6—C1—C10—C11 177.76 (11) C20—C19—C24—C23 1.7 (2)
C9—C10—C11—N1 −93.00 (14) C13—C19—C24—C23 −177.37 (12)
C1—C10—C11—N1 91.35 (14) C22—C23—C24—C19 −0.6 (2)
C9—C10—C11—C14 21.00 (17) C13—C12—N1—C18 −150.22 (12)
C1—C10—C11—C14 −154.65 (12) C13—C12—N1—C11 −23.81 (14)
N1—C12—C13—C19 −132.33 (12) C10—C11—N1—C18 −74.85 (14)
N1—C12—C13—C14 −3.96 (15) C14—C11—N1—C18 165.40 (11)
N1—C11—C14—C16 −161.46 (11) C10—C11—N1—C12 161.56 (11)
C10—C11—C14—C16 76.47 (14) C14—C11—N1—C12 41.81 (12)
N1—C11—C14—C15 74.25 (12) C10—C9—O1—C15 7.9 (2)
C10—C11—C14—C15 −47.82 (14) C8—C9—O1—C15 −174.55 (12)
N1—C11—C14—C13 −42.87 (12) C14—C15—O1—C9 −37.70 (17)
C10—C11—C14—C13 −164.94 (10) O2—C16—O3—C17 −2.3 (3)
C19—C13—C14—C16 −78.79 (14) C14—C16—O3—C17 174.09 (16)
C12—C13—C14—C16 150.94 (11) C23—C22—O4—C25 −2.7 (2)
C19—C13—C14—C15 43.13 (15) C21—C22—O4—C25 177.75 (14)

Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C1/C6–C10 ring.
D—H···A D—H H···A D···A D—H···A
C11—H11···O3 0.98 2.48 2.8514 (18) 102
C13—H13···O3 0.98 2.53 2.9610 (18) 107
C17—H17B···Cg4i 0.97 2.94 3.502 (2) 119

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5203).

References

  1. Biava, M., Porretta, G. C., Poce, G., Deidda, D., Pompei, R., Tafi, A. & Manetti, F. (2005). .Bioorg. Med. Chem.13, 1221–1230. [DOI] [PubMed]
  2. Borthwick, A. D., Angier, S. J., Crame, A. J., Exall, A. M., Haley, T. M., Hart, G. J., Mason, A. M., Pennell, A. M. K. & Weingarten, G. G. (2000). J. Med. Chem.43, 4452–4464. [DOI] [PubMed]
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Caine, B. (1993). Science, 260, 1814–1816. [DOI] [PubMed]
  5. Carlson, J. (1993). Neur. Transm.94, 11–19. [DOI] [PubMed]
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Fernandes, E., Costa, D., Toste, S. A., Lima, J. L. & Reis, S. (2004). Free Radical Biol. Med.37, 1895–1905. [DOI] [PubMed]
  9. Jiang, S., Lu, H., Liu, S., Zhao, Q., He, Y. & Debnath, A. K. (2004). Antimicrob. Agents Chemother.48, 4349–4359. [DOI] [PMC free article] [PubMed]
  10. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  11. Nirmala, S., Kamala, E. T. S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o2028–o2029. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147–151. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Wilner, P. (1985). Clin. Neuropharm.18, suppl1, 549–556.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810010056/bt5203sup1.cif

e-66-0o893-sup1.cif (23.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810010056/bt5203Isup2.hkl

e-66-0o893-Isup2.hkl (229.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES