
IFN-γ abrogates endotoxin tolerance by facilitating
Toll-like receptor-induced chromatin remodeling
Janice Chena and Lionel B. Ivashkiva,b,1

aGraduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021; and bArthritis and
Tissue Degeneration Program, Hospital for Special Surgery, New York, NY 10021

Edited by Ruslan Medzhitov, Yale University School of Medicine, New Haven, CT, and approved September 30, 2010 (received for review June 9, 2010)

An important mechanism by which IFN-γ primes macrophages for
enhanced innate immune responses is abrogation of feedback in-
hibitory pathways. Accordingly, IFN-γ abrogates endotoxin toler-
ance, a major negative feedback loop that silences expression of
inflammatory cytokine genes in macrophages previously exposed
to endotoxin/Toll-like receptor (TLR) ligands. Mechanisms bywhich
IFN-γ inhibits endotoxin tolerance have not been elucidated. Here,
we show that pretreatment with IFN-γ prevented tolerization of
primary human monocytes and restored TLR4-mediated induction
of various proinflammatory cytokines, including IL-6 and TNFα. Sur-
prisingly, IFN-γ did not alter proximal TLR4 signaling defects in
tolerized monocytes. Instead, IFN-γ blocked tolerance-associated
down-regulation of IL6 and TNF transcription, RNA polymerase II
recruitment, and NF-κB and CCAAT/enhancer-binding protein β
transcription factor binding to the IL6 and TNF promoters in toler-
izedmonocytes. Themechanismbywhich IFN-γ restored IL6 expres-
sion was by facilitating TLR4-induced recruitment of chromatin
remodeling machinery to the IL6 promoter and promoting IL6 locus
accessibility in tolerized monocytes. Our results suggest that IFN-γ
overcomes endotoxin tolerance by facilitating TLR-induced chroma-
tin remodeling to allow expression of proinflammatory genes. These
results identify a mechanism by which IFN-γ promotes activation of
macrophages and highlight the importance of chromatin remodeling
and transcriptional control in the regulation of inflammatory cyto-
kine production in tolerant and activated macrophages.
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Endotoxin tolerance is a phenomenon whereby previous ex-
posure of cells or organisms to microbial products, such as

Toll-like receptor (TLR) ligands, induces a transient period of
hyporesponsiveness on subsequent endotoxin challenge and is
characterized by diminished release of proinflammatory cyto-
kines, such as IL-6 and TNFα (1, 2). This negative feedback
mechanism is important for protecting the host against tissue
damage and lethality caused by excessive inflammation.
Tolerance results from a complex interplay among many factors

involved in multiple levels of TLR signal transduction that alto-
gether reinforce the refractory state. Most previous work has fo-
cused on regulation of proximal TLR signaling and has shown that
tolerant macrophages exhibit decreased TLR-induced MAPK and
NF-κB activation because of defective assembly of TLR adaptor
proteinsand inductionofnegative regulatorsofTLRsignaling, such
as IL-1 receptor-associated kinase M (IRAK-M), SH2-containing
inositol phosphatase (SHIP), and MAPK phosphatase 1 (MKP-1)
(1–6). However, mechanisms that globally suppress TLR signaling
cannot explain why certain genes are nontolerizable and are in-
duced after TLR stimulation of tolerant cells (7). More recent
work has highlighted the importance of gene-specific regulation in
tolerant macrophages, which is mediated by modification of chro-
matin to silence a subset of TLR-inducible genes. Silencing is ach-
ieved by acquisition of nonpermissive histone modifications and
a block in TLR-induced nucleosome remodeling, resulting in de-
creased accessibility of gene loci to transcription factors (7, 8). Such
gene-specific regulation allows differential expression of subsets
of TLR-inducible genes (for example, induction of antimicrobial

genes important for host defense concomitant with silencing of
inflammatory genes that can cause excessive toxicity) (7, 9, 10).
IFN-γ is a potent endogenous activator of macrophages that

augments responses to activating stimuli such as TLR ligands by
various mechanisms (11). One important function of IFN-γ is
reversal of endotoxin tolerance and restoration of inflammatory
cytokine production, which has been shown in vitro and in vivo in
mice and humans (12–16). Importantly, the in vivo biological
significance of IFN-γ–mediated reversal of endotoxin tolerance
has been established in human patients. IFN-γ treatment over-
comes the down-regulation in serum IL-6 and TNFα levels in
cancer patients exposed to repeated LPS injections given as an-
titumor therapy and restores monocyte host defense capabilities
in sepsis patients (17, 18). The latter is significant, because it has
become increasingly clear that sepsis patients exhibit tolerance-
related defects in monocyte andmacrophage functions, leading to
immunosuppression and increased susceptibility to secondary
infections that represent a leading cause of mortality in this
population (19). Despite these numerous observations estab-
lishing the importance of IFN-γ–mediated abrogation of macro-
phage tolerance, underlying molecular mechanisms have not
been previously investigated. In addition, little is known about
mechanisms of tolerance in primary human macrophages, be-
cause most studies have used human cell lines or murine systems.
In this study, wewished to investigatemechanisms bywhich IFN-

γ abrogates endotoxin tolerance. We used primary human mono-
cytes to maximize relevance of results for human subjects and
compare tolerance mechanisms with those previously described in
mice. Because IFN-γ–mediated augmentation of TLR responses
has conventionally been viewed to occur through positive enhance-
ment of TLR signal transduction, we tested the hypothesis that
IFN-γ blocks tolerance by overcoming tolerance-associated defects
in TLR signaling.Unexpectedly, IFN-γ did not alter upstreamTLR
pathway signaling defects in tolerized monocytes. Instead, we
found that IFN-γ inhibited tolerance-mediated down-regulation
of IL6 and TNF by promoting recruitment of transcription fac-
tors NF-κB and CCAAT/enhancer-binding protein β (C/EBPβ)
and RNA polymerase II (Pol II) to endogenous gene promoters.
IFN-γ restored accessibility of the IL6 promoter in tolerized
monocytes by facilitating TLR-induced chromatin remodeling.
These results provide the first insights intomechanisms that block
endotoxin tolerance and highlight the importance of gene-specific
regulation in determining the tolerant state of macrophages.

Results
IFN-γ Efficiently Blocks Tolerization of IL-6 and TNFα. We first used
primary human monocytes to extend previous work showing that
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IFN-γ can block the development of endotoxin tolerance. Con-
trol and IFN-γ–activated human monocytes were tolerized with
increasing doses of LPS for 24 h before being restimulated with
a second dose of LPS, and IL-6 and TNFα produced in response
to LPS rechallenge were measured (Fig. 1A). LPS tolerization
doses as low as 10 pg/mL were sufficient to severely blunt the
ability of control monocytes to produce both IL-6 and TNFα
proteins on LPS rechallenge (Fig. 1B and Fig. S1A). In contrast,
IFN-γ pretreatment efficiently counteracted tolerance-induced
down-regulation of IL-6 and TNFα. Interestingly, tolerization of
IL-6 was readily prevented by IFN-γ, even at high tolerizing
doses of LPS, whereas tolerization of TNFα was more resistant
to inhibition by IFN-γ at these high LPS doses. These results
were highly reproducible in experiments with more than 50 in-
dependent blood donors; tolerized control monocytes produced
5.9% of the IL-6 and 8.8% of the TNFα produced by their
nontolerized counterparts, whereas tolerized monocytes pre-
activated with IFN-γ produced 84.7% of the IL-6 and 66.0% of
the TNFα produced by their nontolerized counterparts (Fig. 1C).
IFN-γ also inhibited the establishment of cross-tolerance of
TLR4 responses by the TLR2 ligand Pam3Cys or the proin-
flammatory cytokine IL-1β (Fig. 1 D and E and Fig. S1 B and C).
Thus, IFN-γ is highly effective at blocking the development of
endotoxin tolerance in primary human monocytes.

IFN-γ Does Not Alter Upstream TLR Signaling Defects in Tolerized
Monocytes. Because endotoxin tolerance is widely reported to
be associated with altered TLR signal transduction, we first asked
whether IFN-γ restored proinflammatory cytokine production in
tolerized monocytes by restoring upstream signaling events.
Control monocytes responded to LPS stimulation with robust
activation of JNK, ERK, and p38 MAPKs, whereas tolerized
monocytes showed diminished activation of MAPKs (Fig. 2A).
Unexpectedly, IFN-γ did not alter the defects inMAPK activation
in tolerized monocytes (Fig. 2A and Fig. S2 A–C), despite the
ability of these monocytes to produce high levels of IL-6 and
TNFα. IFN-γ did not alter the MAPK dependence of these
cytokines, because specific inhibitors of MAPKs still diminished
IL-6 and TNFα production by tolerized monocytes that had been
preactivated with IFN-γ (Fig. S2D), suggesting that low-level
MAPK signaling is sufficient to activate cytokine production in
IFN-γ–treated cells. Control monocytes rapidly degraded IκBα in
response to LPS stimulation, leading to NF-κB p65 phosphory-
lation on Ser536 and translocation into the nucleus (Fig. 2B).
Although tolerized monocytes showed slightly slower kinetics in
LPS-induced IκBα degradation and more rapid IκBα resynthesis,
p65 was still phosphorylated in these monocytes and translocated
into the nucleus (Fig. 2B). Higher tolerizing doses of LPS (10 ng/
mL) were required to inhibit IκBα degradation. IFN-γ did not
have a substantial effect on IκBα degradation or p65 activation in
tolerized monocytes (Fig. 2B).
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Fig. 1. IFN-γ blocks tolerization of IL-6 and TNFα. (A) Experimental design. (B) Control and IFN-γ–activated monocytes were tolerized with increasing doses of
LPS (first LPS: 0.01–10 ng/mL) for 24 h and then challenged with 10 ng/mL LPS for 3 h. IL-6 and TNFα levels in culture supernatants were measured by ELISA. (C)
Control and IFN-γ–activated monocytes were tolerized with 0.1 ng/mL LPS for 24 h and then challenged with 10 ng/mL LPS for 3 h. Percent tolerization of IL-6
and TNFα was calculated by dividing cytokine production of tolerized cells by that of nontolerized cells for both control and IFN-γ–treated groups. Data are
a summary of 51 independent donors, with each circle representing an independent donor. Numbers show mean percent tolerization of cytokines. P values
were calculated by paired Student’s t test. P = 2.4 × 10−28 for IL-6; P = 3.0 × 10−27 for TNFα. (D and E) Control and IFN-γ–activated monocytes were tolerized
with increasing doses of (D) Pam3Cys (0.1–10 ng/mL) or (E) IL-1β (10–100 ng/mL) for 24 h and then challenged with 10 ng/mL LPS for 3 h. IL-6 and TNFα levels in
culture supernatants were measured by ELISA. Data in B, D, and E show cytokine production in response to the second LPS stimulation and are representative
of three independent donors. Cumulative results for different donors are shown in Fig. S1.
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A previous study suggested that IFN-γ prevented endotoxin
tolerance by inhibiting LPS-induced down-regulation of IRAK-1
expression and promoting IRAK-1/MyD88 complex formation
(20). In our system, down-regulation of IRAK-1 was variable and
did not occur in half of the donors tested (Fig. S3A). Although we
confirmed that IFN-γ restores IRAK-1 expression in tolerized
monocytes in a subset of donors (Fig. S3A), the lack of correlation
between IRAK-1 expression and either tolerance induction or
downstream signaling events suggests that the induction and
regulation of tolerization in our system are not predominantly
regulated by IRAK-1. The expression of several negative regu-
lators of TLR signaling, including IRAK-M, SHIP, andMKP-1, is
up-regulated during endotoxin tolerance in murine macrophages
(4–6). In human monocytes, these TLR signaling inhibitors were
not induced in tolerized monocytes, although IRAK-M was in-
duced in a subset of donors (Fig. S3B). Consistent with IFN-γ
having little effect on upstream signaling pathways in tolerized
monocytes, we found that IFN-γ also did not inhibit the expression
of these reported mediators of endotoxin tolerance (Fig. S3B).
Taken together, these results suggest that IFN-γ is able to abro-
gate endotoxin tolerance in a manner that is independent of
regulation of proximal TLR signaling pathways.

IFN-γ Blocks Tolerization of IL-6 and TNFα at the Level of Tran-
scription. The observation that IFN-γ inhibited endotoxin toler-
ance without altering proximal TLR signaling defects prompted us
to examine downstream nuclear events. LPS strongly induced IL6
and TNF steady-state mRNA in control monocytes, whereas this

induction was severely attenuated in tolerized monocytes (Fig. 3A
and Fig. S4A). IFN-γ effectively restored LPS-induced IL6 and
TNF gene expression in tolerized monocytes to levels comparable
with those in control monocytes. Similarly, IFN-γ restored expres-
sion of IL1B, IL12A, IL12B, and IL23A but not IL10 in tolerized
monocytes (Fig. S5A andB), suggesting that IFN-γ broadly restores
inflammatory gene expression in human monocytes.
To determine whether IFN-γ–mediated restoration of IL6 and

TNF mRNA expression in tolerized monocytes occurred at the
level of transcription, we measured primary transcripts using
primers specific for intronic regions of the IL6 and TNF genes.
The regulation of IL6 and TNF primary transcripts essentially
followed the same trend as the steady-state mRNA, and this was
confirmed by two independent intronic primer sets for each gene
(Fig. 3B and Fig. S4B). We also examined the binding of Pol II
by ChIP. LPS-induced recruitment of Pol II to the IL6 and TNF
promoters was dramatically blunted in tolerized monocytes and
restored by IFN-γ (Fig. 3C). These results suggest that IFN-γ
abrogates tolerization of IL6 and TNF at the level of gene tran-
scription. The results also show that IFN-γ can restore expression
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of a primary response gene (TNF) and a secondary response gene
(IL6) that are tolerized by different mechanisms (7, 8, 21, 22).

IFN-γ Restores Transcription Factor Binding to the IL6 and TNF
Promoters in Tolerized Monocytes. Because IFN-γ restored Pol II
recruitment to the IL6 and TNF promoters in tolerized mono-
cytes, we next investigated whether IFN-γ differentially regulated
transcription factor binding to these promoters. ChIP assays
showed that LPS-induced recruitment of NF-κB p65 to the IL6
and TNF promoters was considerably diminished in tolerized
monocytes but efficiently restored by IFN-γ (Fig. 4A). In addition,
occupancy of C/EBPβ, another transcription factor important for
IL6 gene activation, at the IL6 promoter was defective in toler-
ized monocytes and was restored by IFN-γ (Fig. 4B). These results
suggest that, by facilitating the binding of transcription factors to
the IL6 and TNF promoters, IFN-γ can restore Pol II recruitment
and subsequent gene transcription in tolerized monocytes.

IFN-γ Promotes Chromatin Accessibility at the IL6 Promoter in Tol-
erized Monocytes. Induction of secondary response genes such as
IL6 depends on new protein synthesis and nucleosome remod-
eling by Brahma-related gene 1 (Brg1)-containing switch/sucrose
nonfermenting (SWI/SNF) complexes, which result in increased
chromatin accessibility to transcription factors (23, 24). We then
investigated whether diminished NF-κB p65 binding to the IL6
promoter in tolerized monocytes (Fig. 4A), despite robust acti-
vation and nuclear translocation of p65 (Fig. 2B), could be
explained by lack of chromatin accessibility at the IL6 locus and
whether chromatin accessibility was regulated by IFN-γ. Consis-
tent with a previous report that used murine macrophages (7),
ChIP assays showed that LPS-induced Brg1 recruitment to the
IL6 promoter was attenuated in tolerized human monocytes (Fig.
5A). IFN-γ restored Brg1 binding to the IL6 promoter in tolerized
monocytes (Fig. 5A), suggesting that restored chromatin accessi-
bility may explain increased transcription factor and Pol II binding
to the IL6 promoter in IFN-γ–treated tolerized monocytes.
To directly monitor chromatin accessibility at the IL6 pro-

moter, we used the restriction enzyme accessibility assay, a well-
establishedmethod for analyzing accessibility at endogenous gene
loci (24, 25). Accessibility is reflected by increased cleavage by
nucleases in the setting of native chromatin structure. We mea-
sured accessibility at the BsrBI and SspI restriction endonuclease
sites in the IL6 promoter (Fig. 5B) (26–28). Cleavage at the BsrBI
and SspI sites upstream of the transcription start site was sub-
stantially increased by LPS in control monocytes (Fig. 5C). In
contrast, LPS-induced accessibility at these two sites wasmarkedly
attenuated in tolerized monocytes. Remarkably, IFN-γ com-
pletely restored BsrBI and SspI accessibility in tolerized mono-
cytes in a manner that correlated with IL6 gene expression and

binding of transcription factors and chromatin remodeling pro-
teins to the IL6promoter. Similar results were obtainedwithNheI,
which cleaves at −225. These results suggest that IFN-γ restores
the ability of TLR signals to induce IL6 promoter accessibility
in tolerized monocytes to allow expression of IL6 during
endotoxin tolerance.
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Foster et al. (7) previously showed that a subset of nontol-
erizable genes that were secondary response genes in naïve mac-
rophages was converted into primary response genes in tolerant
macrophages. Because IFN-γ essentially converts IL6 from a tol-
erizable gene to a nontolerizable gene, we wondered whether
IFN-γ also altered the transcriptional requirements for IL6 gene
expression. We, therefore, measured IL6 gene expression in con-
trol and IFN-γ–activated monocytes in the presence of cyclohex-
imide (CHX), a protein synthesis inhibitor. CHX inhibited the
induction of IL6 mRNA by LPS in control monocytes, consistent
with IL6 being a secondary response gene in macrophages (Fig.
5D) (23, 24). LPS-induced IL6 expression was also dependent on
new protein synthesis in IFN-γ–activated nontolerizedmonocytes.
In striking contrast, CHX treatment did not down-regulate but
rather, superinduced LPS-stimulated IL6 expression in tolerized
monocytes that had been preactivated with IFN-γ (Fig. 5D). In
parallel, induction of IL6 promoter accessibility by LPS no longer
required new protein synthesis in IFN-γ–activated tolerized
monocytes (Fig. 5E). Thus, proteins required for LPS-induced
chromatin remodeling and gene expression at the IL6 locus are
expressed in IFN-γ–treated tolerized monocytes but not in naïve
or IFN-γ–activated nontolerized monocytes. These results in-
dicate that IFN-γ converts IL6 into a primary response gene in
tolerized monocytes and suggest that loss of a requirement for
new protein synthesis for chromatin remodeling represents one
mechanism by which a secondary response gene can become
converted into a primary response gene.

Discussion
Multiple mechanisms of macrophage tolerance have been de-
scribed, but recent evidence has highlighted the importance of
establishing a nucleosome barrier that blocks TLR-induced gene
expression at the level of chromatin (7). In this study, we found
that IFN-γ abrogates the induction of this chromatin barrier at
inflammatory cytokine gene loci such as TNF and IL6 in primary
human monocytes and thus, restores the recruitment of tran-
scription factors and Pol II. For the secondary response gene IL6,
the mechanism of IFN-γ action was to facilitate recruitment of
Brg1 and nucleosome remodeling that is required for IL6 ex-
pression. Thus, IFN-γ abrogates a potent TLR-induced feedback
inhibitory mechanism that silences inflammatory gene expression.
These results identify a new mechanism of IFN-γ action and
highlight the importance of reciprocal regulation of chromatin
structure by activating and inhibitory signals in the regulation of
macrophage gene expression and functional phenotype.
Consistent with previous reports, TLR-inducedMAPK signaling

was diminished in tolerizedmonocytes relative to naïvemonocytes,
although NF-κB activation was mostly intact at the low tolerizing
doses of LPS that were used. Proximal TLR-induced signaling was
not affected by IFN-γ under conditions where IFN-γ fully restored
inflammatory cytokine expression in tolerized monocytes. Thus,
in IFN-γ–treated tolerized monocytes, a weak MAPK signal was
sufficient to fully induce gene expression. This suggests that TLR-
induced changes in chromatin structure are sufficient to convert
a weak signal into productive gene output in IFN-γ–activated
monocytes and that regulation at the level of chromatin is the rate-
limiting step in controlling the magnitude of inflammatory gene
activation in tolerized macrophages.
LPS-induced secondary response genes such as IL6 require

de novo protein synthesis and subsequent recruitment of Brg1-
containing SWI/SNF complexes and nucleosome remodeling for
their expression (10). Nucleosome remodeling allows recruitment
of transcription factors that are activated by LPS, such as NF-κB
and C/EBPβ, and Pol II and subsequent onset of transcription
(Fig. 6, Left). Newly synthesized proteins encoded by primary
response genes are required for Brg1 recruitment and remodeling
of LPS-induced secondary response genes in naïve monocytes
(depicted as X in Fig. 6), but the identity of these proteins is not

known (10, 24). Similarly, as yet unknown LPS-induced repressors
(Fig. 6, Center, Y) have been proposed to silence gene expression
in tolerized monocytes, in part by blocking Brg1 recruitment and
nucleosome remodeling (7). In the context of this model, which is
based on previous reports, IFN-γ can potentially restore gene
activation by two mechanisms: (i) induction of factors that re-
cruit Brg1 to the IL6 promoter, and (ii) down-regulation of LPS-
induced repressors that establish tolerance and prevent Brg1 re-
cruitment (Fig. 6, Right). Our ability to discriminate between
these possibilities is limited because of the lack of knowledge
about which factors regulate Brg1 recruitment in LPS-stimulated
monocytes (10, 24). We have, however, excluded the possibility
that IFN-γ works by down-regulating expression of Bcl3 or RelB,
transcription factors that have gene-repressive effects in other
tolerance systems (8, 29–31). In addition, silencing of proin-
flammatory genes such as IL6 in tolerant macrophages has been
shown to be associated with loss of TLR-induced histone mod-
ifications at specific gene promoters (7). In contrast to murine
macrophages, histone H3 and H4 acetylation and H3K4 trime-
thylation at the IL6 promoter were only weakly and inconsistently
affected by LPS stimulation and tolerization in human mono-
cytes, and this precluded obtaining clear results on the effects of
IFN-γ. It is not yet clear if the minimal regulation of the histone
modifications studied to date reflects a technical issue or species
or cell maturation state-related differences, and this will be ad-
dressed in future work.
We have also found that IFN-γ converted IL6 from a secondary

response gene in nontolerized monocytes to a primary response
gene in tolerized monocytes that no longer requires new protein
synthesis for LPS-induced promoter accessibility. Based on current
models (10), this suggests that IFN-γ induced expression of a factor
thatmediates TLR-induced recruitment of Brg1 to the IL6 locus in
tolerized monocytes (24). Notably, LPS stimulation was still re-
quired for IL6 chromatin accessibility in IFN-γ–treated tolerized
monocytes, indicating that cooperation between IFN-γ and TLR
signals is required to open the locus and allow transcription.
IFN-γ blocked the tolerization of inflammatory secondary re-

sponse genes IL6, IL12A, and IL12B and primary response genes

naive tolerized IFN-g activated,
tolerized
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Pol II
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Fig. 6. Model for IFN-γ–mediated inhibition of endotoxin tolerance. LPS
stimulation of naïve monocytes leads to the recruitment of Brg1-containing
chromatin remodeling complexes to the IL6 promoter by as yet unknown
transcriptional activators (X). Promoter remodeling allows transcription
factors and Pol II to access important regulatory elements for gene activa-
tion. In contrast, Brg1 is not recruited to the IL6 promoter after stimulation
of tolerized monocytes with LPS. Two possibilities are likely: (i) absence of
activator X that recruits Brg1, or (ii) presence of transcriptional repressors
that block Brg1 recruitment. As a result, the IL6 locus remains closed and
inaccessible to transcriptional machinery. IFN-γ abrogates tolerance by re-
storing the recruitment of Brg1 to the IL6 promoter, possibly through res-
toration of activator X or antagonism of repressor Y. The IL6 promoter is
then remodeled into an open conformation that can bind transcriptional
machinery and support gene activation.
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TNF, IL1B, and IL23A but not the antiinflammatory cytokine gene
IL10. Thus, IFN-γ restores the expression of proinflammatory
factors in tolerized monocytes to promote an inflammatory phe-
notype. In tolerized monocytes, IFN-γ allowed recruitment of
transcription factors to both the primary response gene TNF
and the secondary response gene IL6. Tolerization of primary
response genes such as TNF that do not require chromatin re-
modeling for expression proceeds by different mechanisms than
tolerization of secondary response genes, and in monocytic THP-1
cells, it involves repressive histone modifications and enrichment
of silencing proteins that promote formation of facultative het-
erochromatin (8, 21, 22). Thus, IFN-γ–mediated prevention of
tolerization of primary response genes like TNF likely involves
different mechanisms from those described herein for IL6. We
have not detected changes in expression or recruitment of tran-
scriptional repressors by IFN-γ. Mechanisms by which IFN-γ
restores expression of primary response genes in tolerized mono-
cytes will be investigated in future work.
In summary, we have identified regulation of chromatin re-

modeling that overcomes barriers to transcription as a mecha-
nism by which IFN-γ antagonizes the establishment of endotoxin
tolerance in primary human monocytes. Although tolerance may
be a protective mechanism to curb deleterious inflammation in
acute settings, it also contributes to the delayed immunosup-
pression that is an important cause of mortality in patients with
sepsis (19). Our findings provide mechanistic insights that can
be used to modulate macrophage activation and cytokine pro-
duction in settings of infection and inflammation.

Materials and Methods
Cell Culture. Peripheral blood mononuclear cells (PBMCs) were obtained from
the blood of healthy donors by density gradient centrifugation using Ficoll
(Invitrogen) and a protocol approved by the Hospital for Special Surgery
Institutional Review Board. CD14+ human monocytes were purified from

PBMCs by positive selection using anti-CD14 magnetic beads as recom-
mended by the manufacturer (Miltenyi Biotec). Monocytes were cultured in
Roswell Park Memorial Institute (RPMI) 1640 medium (Invitrogen) sup-
plemented with 10% heat-inactivated defined FBS (HyClone), penicillin/
streptomycin (Invitrogen), L-glutamine (Invitrogen), and 10 ng/mL human
macrophage colony-stimulating factor (M-CSF; Peprotech) in the presence
or absence of 100 U/mL human IFN-γ (Roche). For induction of tolerance,
monocytes were incubated with 0.1 ng/mL LPS for 24 h, washed and cultured
with fresh media for 3 h, and challenged with 10 ng/mL LPS for the
indicated times.

ChIP. ChIP was performed using the ChIP Assay Kit (Millipore) according to the
manufacturer’s instructions. Immunoprecipitated DNA was analyzed by
quantitative real-time PCR and normalized relative to 28S rRNA-encoding
gene segments that reflect amounts of nonspecific background DNA pre-
cipitation in each reaction. Anti-RNA polymerase II and anti-Brg1 were from
Millipore, anti–NF-κB p65 was from Abcam, anti-C/EBPβ was from Santa Cruz
Biotechnology, and mouse IgG1 was from BD Biosciences.

Restriction Enzyme Accessibility Assay. Restriction enzyme accessibility assays
were performed as described (25), with slight modifications. Briefly, nuclei
were isolated and resuspended in the recommended New England Biolabs
buffer containing 50U of the specified restriction enzymes for 30min at 37 °C.
Digested genomic DNA was purified using the DNeasy Blood and Tissue Kit
(Qiagen) according to the manufacturer’s instructions. Equal amounts of
purified DNAwere digested to completion with 50 U BstXI overnight at 37 °C,
precipitated, and analyzed by Southern blot using a radiolabeled probe
specific for the IL6 gene (+51 to +614). BsrBI, SspI, and BstXI restriction
enzymes were purchased from New England Biosciences. Densitometry of
Southern blots was performed as described in SI Materials and Methods.

Additional methods are described in SI Materials and Methods.
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