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Various performance measures related to calibration and discrimination are available for the assessment of risk
models. When the validity of a risk model is assessed in a new population, estimates of the model’s performance
can be influenced in several ways. The regression coefficients can be incorrect, which indeed results in an invalid
model. However, the distribution of patient characteristics (case mix) may also influence the performance of the
model. Here the authors consider a number of typical situations that can be encountered in external validation
studies. Theoretical relations between differences in development and validation samples and performance mea-
sures are studied by simulation. Benchmark values for the performance measures are proposed to disentangle
a case-mix effect from incorrect regression coefficients, when interpreting the model’s estimated performance in
validation samples. The authors demonstrate the use of the benchmark values using data on traumatic brain injury
obtained from the International Tirilazad Trial and the North American Tirilazad Trial (1991–1994).

epidemiologic methods; models, statistical; reproducibility of results; risk assessment; risk model

Abbreviation: SD, standard deviation.

Modeling the absolute risk of disease is a major focus of
research in cancer and cardiovascular disease, as well as in
other diseases. Well-known examples are the Gail model
for risk prediction of invasive breast cancer (1) and the
Framingham Heart Study risk scores (2). Such models
are developed for several purposes, including counseling
and designing intervention studies. A vital aspect of risk
models is adequate performance in other populations
(3–5), also referred to as external validity, generalizability,
or transportability.

To assess model performance, risks for the subjects in the
validation sample are calculated with the risk model and
compared with the actual outcomes in the validation sample.
It is often assumed that the validity of a model is determined
by the closeness of the performance estimated in the vali-
dation sample, with measures such as the concordance (c)
statistic and R2, to the performance estimated in the devel-
opment data sample (6).

As an example, external validity may be assessed in other
ethnic groups. The Framingham Heart Study risk score was

developed in a US white, middle-class population (2) and
validated in Native Americans (7). The discriminative abil-
ity of the model expressed with the c statistic was 0.83
among women in the development sample and 0.75 in the
validation sample. Indeed, some predictor effects were dif-
ferent for the Native Americans compared with the devel-
opment population, which indicates that the fit of the model
was suboptimal. However, the distributions of women’s
characteristics (case mix) also differed between the devel-
opment and validation populations. White persons more of-
ten had high blood pressure than the Native Americans. As
a result, the validation sample was more homogeneous,
which makes discrimination more difficult. The latter is
a population aspect and is not related to model fit.

Clearly, differences in case mix and in predictor effects
between development and validation populations must both
be considered for proper interpretation of model perfor-
mance estimates in external validation studies. In the current
analysis, we aimed to examine the relations of differences in
case mix and predictor effects with model performance. We
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therefore performed some simulation studies. We also
aimed to develop benchmark values for performance mea-
sures, to improve the interpretation of validation results. We
illustrate the usefulness of these benchmark values in a case
study of traumatic brain injury patients, where the model’s
performance upon external validation was better than ex-
pected from the development sample.

DIFFERENCES BETWEEN DEVELOPMENT AND
VALIDATION SAMPLES

We distinguish 2 types of differences between develop-
ment and validation samples: Either the case mix is different
or the predictor effects, expressed as regression coefficients,
are different (Table 1).

Differences in case mix

Case mix refers to predictors included in the model (‘‘in-
cluded predictors’’), but it may also refer to variables that
are related to the outcome and not included in the developed
model (‘‘omitted predictors’’). A difference in case mix
between development and validation samples may occur
when more severely ill subjects are included in the valida-
tion sample. For instance, the Framingham risk model was
developed in the general population and may be validated in
patients at lower risk of cardiovascular disease. Further-
more, less heterogeneity may exist in subjects from the
validation sample. The Gail model, for instance, was de-
veloped among women participating in a screening program
(1) and was validated in patients from a randomized trial,
with stricter inclusion criteria (8). Differences in severity of
disease affect mainly the mean predictor values; differences
in heterogeneity affect mainly the variances of the predictor
values.

Differences in regression coefficients

Predictor effects, and hence the regression coefficients of
the predictors included in the model, can be different in the
development and validation samples, as a result of differ-

ences in the methods used for data collection or in the def-
initions of the predictors or the outcome variable (9). The
predictor effects can also be truly different in the develop-
ment and validation populations, even when the same vari-
able definitions have been applied. An example is the
predictive effect of diabetes on the risk of cardiovascular
disease, which was stronger in Native Americans than in
whites (7).

Another reason for different regression coefficients is sta-
tistical overfitting. An overfitted model may fit the develop-
ment data well but gives predictions that are too extreme for
new patients. Overfitting leads to a smaller predictive effect
of the linear predictor (lp) upon external validation. The lp is
the sum product of regression coefficients of the risk model
and predictor values (lp ¼ a þ b1 3 x1 þ . . . þ bi 3 xi, in
which a is the intercept and b1–bi are the regression co-
efficients of the predictors x1–xi). The reduced predictive
effect of the lp due to overfitting might have already been
detected at internal validation—for instance, using boot-
strap resampling (10, 11). Overfitting is most likely for
models developed in small samples with a relatively large
number of (candidate) predictors (12, 13). Shrinkage of co-
efficients at model development might be applied to prevent
overestimation of regression coefficients for predictive pur-
poses (14, 15). Unfortunately, coefficients are not shrunken
for many currently developed models (16, 17).

SIMULATION STUDIES

We conducted simulation studies to assess the influences
of differences in case mix and regression coefficients be-
tween development and validation samples on model per-
formance. We simulated large samples (n ¼ 500,000) to
validate logistic regression models that predict a binary out-
come y (y ¼ 1 if the outcome (e.g., mortality) occurred and
y¼ 0 if the outcome did not occur). Validation samples were
simulated for several risk models. For each model, lp could
be calculated per patient in the simulated validation sample.
The risk of y (p(y)) equals 1/(1 þ exp(�lp)). The outcome
value y (1 or 0) was then generated by comparing p(y) with

Table 1. Differences Between Development and Validation Samples That Determine the External Validity of Risk Models

Type of Difference
and Scenario

Difference Between Samples Characteristic of Validation Situation Example

Case mix

1 Distribution of predictors included
in the model

Different selection of patients based
on predictors considered in the
model

Validation in different setting

2 Distribution of predictors omitted
from the model

Different selection of patients based
on predictors not considered in the
model

Validation in different setting

Regression coefficients

3 Effects of the included
predictors

Sample from different population
compared with development
situation

Validation in different setting

4 Effect of the linear predictor Overfitted model is validated Validation of model from small
development sample

972 Vergouwe et al.

Am J Epidemiol 2010;172:971–980



an independently generated variable u having a uniform dis-
tribution from 0 to 1. We used the rule y ¼ 1 if p(y) � u, and
y ¼ 0 otherwise (see the Web Appendix, which is posted on
the Journal’s Web site (http://aje.oxfordjournals.org/), for
the simulation code used in the study).

The validity of predicted risks was assessed graphically by
plotting predictions on the x axis and the observed outcome
on the y axis. Calibration, that is, the agreement between
predicted risks and observed outcome proportions, can be
visualized as the distance between a LOESS smoothed curve
of observed outcomes and the 45-degree line (perfect agree-
ment or calibration) (12, 18). Note that the observed out-
come proportion by decile of prediction in such a plot is a
graphical illustration of the Hosmer-Lemeshow goodness-
of-fit test (19).

Performance measures for calibration were based on a re-
calibration model with logit(y) ¼ aþ b3 lp. Calibration-in-
the-large was assessed with the intercept a, given that slope
b is set to 1 (ajb ¼ 1) (20–22). The Hosmer-Lemeshow test
statistic was also estimated (19).

Discriminative ability refers to the ability to distinguish
subjects with the outcome from subjects without the out-
come, and it was measured with the c statistic (23). This
statistic is equal to the area under the receiver operating
characteristic curve, if the outcome variable is binary, as
in our study (24). Furthermore, we estimated single overall
performance measures to combine discrimination and cali-
bration aspects, that is, R2 and the Brier score (25). A num-
ber of R2 statistics are available (26). We estimated
Nagelkerke’s R2 (27), since this statistic is based on the
model likelihood, which is also used to fit generalized linear
regression models such as logistic models and survival
models. In general, Nagelkerke’s R2 is slightly larger than
R2 measures that use the squared correlation of the observed
outcome and predicted risk (26). Indeed, R2 and the Brier
score mainly capture discrimination, if the parameters are
estimated for recalibrated predictions.

Simulation of a different case mix

To study the influence of differences in case mix between
the development and validation samples, we started with
a simple model in which the outcome y in the validation
sample had a single predictor x (model 1). The predictor was
normally distributed with mean equal to 0 and a standard
deviation (SD) of 1 (x ~ N(0,1)). The intercept a was set to 0,
and the logistic regression coefficient b was 1.5. Hence, lp¼
1.5 3 x.

More (or less) severely ill subjects in the validation
sample (scenario 1A) were simulated by including subjects
with higher x values more (or less) frequently. To do so, we
compared the x values with values randomly drawn from
a normal distribution with N(0,0.8) (see the Web Appendix
for the R code used). As a result, the mean value of x was
higher, that is, 0.6 (or lower, i.e., �0.6). We simulated
a more (or less) heterogeneous case-mix (scenario 1B)
by including subjects with extreme values of x more (or
less) frequently (see Web Appendix for R code). As a
result, the variance of x was higher, that is, 2.0 (or lower,
i.e., 0.5).

Further, we simulated scenarios in which the outcome y in
the validation sample was determined not only by the in-
cluded predictor x but also by a second, though omitted,
predictor z (z ~ N(0,1)), with lp ¼ 1.5 3 x þ 1.5 3 z, with
a ¼ 0 and x and z being moderately correlated (scenario 2).
Moderate correlation between x and z (Pearson correlation
coefficient: r ¼ 0.33) resulted in a regression coefficient for
x that was 1.5, both in the unadjusted analysis (a model with
x only) and in the adjusted analysis (a model with z
included).

Differences in the distribution of the omitted predictor z
were similarly generated as for the included predictor x,
described above for scenario 1, to again introduce more or
less severity of illness (scenario 2A) or more or less hetero-
geneity (scenario 2B) in case mix.

Simulation of different regression coefficients

To study the effect of different regression coefficients on
model performance, we simulated another risk model (model
2) which contained 10 uncorrelated predictors. The predic-
tors were normally distributed with mean 0 and decreasing
SDs, with x1 ~ N(0,1), x2 ~ N(0,0.9), . . ., x10 ~ N(1,0.1). The
model was lp ¼ a þ b1 3 x1 þ b2 3 x2 þ . . . þ b10 3 x10,
where a is the intercept (set to 0) and bi are the regression
coefficients of predictors xi (each set to 1). As a result, lp ¼
x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ x9 þ x10.

We used an arbitrary example of differences in predictor
effects in the validation sample, with half of the predictors
having 0.5 times the effect of the development sample and
half having 1.5 times the effect. We validated predictions
from the model with regression coefficients equal to 1 in
samples where lpval ¼ 0.5 3 x1 þ 1.5 3 x2 þ 0.5 3 x3 þ
1.5 3 x4 þ 0.5 3 x5 þ 1.5 3 x6 þ 0.5 3 x7 þ 1.5 3 x8 þ
0.5 3 x9 þ 1.5 3 x10 was in fact the correct or true linear
predictor (scenario 3). The x values were distributed as in
the development sample. Next, we developed a model with
10 predictors on a development sample that contained only
100 subjects to obtain a model that was severely overfitted.
This model, lpdev ¼ 0.1 þ 1.3 3 x1 þ 2.1 3 x2 þ 1.1 3 x3 þ
0.7 3 x4 þ 1.3 3 x5 þ 1.5 3 x6 þ 1.7 3 x7 þ 2.5 3 x8 þ
2.1 3 x9 þ 0.9 3 x10, was validated in validation samples
with lpval ¼ x1 þ x2 þ x3 þ x4 þ x5 þ x6 þ x7 þ x8 þ x9 þ
x10 (scenario 4).

SIMULATION RESULTS

The simulated risk models with 1 and 10 predictors were,
by definition, well-calibrated in the development sample
(Figure 1, panels A and B) with good discriminative ability
(c ¼ 0.814 and c ¼ 0.859, respectively). When the model
was applied in another sample of the same underlying de-
velopment population, the performance was by definition
identical.

Differences in case mix

Changes in the distribution of the included predictor
caused by differences in either disease severity (scenario
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1A) or the homogeneity of the sample (scenario 1B) did not
affect calibration of the risk model with 1 predictor
(Figure 2). Calibration-in-the-large (ajb ¼ 1) was equal to
0; the calibration slope b was very close to 1. Nevertheless,
the Hosmer-Lemeshow test indicated misfit in Figure 2,
panels A–C (P< 0.001). Apparently, the Hosmer-Lemeshow
test is extremely sensitive for random variation in large sim-
ulation samples (here, n¼ 500,000). A more severe (Figure 2,
panel A) or less severe (Figure 2, panel B) case mix was
associated with somewhat less spread in predictions (SD of
lp ¼ SD(lp) ¼ 1.2) as compared with the development
sample (SD(lp) ¼ 1.5) in both subjects with the outcome
and subjects without the outcome (see also vertical lines at
the bottom), and hence a lower c statistic (0.766 instead of
0.814).

A more heterogeneous sample according to the included
predictor (scenario 1B, SD(lp) ¼ 2.1) was related to a higher
discriminative ability. The model could distinguish more
subjects with very low or very high predictions (c ¼ 0.898
instead of c ¼ 0.814; Figure 2, panel C). The reverse was
found for validation in a sample with less heterogeneity
(SD(lp) ¼ 1.1, c ¼ 0.747; Figure 2, panel D).

A more severe case mix according to the missed predictor
z (scenario 2A) caused a systematic miscalibration of pre-
dictions (Figure 3, panel A); predictions were on average
too low. The calibration-in-the-large (ajb ¼ 1) value was
0.7, which reflects the fact that more cases were found than
predicted (67% vs. 55%). The calibration slope was 1 on the
logit scale. Discrimination was similar to that in the devel-
opment sample (c ¼ 0.810), with similar spread in lp
(SD(lp) ¼ 1.5). The reverse calibration problem was noted
when the focus of selection was on less severely ill subjects
according to the omitted predictor (Figure 3, panel B). A
more or less heterogeneous distribution of the omitted pre-
dictor showed good calibration. The distribution of the lp
was slightly different (SD(lp) ¼ 1.6 for more heterogeneity

in the omitted predictor; SD(lp) ¼ 1.4 for less heterogene-
ity). As a consequence, discrimination was also slightly
different (Figure 3, panels C and D).

Differences in regression coefficients

Different predictor effects in the validation sample as
compared with the development sample for the model with
10 predictors (scenario 3) resulted here in a calibration slope
smaller than 1 (0.79) and less discriminative ability (c ¼
0.818 instead of c¼ 0.859; Figure 4, panel A), when applied
in the validation samples. The lower discrimination was
a result of differences in regression coefficients, since the
spread in lp was slightly higher in the validation sample
(SD(lp) ¼ 2.1 as compared with SD(lp) ¼ 2.0 in the de-
velopment sample). Note that we have introduced only 1
type of difference in the regression coefficients. Other in-
troduced differences in regression coefficients might have
given different results. The overfitted model (scenario 4)
clearly showed a smaller calibration slope of 0.55 (Figure
4, panel B). Predicted risks were too low in the lower range
and too high in the upper range. When we developed 20 new
models on 100 subjects drawn at random from the develop-
ment sample, all 20 models were highly overfitted, with
a median slope of 0.48 in the validation sample.

BENCHMARK VALUES FOR MODEL PERFORMANCE
MEASURES

The results of our simulation studies indicate that the
interpretation of model performance estimates in external
validation samples is not straightforward. Differences be-
tween the development and validation samples in case mix
and regression coefficients can both influence the model’s
performance. Benchmark values for model performance
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Figure 1. Calibration, discrimination, and overall performance of the 2 risk models when applied in the development sample or in similar validation
samples. Model 1 (panel A) contained 1 predictor; model 2 (panel B) contained 10 predictors (for details, see text). The triangles represent deciles
of subjects grouped by similar predicted risk. The distribution of subjects is indicated with spikes at the bottom of the graph, separately for persons
with and without the outcome. Brier, Brier score; c stat, c statistic (indicating discriminative ability); H-L, Hosmer-Lemeshow (P value corresponding
to Hosmer-Lemeshow test); interc, intercept (given that the calibration slope equals 1); R2, Nagelkerke’s R2; slope, calibration slope in a model y ~
linear predictor.
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measures may be helpful, to disentangle the case-mix effect
from the effect of the coefficients. We consider 2 types of
benchmark values that can be calculated in the validation
phase for better interpretation of model performance.

The first type of benchmark value is the case-mix-
corrected value. This is the performance under the condition
that the model predictions are statistically correct in the
validation sample. For a regression model, this means that
the regression coefficients for the predictors in the model
and the model intercept are fully correct for the validation
population. A practical approach to estimate the case-mix-
corrected values is to simulate the outcome y with the case
mix of the validation sample, given that the risk model is
correct. This is simply obtained by first calculating the pre-
dicted risks for each subject in the validation sample and
subsequently generating the outcome value based on this
prediction. With at least 100 repetitions for each subject,
stable estimates of the benchmark values are obtained.

A second type of benchmark value is the performance that
can be obtained by refitting the model in the validation
sample. The regression coefficients are then optimal for

the validation sample and hence provide an upper bound
for the performance, which would be obtained if the coeffi-
cients from the development population were exactly equal
to those in the validation population. The validation of the
Framingham Heart Study risk score included such refitted
benchmark values (7). The c statistic estimated in the de-
velopment sample (0.83 for women) was compared with
that estimated in the validation sample (0.75). The refitted
model in the validation sample corresponded to a c statistic
of 0.86. The refitted benchmark value indicates that the re-
gression coefficients were different for the validation pop-
ulation, if the case mix was similar. To estimate the relative
importance of the case mix, the case-mix-corrected bench-
mark value is needed.

We note that the benchmark values are useful for discrim-
inative and overall performance measures. Since the risk
model is considered correct (case-mix-corrected value) or
the regression coefficients are refitted (refitted value), the
benchmark values for calibration correspond in both situa-
tions to perfect calibration with calibration-in-the-large
equal to 0 and the calibration slope equal to 1.
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Figure 2. Influence on the performance of model 1 (1 predictor included), when more or less severe cases are selected (panels A and B) and
more or less heterogeneous cases are selected (panels C and D) according to observed predictor values (‘‘x’’). Panels A and B: 50% of the subjects
were selected, with higher or lower likelihood of selection with higher x values. Panels C and D: approximately 35% of the subjects were selected,
with higher or lower likelihood of selection with more extreme x values. See the legend of Figure 1 for explanation of lines and symbols.
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EXAMPLE OF BENCHMARK VALUES IN A
CASE STUDY

We illustrate the use of the benchmark values in a case
study on the prediction of 6-month outcome in subjects with
traumatic brain injury. We developed a model to predict an
unfavorable outcome (i.e., death, a vegetative state, or se-
vere disability) with data on 1,118 subjects (456 (41%) had
an unfavorable outcome) from the International Tirilazad
Trial (28). The validity of the risk model was studied in
1,041 subjects (395 (38%) had an unfavorable outcome)
who were enrolled in the North American Tirilazad Trial
(29). Both trials included subjects with severe or moderate
traumatic brain injury. We considered 3 predictors in
a logistic regression model: age, motor score, and pupillary
reactivity (30).

The model showed perfect calibration and reasonable
discrimination (c ¼ 0.749) and overall performance (R2 ¼
24.5%, Brier score ¼ 0.195; Figure 5, panel A and Table 2)
in the development sample. Internal validation by bootstrap-
ping showed minor optimism (c decreased to 0.740, R2 de-
creased to 22.3%, and Brier score increased to 0.199).

Surprisingly, discrimination was higher in the external val-
idation sample (i.e., c¼ 0.779; Figure 5, panel B). The case-
mix-corrected benchmark value for c was 0.767 (Figure 5,
panel C), indicating that a large part of the higher perfor-
mance should be attributed to a more heterogeneous case
mix. Indeed, the linear predictor had a larger variability in
the validation sample than in the development sample
(SD(lp) ¼ 1.1 and SD(lp) ¼ 1.0, respectively). When the
model was refitted in the validation sample, the performance
was similar to the performance of the previously developed
model when externally validated (c¼ 0.784; Figure 5, panel
D), reflecting similar regression coefficients. A similar pat-
tern was noted for R2 and the Brier score. The predictor
effects were overall slightly stronger in the validation pop-
ulation, as indicated by the calibration slope of 1.02 (Figure
5, panel B).

DISCUSSION

Testing the validity of a risk model in new subjects is an
important step in studying the model’s generalizability to
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Figure 3. Influence on the performance of model 1 (1 predictor included), when more or less severe cases are selected (panels A and B) and
more or less heterogeneous cases are selected (panels C and D) according to an omitted predictor (‘‘z’’). Panels A and B: 50% of the subjects were
selected, with higher or lower likelihood of selection with higher z values. Panels C and D: approximately 35% of the subjects were selected, with
higher or lower likelihood of selection with more extreme z values. See the legend of Figure 1 for explanation of lines and symbols.
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other populations. We showed that a model’s performance
depends not only on the correctness of the fitted regression
coefficients but also on the case mix of the validation sam-
ple. Lower discriminative ability in the validation sample as
compared with the development sample can be the result of
a more homogeneous validation case mix; regression coef-
ficients from the model can still be correct. Hence, the re-
sults of validation studies may not be directly interpretable.
In order to disentangle case-mix effects from the effect of
regression coefficients, we introduced a new benchmark
value for model performance measures.

Calibration was assessed with the recalibration parame-
ters (intercept and calibration slope) proposed by Cox (20)
and with the Hosmer-Lemeshow test (19). Although it is
widely used, the Hosmer-Lemeshow test has a number of
drawbacks. The grouping of patients by predicted risks,
though common, is arbitrary and imprecise. The test has
limited power to detect misfit in small samples, as also
addressed by Hosmer and Lemeshow themselves (31), and
minor, irrelevant misfit is identified in large samples.
The latter was also shown in our simulations. Further, the
Hosmer-Lemeshow test has poor interpretability (12). The
recalibration parameters are more informative (20, 32).
The values of the parameters should not be statistically dif-
ferent from 0 (intercept) and 1 (slope).

Recently, benchmark values were proposed in a system-
atic review on model performance measures for the inter-
pretation of validation results (33). The proposed
benchmarks included theoretical minimum and maximum
values for performance measures, estimates based on the
overall outcome incidence (no-information value), the ap-
parent performance of the model, the performance estimate
corrected for optimism after internal validation, and the
performance of a model for which the predictors are un-
correlated with the outcome. These benchmarks are useful
but do not distinguish case-mix influences from incorrect-
ness of the regression coefficients. Therefore, we introduce
a new benchmark value that considers the distribution of the

observed predictor values in the validation sample. We label
this benchmark the case-mix-corrected performance, similar
to Harrell’s optimism-corrected performance for internally
validated performance using bootstrap resampling (12). The
second benchmark is the refitted performance, which is ob-
tained by reestimating the regression coefficients of the in-
cluded predictors in the validation sample, and it has often
been used before. Note that if the validation sample is small,
the reestimated regression coefficients will be too optimis-
tic. The optimism-corrected performance of the refitted
model should then be estimated for a proper comparison
between the performance of the original model and that of
the refitted model.

The benchmark approach (case-mix-corrected perfor-
mance) focuses on the expected discrimination, given cor-
rect model fit. Another approach would be to test the model
fit. A simple test for misfit in the validation sample is a likeli-
hood ratio test for a model with the linear predictor included
as an offset variable (34). This is an overall test for differ-
ences in estimated regression coefficients in the validation
samples, taking the estimates from the development sample
as a reference. If the test indicates adequate fit, the estimated
discrimination indicates the heterogeneity in the new pa-
tients. Comparison of discriminative ability between the de-
velopment and validation samples as an indication of model
performance has become irrelevant. Correct model fit is also
assumed if R2 and Brier score are estimated after recalibra-
tion of the predictions. Comparison of such estimates be-
tween the development and validation samples only
indicates differences in heterogeneity. A validation plot
can be used to visualize the model (mis)fit and discrimina-
tion combined in 1 figure.

Our study had several limitations. We focused on the
point estimates of the performance measures rather than
statistical inferences. Interpretation of point estimates with-
out statistical testing requires reasonable sample sizes. We
previously showed that validation samples should have at
least 100 events for reasonable power to detect differences
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Figure 4. Influence on the performance of model 2 (10 predictors included) when regression coefficients are different. Predictor effects were
different in the validation sample, that is, 0.5 or 1.5 times as large (panel A), or the model was overfitted in the development phase (panel B). See the
legend of Figure 1 for explanation of lines and symbols.
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in model performance and hence provide precise point es-
timates (35). Small samples will give imprecise point esti-
mates, which require careful interpretation of the validation
results.

Further, we focused only on dichotomous outcome values
that were analyzed with logistic regression analysis. Our find-
ings translate easily to the survival context with time-to-event
data. Such data can be modeled with Cox proportional haz-

ards regression analysis, for instance. The baseline hazard can
be considered a group of time-dependent intercepts, and the
regression coefficients can be used to calculate the linear pre-
dictor. High variance of the linear predictor in the validation
sample indicates large heterogeneity, provided that the fit of
the survival model is adequate. The same performance mea-
sures that are used for the dichotomous situation, such as R2

and the c statistic, can be estimated for time-to-event

Table 2. Performance of a Risk Model for Traumatic Brain Injurya

Measure

International Tirilazad Trial
(n 5 1,118)

North American Tirilazad Trial
(n 5 1,041)

Apparent
Optimism-
Corrected

Externally
Validated

Case-Mix-
Corrected

Refitted

c statistic 0.749 0.740 0.779 0.767 0.784

R2, % 24.5 22.3 28.8 28.1 30.4

Brier score 0.195 0.199 0.182 0.188 0.179

a The model was developed in the International Tirilazad Trial and validated in the North

American Tirilazad Trial, 1991–1994.
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Figure 5. Performance of a risk model for traumatic brain injury. The model was developed in the International Tirilazad Trial and validated in the
North American Tirilazad Trial, 1991–1994. The 4 panels showmodel performance A) in the development sample; B) in the validation sample; C) in
the validation sample with outcome values generated such that the model calibrates perfectly; and D) in the validation sample with refitted
regression coefficients. See the legend of Figure 1 for explanation of lines and symbols.
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outcomes. A typical complexity with time-to-event outcomes,
though, is that observations may be censored. Consensus is
lacking on the appropriate way to account for censoring in
estimation of the c statistic. Several estimators have been
proposed that can accommodate censored data (36, 37). Once
the performance measures have been chosen, benchmark
values for the performance measures can be estimated by
simulating the outcome given perfect calibration. In case of
time-to-event outcomes, survival times and censoring times
are simulated, rather than dichotomous values.

In conclusion, comparison of estimates of model perfor-
mance in the development and validation populations solely
can result in wrong inferences about model validity. The
performance of risk models can be influenced by differences
in regression coefficients between the development and val-
idation samples, but also by differences in case mix. These
differences should be disentangled for a better interpretation
of validation results. Estimation of 2 types of benchmark
values, the case-mix-corrected performance and the refitted
performance, can be helpful for this purpose.
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