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Observational epidemiology has made outstanding contributions to the discovery and elucidation of relations
between lifestyle factors and common complex diseases such as type 2 diabetes. Recent major advances in the
understanding of the human genetics of this disease have inspired studies that seek to determine whether the
risk conveyed by bona fide risk loci might be modified by lifestyle factors such as diet composition and physical
activity levels. A major challenge is to determine which of the reported findings are likely to represent causal
interactions and which might be explained by other factors. The authors of this commentary use the Bradford-Hill
criteria, a set of tried-and-tested guidelines for causal inference, to evaluate the findings of a recent study on
interaction between variation at the cyclin-dependent kinase 5 regulatory subunit-associated protein 1-like 1
(CDKAL1) locus and total energy intake with respect to prevalent metabolic syndrome and hemoglobin A1c levels
in a cohort of 313 Japanese men. The current authors conclude that the study, while useful for hypothesis
generation, does not provide overwhelming evidence of causal interactions. They overview ways in which future
studies of gene 3 lifestyle interactions might overcome the limitations that motivated this conclusion.

CDKAL1 protein, human; energy intake; hemoglobin A1c protein, human; Japan; metabolic syndrome X

Abbreviations: CDKAL1, cyclin-dependent kinase 5 regulatory subunit-associated protein 1-like 1; FFQ, food frequency question-
naire; GWAS, genome-wide association study(ies); HbA1c, hemoglobin A1c; TEI, total energy intake.

In contrast to clinical trials, epidemiology may be well
suited to the discovery and elucidation of gene 3 lifestyle
interaction effects that are small in magnitude and manifest
over long durations. The limitations inherent in epidemiol-
ogy, however, necessitate careful consideration of whether
observed relations are likely to reflect cause and effect; this
process is fundamental when considering whether epidemi-
ologic data on gene 3 lifestyle interactions are of value for
disease prevention or personalizedmedicine. In this commen-
tary, we apply Hill’s established criteria for causal inference
(1) to a study of gene3 nutrient interactions published in this
issue of the Journal (2) and discuss alternative explanations
for the observed interaction effects.

Susceptibility to disease given specific lifestyle exposures
varies greatly from one person to the next, as do responses to
lifestyle interventions in clinical trials (3–5). Family-based
clinical trials show that there is considerably less phenotypic

variability between family members than between members
of different families (6), suggesting that inherited factors,
such as genes, modify the phenotypic response to interven-
tions. This supposition is supported by clinical trials in
which specific gene variants appear to modify the effects
of interventions (7–10). Copious numbers of (mainly cross-
sectional) epidemiologic reports also describe the influence
of interactions between candidate loci and lifestyle exposures
on disease traits (11).

Despite abundant literature on gene 3 lifestyle interac-
tions, many epidemiologists remain skeptical that these
reports are authentic, largely because few are adequately
replicated (12, 13). The same was true for almost all genetic
association studies until recently. The turning point was the
advent of the genome-wide association study (GWAS),
a high-throughput massively parallel genotyping technology
that motivated a transition away from the widely used
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hypothesis-driven biologic candidate gene approach and
toward one which is hypothesis-free and reliant on enor-
mous sample sizes, extensive replication efforts, and ex-
tremely conservative P values to demonstrate associations.
For type 2 diabetes, more than a decade of genetic associ-
ation studies yielded barely a handful of reliably associated
loci, yet in little more than 3 years since the first type 2
diabetes GWAS was published, more than 40 have emerged
(14–16). A similar story exists for almost all other complex
traits.

So far, 2 main approaches have been adopted to transfer
the GWAS concept to studies of gene 3 lifestyle interac-
tions. The first is a simple extension of existing GWAS,
where highly ranked loci from GWAS of main genetic ef-
fects are tested for interaction with lifestyle factors in much
the same way as biologic candidate gene variants have been
tested in the past. The second approach, which is more in-
novative but also more time-consuming, involves undertak-
ing de novo genome-wide analyses, where interaction terms
(or some variation thereof) are modeled on disease out-
comes and the highest-ranked interaction effects are carried
forward for replication in independent samples. There are
numerous consortia-based efforts under way in which this
second approach has been deployed, but so far no group of
investigators has published its findings. A third approach,
which has not yet been realized, is one where, from the
outset, the study is designed solely to test specific hypoth-
eses of interaction, such as genotype-based recall random-
ized clinical trials, where persons with starkly contrasting
genetic risk profiles are randomized to treatments in order to
determine whether one group responds differently from the
other, thereby demonstrating genetic modification of treat-
ment effects.

Using the first of these approaches, in a study published in
this issue of the Journal, Miyaki et al. (2) describe analyses
of gene 3 lifestyle interactions (cyclin-dependent kinase
5 regulatory subunit-associated protein 1-like 1 (CDKAL1)
gene3 total energy intake (TEI)) in a cross-sectional cohort
of 313 ‘‘healthy’’ Japanese men. The gene variant examined
(rs9465871) was initially identified through a type 2 diabe-
tes GWAS of whites (17, 18) and was later confirmed as
a diabetes-predisposing locus in Japanese (19). Miyaki et al.
examined these interactions in relation to hemoglobin A1c

(HbA1c) levels and metabolic syndrome (2). They also
reported on associations between the rs9465871 variant
and HbA1c levels, fasting glucose concentrations, and met-
abolic syndrome and between TEI and HbA1c levels. These
tests yielded a series of nominally statistically significant
results. Miyaki et al.’s main finding was that the relation
between the rs9465871 variant and HbA1c was significant
only in persons with the highest caloric intakes (2). They
also reported associations between the rs9465871 variant
and HbA1c, fasting glucose levels, and metabolic syndrome
risk, where the C allele was associated with elevations in
these traits.

Examination of the findings from this study, and others
like it, in the context of causal inference criteria may help
determine which published examples should be carried
forward to experimental studies specifically designed to
examine the effects of gene 3 lifestyle interactions.

CAUSAL INFERENCE AND ALTERNATIVE
EXPLANATIONS FOR AN INTERACTION STUDY’S
FINDINGS

In the Appendix, we provide a description of Hill’s criteria
for causal inference (1) and briefly apply them to Miyaki
et al.’s findings (2). We conclude that overall there is limited
evidence of causal interactions in Miyaki et al.’s study.
Indeed, studying gene3 lifestyle interaction effects is amajor
challenge, and if one were to apply these criteria to the
majority of existing studies, including one of our own (20),
one might reach a similar conclusion. Thus, the alternative
explanations for observed interaction effects outlined below
apply to much of the published literature, and not all points
are specific to Miyaki et al.’s study. It is also important to bear
in mind that, as Hill himself pointed out, none of the 9 criteria
‘‘can bring indisputable evidence for or against the cause-
and-effect hypothesis. . . What they can do, with greater or
less strength, is to help us to make up our minds on the
fundamental question—is there any other way of explaining
the set of facts before us, is there any other answer equally, or
more, likely than cause and effect?’’ (1, p. 299).

Multiple hypothesis-testing

An a level below 0.05 is conventionally used to justify
rejecting the null hypothesis. Under a normal probability
distribution, a hypothesis test yielding a P value of 0.01
suggests that 1 in 100 tests where we rejected the null hy-
pothesis of no association is in fact false-positive (type 1
error rate ¼ 1/100). If 2 completely independent hypotheses
are tested, the type 1 error rate at P ¼ 0.01 is now 2 in 100,
and so on. A Bonferroni correction attempts to overcome the
disparity between the nominal (uncorrected) P value and the
underlying type 1 error rate by multiplying the observed
P value for each test by the number of tests performed;
hence, a nominal P value of 0.01 obtained from 10 indepen-
dent tests would not be considered statistically significant
after Bonferroni correction (corrected P ¼ 0.10). Parenthet-
ically, the reason a probability threshold of P < 1.0 3 10�8

is used in GWAS is to account for the million or more tests
that might be performed; type 1 error rates in GWAS
approximate those from studies in which single tests were
performed, yielding P values of approximately 0.01. There
are limitations to the Bonferroni correction (21), and other
less conservative and more idiosyncratic approaches have
been advanced (21). The prevailing issue, however, is that
the greater the number of tests performed, the greater the
risk of false discovery when using nominal P values to guide
the decision as to whether to accept or reject the null
hypothesis.

Miyaki et al. corrected the interaction P values presented
in their paper (2) for 2 tests, meaning that where P values
were less than 0.025, they chose to reject the null hypothesis
of no interaction. As they acknowledge (2), they performed
at least 16 additional hypothesis tests for the main effects of
the CDKAL1 variant. Thus, type 1 error rates in Miyaki
et al.’s study may have been higher than was apparent at
face value, although it could be argued that these additional
16 tests were secondary and therefore independent of the
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interaction tests. Only with thorough replication efforts
could one make a reasonable conclusion on this point.

Measurement error and information bias

Miyaki et al. used a food frequency questionnaire (FFQ) to
estimate caloric intake. However, this method is well known
to be prone to error and bias (22). FFQs are touted for their
ability to appropriately rank people from high intake to low
intake (23), but FFQs are not designed to measure absolute
TEI. Biomarker studies indicate that correlations between
FFQ-derived TEI and TEI estimated by the gold-standard
doubly labeled water method are generally fairly weak (24).
Owing to this and other limitations, FFQs are rarely used as
the primary exposure or outcome (23). TEI estimated by FFQ
is, however, frequently used to adjust other nutrient or food
estimates in epidemiologic studies and clinical trials.

Miyaki et al. categorized TEI into 3 broad groups (low,
medium, and high) but apparently did not exclude persons
with extremely high or low reported TEIs. Such exclusions
are commonly performed in nutritional epidemiology,
largely because measurement error tends to segregate at the
extremes of the trait distribution. Thus, it is likely that the
approach used by Miyaki et al. to characterize TEI aug-
mented exposure misclassification. Assuming that the mis-
classification was nondifferential, one would expect this to
have resulted in diminished statistical power. If, however, the
error was related to other factors—factors correlatedwith the
outcome but not lying on the causal pathway (e.g., types and
amounts of foods selected, hunger cues, societal factors, hor-
mone levels, basal metabolic rate, physical activity level,
and/or genotype)—the reported interactions may be biased.

Small-study bias and type 1 error

Small-study bias relates to issues concerning the reporting
of data from small studies that might lead to spurious con-
clusions about the strength, magnitude, or direction of as-
sociations. Underrepresentation in the literature of negative
results from small studies is one form of small-study bias.
Other forms pertain to the manner in which data are ana-
lyzed and how methods are reported. Large, well-funded
studies tend to strictly regulate data analysis and reporting.
Oftentimes, large studies have steering committees which
oversee the creation and execution of analysis plans, mini-
mizing reporting biases. Studies lacking such infrastructure
may be more prone to analytical errors and misreporting.
One major problem that is perhaps more frequent in small
studies which lack statistical power is the fact that investi-
gators conduct extensive data exploration in order to iden-
tify associations which are significant at the nominal level
but are not significant when appropriately corrected for mul-
tiple testing. Where these findings are reported as emerging
from primary hypothesis tests, without a thorough descrip-
tion of the circumstances in which they were obtained, the
risk of false discovery may be high. Interaction analyses are
often performed on an exploratory basis when the primary
hypothesis test has not yielded publishable results. There-
fore, small studies in which interactions are reported may be
particularly prone to these forms of bias; the abundance of

published interaction studies lacking adequate replication
suggests that this problem is common. An important con-
sideration when reviewing data on gene 3 environment in-
teractions is whether the P value for the interaction effect is
roughly consistent with what one would predict given the
study’s level of statistical power. If the reported effect sizes
are implausibly large or if the study seriously lacks power to
detect the reported effects at the specified a level, one should
remain cautious about the validity of the study’s findings.
Therefore, replication studies are generally considered
necessary to confirm or refute initial reports of interaction.

SUMMARY

For more than a decade, scientists have sought to quantify
how interactions between gene variants and lifestyle factors
affect variations in type 2 diabetes risk or its antecedent
quantitative traits. Despite many publications purporting
to have detected such interactions, very few of these studies
have been adequately replicated, highlighting the consider-
able challenges facing those seeking to achieve this end and
the need for a whole-scale reevaluation of the way such
studies are conducted and reported (25). While studies such
as Miyaki et al.’s (2) do not in and of themselves provide
concrete evidence of gene 3 lifestyle interactions, they do
contribute to the foundations which will support larger,
more comprehensive future studies. Those endeavors, par-
ticularly when comprised of multiple smaller studies, will
face other challenges (26), but the result will almost cer-
tainly be the detection of statistically reliable interactions;
determining whether these are of clinical relevance is
another matter.
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APPENDIX

Hill’s Criteria for Causal Inference

Effect size: The size of the effect estimate is positively re-
lated to the probability that the effect is causal.
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In the study by Miyaki et al. (2), the difference in mean
hemoglobin A1c (HbA1c) levels between the lowest and
highest tertiles of total energy intake (TEI) was 0.8%. The
difference in mean HbA1c between the CT þ TT and CC
genotypes in the lowest tertile of TEI was �0.2%, and the
difference in the highest tertile was 0.7%. As these data
indicate, the magnitude of the observed interaction effect
was large. Indeed, had it not been so large, it is highly
improbable that with such a small sample the interaction
would have reached a nominal level of statistical signifi-
cance. It is worth bearing in mind that large interaction
effects in small studies are a virtual prerequisite for a paper
to be competitive for publication; small studies reporting
negative results are not prioritized by most journals, owing
to the high risk of type 2 error.

Consistency: Effects observed across different study set-
tings, times, and subgroups are more likely to be causal than
those observed in isolation.

Several epidemiologic and intervention studies have
examined the relations of interactions between cyclin-
dependent kinase 5 regulatory subunit-associated protein
1-like 1 (CDKAL1) variants and lifestyle factors with
diabetes-related traits. The results of 2 intervention studies
(27, 28) provide no support for Miyaki et al.’s findings.
Similarly, a cohort study of more than 16,000 Swedish
adults (29) found no evidence that the rs7754840 variant
(in near-perfect linkage disequilibrium with rs9465871 in
other Asian populations) modifies the relations of physical
activity and body mass index (both of which are correlated
with TEI) with type 2 diabetes incidence or fasting or 2-hour
glucose concentrations.

Specificity: Mechanisms of action that are specific to the
observed effect strengthen the probability that the effect is
causal.

The etiology, clinical presentation, and treatment require-
ments of type 2 diabetes and the metabolic syndrome are
often highly heterogeneous and in some senses lack speci-
ficity. When considering the mechanisms of action that
might underlie the interactions reported by Miyaki et al.
(2), one must first ask how TEI and CDKAL1 transcription
or translation, singularly or in combination, might influence
variations in glycemia and the manifestation of the meta-
bolic syndrome. Miyaki et al. offer no clear explanation in
their paper, and while excess caloric intake can cause obe-
sity, the latter being a major risk factor for cardiovascular
and metabolic disease, little is known of how, or even if, the
CDKAL1 rs9465871 variant causes these diseases.

Temporality: The disease trait emerges at an appropriate
time and/or rate following exposure to the risk factor. Where
the effect has emerged before risk factor exposure, the effect
cannot be causal, and reverse causality should be considered
as a possible explanation.

In a cross-sectional study such as that conducted by
Miyaki et al. (2), temporality of exposures and outcomes
cannot be easily determined. However, in most genetic stud-
ies of germ-line variants, investigators can be confident that
the genotype is unlikely to be altered by the outcome (re-
verse causality). In the case of gene 3 environment inter-
actions, this issue of temporality is more complex than in
conventional genetic association studies. For example, be-

cause glucose levels can influence energy intake (30), it is
possible that in the present study the effects of the CDKAL1
variant were modified by glucose levels and not by TEI, and
that the true outcome was TEI level and not variations in
glycemia.

Biologic gradient: Levels of quantitative disease traits or
disease incidence rates increase (or decrease) in a manner
dependent on the extent of risk factor exposure (i.e., ‘‘dose-
response’’ relations exist).

In the study conducted by Miyaki et al. (2), both genetic
(CDKAL1 genotype) and dietary (TEI) exposures were eval-
uated. No linear trend was observed across genotype groups
with respect to the outcomes of interest. Instead, a recessive
effect was observed, where both copies of the risk allele
were required to yield a statistically significant association
with HbA1c concentrations. With respect to TEI, a dose-
response relation with HbA1c was evident only in persons
carrying both copies of the C allele. Furthermore, the
strength of the association between CDKAL1 genotype
(CC vs. CT þ TT) and HbA1c was significant only in sub-
jects whose TEI was in the upper third of the sample distri-
bution. Thus, overall, Miyaki et al.’s study partly fulfills this
criterion of causality.

Plausibility: Is a plausible mechanism known for the ob-
served effect?

Laboratory studies show that the gene product of
CDKAL1 is involved in b-cell function, particularly under
glucotoxic conditions (31). Thus, it is possible that poly-
morphisms in this gene region that compromise function
and affect insulin secretion could be further perpetuated as
glucose concentrations become chronically elevated. High
TEI (relative to energy expenditure) can lead to elevated
fasting glucose levels and therefore provides a potentially
plausible mechanism for an enhanced effect of CDKAL1
variation on HbA1c when TEI exceeds energy expenditure.
However, one should consider what the TEI variable used in
Miyaki et al.’s study (2) really represents. Food frequency
questionnaire validation studies conducted in other cohorts
(24) clearly show that TEI estimated from this method
is only weakly correlated with TEI measured using gold-
standard approaches. Food frequency questionnaire TEI
estimates are also likely to be correlated with a variety of
other dietary, as well as nondietary, factors (32). Disentan-
gling these factors is a formidable challenge but is necessary
in order to understand the putative mechanisms underlying
gene 3 TEI interactions. Thus, while the study by Miyaki
et al. can be viewed as hypothesis-generating, because of the
weak methods used to assess TEI and a dearth of supportive
evidence from elsewhere, it is difficult to advance a plausible
mechanism that is specific to an effect of interaction be-
tween TEI and CDKA1 genotypes on glycemia.

Coherence: The availability of supportive laboratory ev-
idence increases the probability that the effects are causal,
but the absence of such evidence does not mean that the
effects are not causal.

To our knowledge, no laboratory studies have addressed
parallel interaction hypotheses.

Experiment: The availability of experimental evidence
is perhaps the strongest single criterion for causal in-
ference, although in experiments where the treatments
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cannot be fully blinded, as is the case in lifestyle interven-
tion studies, observed effects may still be susceptible to
confounding.

Two intervention studies have examined the influence of
interaction between CDKAL1 variants and lifestyle inter-
ventions on fasting glycemia, insulin sensitivity, or diabetes
incidence (27, 28). The first of these studies was the Di-
abetes Prevention Program, in which approximately 3,200
people at high risk of type 2 diabetes were randomized to
receive placebo, a program of intensive lifestyle modifica-
tion focused on weight loss, or metformin treatment. After 3
years, the results of this study showed no evidence that the
CDKAL1 rs7754840 variant modified the effects of lifestyle
intervention on diabetes incidence (27). Results from the
HERITAGE Study, a nonrandomized family-based trial
(n ¼ 481), showed no evidence of association between the
rs7754840 variant and change in fasting glucose, fasting
insulin, or acute insulin response after 20 weeks of exercise
training (28). A nonsignificant borderline effect was ob-
served for change in insulin sensitivity, whereby the G allele
(analogous to the T allele at rs9465871) was associated with
greater improvements in insulin sensitivity following exer-
cise training as compared with the low-risk A allele. This
finding, that the G allele apparently increases responsive-
ness to changes in energy expenditure (exercise), is not

supportive of Miyaki et al.’s findings (2), which suggest
that the T allele diminishes the effect of energy intake on
HbA1c.

Analogy: Where examples exist of similar effects in dif-
ferent scenarios, the effects may be more likely to be causal.

We have already outlined the lack of supporting evidence
from other studies which have examined the influence of
interactions between CDK1A variants and energy intake or
energy expenditure on metabolic traits. However, many
other analogous examples of effects of gene 3 nutrient in-
teractions on related traits have been reported (summarized
by Franks et al. (11)). Probably the strongest example
of gene 3 nutrient interaction is that of the peroxisome
proliferator-activated receptor gamma (PPARG) Pro12Ala
variant, dietary fat intake, and obesity (33). A second prom-
ising example is variation in the fat mass and obesity-
associated (FTO) gene and nutrient intake. For example,
in a recent Scandinavian study, Sonestedt et al. (34) reported
strong effects of interactions between the rs9939609 FTO
gene variant and fat or carbohydrate intake on obesity
predisposition—findings which are support by clinical trial
data from the United States (35) in which the high-risk FTO
genotype group appeared more responsive to the effects of
lifestyle modification on reductions in abdominal adipose
mass during the first year of the trial.
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