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Abstract

Onychophora.

Background: During embryonic development of segmented animals, body segments are thought to arise from
the so-called “posterior growth zone” and the occurrence of this “zone” has been used to support the homology
of segmentation between arthropods, annelids, and vertebrates. However, the term “posterior growth zone” is used
ambiguously in the literature, mostly referring to a region of increased proliferation at the posterior end of the
embryo. To determine whether such a localised posterior proliferation zone is an ancestral feature of
Panarthropoda (Onychophora + Tardigrada + Arthropoda), we examined cell division patterns in embryos of

Results: Using in vivo incorporation of the DNA replication marker BrdU (5-bromo-2"-deoxyuridine) and anti-
phospho-histone H3 immunolabelling, we found that a localised posterior region of proliferating cells does not
occur at any developmental stage in onychophoran embryos. This contrasts with a localised pattern of cell
divisions at the posterior end of annelid embryos, which we used as a positive control. Based on our data, we
present a mathematical model, which challenges the paradigm that a localised posterior proliferation zone is
necessary for segment patterning in short germ developing arthropods.

Conclusions: Our findings suggest that a posterior proliferation zone was absent in the last common ancestor of
Onychophora and Arthropoda. By comparing our data from Onychophora with those from annelids, arthropods,
and chordates, we suggest that the occurrence of a “posterior growth zone” currently cannot be used to support
the homology of segmentation between these three animal groups.

Background

The most obvious subdivision of the body into serially
repeated units or segments occurs in annelids (ringed
worms), panarthropods (onychophorans, tardigrades and
arthropods), and chordates (including vertebrates, uro-
chordates and cephalochordates). During embryonic
development, segments are commonly believed to origi-
nate from the so-called “posterior growth zone” (review
[1]). However, this term has been applied very broadly
in the past, which has resulted in ambiguity. For exam-
ple, the occurrence of a “posterior growth zone” has
been used to support the homology of segmentation
either specifically in annelids and panarthropods [2-4]
or in all three groups of segmented animals, suggesting
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that segmentation was present in their last common
ancestor [1,5-8].

Traditionally, the term “posterior growth zone” has
been used to describe a localised and highly proliferative
terminal body region, which has been dubbed the “pro-
liferating area” or “zone of proliferation” [9-11]. While it
seems clear that such a localised proliferation zone is
present in embryos, larvae, or juveniles of annelids,
including clitellates and polychaetes [11-18], the situa-
tion is less clear for chordates. In vertebrate embryos, a
higher proliferative activity, as compared to the pre-
somitic mesoderm region, consistent with the presence
of stem cells has been observed in the tailbud [19-24].
In cephalochordate embryos, the pre-somitic mesoderm
region is absent, but the tailbud shows a high number
of proliferating cells during somitogenesis [25,26]. In
contrast, a “posterior growth zone” is lacking completely
from embryos of urochordates [1], as evidenced by var-
ious cell lineage and cell proliferation studies [27-29].
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Thus, the ancestral state for the chordates remains
unclear.

Apart from annelids and vertebrates, a pool of prolif-
erating cells, or stem-like cells, at the posterior end have
been proposed for the arthropod embryos [3,4,11,30].
However, the existence of such a localised zone has only
been confirmed for embryos of malacostracan crusta-
ceans [31-33]. Although the malacostracan stem-like
cells are reminiscent of the clitellate teloblasts, their
homology is questionable [4,31,32,34,35]. Leaving aside
the issue of the homology of crustacean and clitellate
teloblasts, the existence of a posterior pool of proliferat-
ing cells has been doubted for all remaining arthropod
groups [35-40]. Thus, the question arises of whether a
localised posterior proliferation zone is an ancestral fea-
ture of (pan)arthropods. To clarify this question, an ana-
lysis of the pattern of cell division in embryos of a
closely related outgroup, such as Onychophora or velvet
worms, is required.

So far, specific markers of dividing cells have not been
used to investigate the mode of axis elongation in ony-
chophoran embryos, which instead has been deduced
from classical histological methods and scanning elec-
tron microscopy. Based on these studies, it is generally
assumed that there is a distinct posterior proliferation
zone in onychophoran embryos [10,11,41,42]. However,
the original illustrations [10,43-49] do not bear this out,
and the ancestral mode of cell proliferation and axis
elongation in Panarthropoda has remained obscure.
Despite this, others have assumed all arthropods have a
restricted posterior proliferation zone. Indeed, Jaeger
and Goodwin [50,51] have developed mathematical
models based on the concept of a proliferation zone to
investigate the dynamics of sequential addition of seg-
ments during development in segmented animals,
including the arthropods.

To clarify whether a posterior proliferation zone exists
in Onychophora, we analysed the cell division patterns
in embryos from the two major onychophoran groups:
the Peripatidae and the Peripatopsidae. Our data
demonstrate the absence of a posterior proliferation
zone in the last common ancestor of Onychophora and
Arthropoda. We have therefore modified the mathema-
tical segmentation model of Jaeger and Goodwin [50,51]
by assuming distributed, rather than localised, cell pro-
liferation during development.

Results and discussion

Anti-BrdU immunolabelling does not reveal a posterior
proliferation zone in Onychophora

In vivo incorporation of the DNA replication marker
BrdU, in conjunction with anti-BrdU immunolabelling,
is a commonly used method for analysing embryonic
cell division patterns [15,52-59]. Among annelids, anti-
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BrdU immunolabelling revealed a distinct posterior pro-
liferation zone in post-metamorphic stages of poly-
chaetes, including the echiurans [15,16,54]. A similar
localised region containing stem-like cells or teloblasts
also occurs in clitellate embryos [13,14,18]. To obtain
comparative data from Onychophora, we applied the
anti-BrdU immunolabelling in elongating embryos of
the velvet worm species Euperipatoides rowelli. In con-
trast to annelids, we did not detect a higher number of
BrdU labelled cells at the posterior end of the onycho-
phoran embryos than in the rest of the body (Figures
1A-C). Thus, this method does not confirm the exis-
tence of a posterior proliferation zone in Onychophora.

Anti-BrdU immunolabelling is not specific to dividing
cells
It was possible we were unable to detect the posterior
proliferation zone in onychophoran embryos as a conse-
quence of non-specific incorporation of BrdU into
actively dividing cells. However, extensive work has
shown that BrdU will be incorporated into all cells
undergoing DNA synthesis, including endocycling cells
[60-63]. The latter are specialised cells, which increase
their biosynthetic activity by entering endocycles, i.e.,
successive rounds of DNA replication without an inter-
vening mitosis [63-65]. Due to ongoing DNA synthesis
in these cells, BrdU is incorporated in their nuclei;
although these cells can grow larger they do not divide.
Our BrdU-labelling experiments on onychophoran
embryos revealed specific labelling patterns correspond-
ing to some developing structures and organs (Figures
2A-E). In particular, the so-called ventral organs and the
anlagen of their derivatives, the hypocerebral organs,
show a high number of BrdU-positive cells, with vir-
tually every cell labelled in the superficial layer (Figures
2A-E). The nuclei of the BrdU-positive cells show a
divergent morphology compared to other cells since
they are columnar in shape, larger in size, and contain
conspicuously condensed chromatin [66,67]. Notably,
increased size and condensed chromatin is a feature of
other endoreplicating cells, e.g., the salivary gland cells
and nurse cells in Drosophila melanogaster [68,69].
Furthermore, our data show that in the ventral organs
BrdU is initially incorporated in a conspicuous punctate
pattern (Figure 2F), which is typical of endocycling cells
[62]. Due to this peculiar pattern of BrdU incorporation
and modified cell morphology, we suggest that most
cells in the ventral organs (and in the hypocerebral
organ anlagen) are endocycling cells. Since we cannot
exclude the possibility that other embryonic cells also
enter the endocycle, we caution that anti-BrdU immu-
nolabelling will not provide a definitive method for
detecting mitotic cell division patterns in onychophoran
embryos.
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Figure 1 Incorporation of 5-bromo-2’-deoxyuridine (BrdU) and subsequent immunohistochemical detection at the posterior end in
embryos of the onychophoran Euperipatoides rowelli (Peripatopsidae). Triple-labelling with the DNA-selective dye Hoechst (Bisbenzimide,
blue), and anti-BrdU (green) and anti-phospho-histone H3 antibodies (a-PH3, red) after 3 hours incubation in BrdU. Confocal micrographs.
Arrows point to areas of intense anti-BrdU immunolabelling corresponding to the developing ventral organs. Note that neither anti-BrdU nor .-
PH3 immunolabelling reveals an increased number of cell divisions at the posterior end. (A) Posterior end of an early stage 3 embryo. (B)
Posterior end of a late stage 3 embryo. (C) Posterior end of a stage 4 embryo. Leg-bearing segments numbered. Abbreviations: as, anus; ve,
ventral extra-embryonic ectoderm. Scale bars: A-C, 200 pym.

Absence of a posterior proliferation zone in Onychophora
As the BrdU-labelling experiments revealed a large num-
ber of non-dividing, endoreplicating cells and cell lineage
analyses are not applicable to onychophoran embryos, we
next used an anti-phospho-histone H3 (a.-PH3) antibody
to determine whether there is a concentration of mitotic
cell divisions in the posterior of the onychophoran
embryo. This antibody specifically recognises mitotic fig-
ures in prophase, metaphase and anaphase [70] and, thus,
allows detection of mitotic cells in various animals,
including the onychophorans (Figure 3A) [66]. To obtain
a comprehensive picture of cell division patterns during
development, we analysed numerous embryos (n = 187)
of the onychophoran Euperipatoides rowelli (Peripatopsi-
dae) at consecutive developmental stages and covering all
embryonic stages [42].

Our data show that the mitotic cells are scattered
throughout the blastoderm at the blastula stage (Figure
3B). This apparently random distribution of dividing
cells persists until the blastopore arises in the newly
formed germ disc at the gastrula stage (Figure 3C).
From this stage onwards, the number of dividing cells
increases within the entire germ disc, but we do not see
a concentration of dividing cells at the posterior end of
the embryo (Figure 3D). Even when the embryo con-
tinues to elongate during development, the number of
dividing cells does not become higher at the posterior
end (Figures 1A-C and 4A-D), even though new seg-
ments are segregated in this body region [42] (see also
[71] for the expression pattern of engrailed and wingless
in embryos of a closely related species, Euperipatoides

kanangrensis). The data therefore suggest that the pos-
terior end of Euperipatoides rowelli embryos does not
contain a zone of a higher proliferative activity.

To clarify whether the absence of a concentrated pos-
terior proliferation zone is a common feature of Ony-
chophora, we studied embryogenesis in Epiperipatus
isthmicola, a representative of Peripatidae. Our data
show that the cell division pattern in embryos of Epiper-
ipatus isthmicola (n = 124) is similar to that in Euperi-
patoides rowelli, with dividing cells scattered along the
body throughout development (Figues 5A-E). Thus, our
results from two distantly related species of Onycho-
phora suggest that, in contrast to previous assumptions
[3,4,10,11,72,73], a distinct concentration of dividing
cells, which would denote a posterior proliferation zone,
does not exist in this group.

No posterior proliferation zone in the last common
ancestor of Panarthropoda

In summary, the results of our study show that mitotic fig-
ures do not occur in a condensed pattern at the posterior
end in onychophoran embryos, suggesting that there is no
preferential zone of proliferation in this body region. It is
unlikely that the o.-PH3 immunolabelling method we used
failed to detect the posterior proliferation zone since this
technique reliably shows such a zone in larvae of the anne-
lid Capitella teleta (Figures 6A-D and 7A-D), as does the
anti-BrdU immunolabelling in late larval stages and juve-
niles of the same species [15]. Furthermore, the o.-PH3
immunolabelling method revealed other proliferating
regions rather than a posterior proliferation zone in
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Figure 2 Incorporation of 5-bromo-2’-deoxyuridine (BrdU) and subsequent immunocytochemical detection in embryos of the
onychophoran Euperipatoides rowelli (Peripatopsidae). Confocal micrographs. Note the intense labelling in the ventral organs and anlagen
of the hypocerebral organs, which are derivatives of the anterior-most pair of ventral organs. (A, B) Ventral and lateral views of a late stage 6
embryo after 12 hours incubation in BrdU. Arrows point to the ventral organs. (C) Ventral view of the head of a late stage 6 embryo after 10
hours incubation in BrdU. Double-labelling with the DNA-selective dye Hoechst (Bisbenzimide, blue) and anti-BrdU antibody (green). (D) Detail of
two pairs of ventral organs from a stage 6 embryo after 12 hours incubation in BrdU. (E) Optical cross-section of an anlage of the hypocerebral
organ after 12 hours incubation in BrdU showing a superficial layer of anti-BrdU labelled cells. (F) Detail of ventral organ nuclei after 3 hours
incubation in BrdU (ventral view). Double-labelling with anti-BrdU (green) and anti-phospho-histone H3 antibodies (a.-PH3, red). Arrowheads
point to BrdU incorporation foci in each nucleus. Abbreviations: br, presumptive brain tissue; ho, anlagen of hypocerebral organs; mo,
presumptive mouth opening; vo, ventral organs. Scale bars: A and B, 500 um; C, 100 um; D, 50 um; E and F, 20 um.

Anti-BrdU

onychophoran embryos. For example, concentric rings of
proliferating cells, which correspond in timing and posi-
tion with the anlagen of the hypocerebral organs [66], are
found in the antennal segment of the onychophoran
embryos (Figures 4D and 5D).

The lack of evidence for a localised posterior prolifera-
tion zone in Onychophora corresponds well with the
apparent absence of such a zone in tardigrades [74,75]
and most arthropods [35-40], excepting the malacostra-
can crustaceans. We therefore suggest that a localised
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Figure 3 Cell division patterns in early embryos of the ovoviviparous onychophoran Euperipatoides rowelli (Peripatopsidae). Double-
labelling with the DNA-selective dye Hoechst (Bisbenzimide, blue) and anti-phospho-histone H3 antibody (a.-PH3, red). (A) Mitotic cells from an
early segmenting embryo. The nuclei of Hoechst stained cells show diffuse chromatin whereas chromosomes (ch) are seen in Hoechst/a-PH3
double-labelled cells. (B) Blastula stage embryo with mitotic cells scattered throughout the blastoderm (bd). (C) Early gastrula stage embryo with
dividing cells in the extra-embryonic ectoderm (ee) and in the germ disc (arrowhead). (D) Early germ band embryo with cell divisions scattered
throughout the germ disc. Paired germ band (dotted line) extends anteriorly on each side of the slit-like blastopore (bp). Abbreviations: bd,
blastoderm; bp, blastopore; ch, chromosomes; ee, extra-embryonic ectoderm. Scale bars: A, 10 um; B and C, 200 um; D, 100 pum.

posterior proliferation zone was absent in the last com-
mon ancestor of Panarthropoda.

Modified mathematical model suggests that a posterior
proliferation zone is not required for segmentation

One of the assumptions of Jaeger and Goodwin’s [50,51]
segmentation model is that cell proliferation occurs only
at the posterior end of the segmenting embryo. How-
ever, the results of our and other studies [35,38,75]
revealed that a higher concentration of mitotic cells
does not occur at the posterior end in embryos of ony-
chophorans, tardigrades and most arthropods. We there-
fore modified the Jaeger and Goodwin mathematical
model [50,51] and assume distributed proliferation of
cells along the embryo. We retain an anterior-to-

posterior developmental gradient in our model as it
occurs in embryos of short germ developing arthropods
and onychophorans, which contrasts with the situation
found in long germ developing insects, in which all seg-
ments arise simultaneously [38]. As indicated by our
experimental data, we choose a uniform (constant) pro-
liferation rate across the entire embryo.

At early times, all cells across the developing tissue
oscillate between states (Figure 8). After some time,
however, the anteriorly located cells in the tissue begin
to increase the length of their oscillation period, and the
first segment establishes in the anterior-most region just
before t = 10. Subsequently, additional segments are
established adjacent to preceding segments in an ante-
rior-to-posterior progression. Moreover, there is a
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Figure 4 Cell division patterns in segmenting embryos of the ovoviviparous onychophoran Euperipatoides rowelli (Peripatopsidae). The
full number of 15 leg-bearing segments has not been established yet. Double-labelling with the DNA-selective dye Hoechst (Bisbenzimide, blue)
and anti-phospho-histone H3 antibody (a-PH3, red). (A) Flat preparation of an embryo with two leg-bearing segments. (B) Flat preparation of an
embryo with four leg-bearing segments. (C) Ventrolateral view of a late stage 3 embryo with 11 leg-bearing segments. (D) Ventrolateral view of
an early stage 4 embryo with 13 leg-bearing segments. Note the concentric rings of proliferating cells in the antennal segment (arrowheads).
Arrows (in B and C) point to remnants of the blastopore in front of the future anus. Leg-bearing segments numbered. Abbreviations: an,
antennal segment; as, anus; at, presumptive antenna; bp, blastopore; de, dorsal extra-embryonic ectoderm; jw, jaw segment/presumptive jaw;
mo, embryonic mouth; sp, slime papilla segment/presumptive slime papilla; ve, ventral extra-embryonic ectoderm. Scale bars: A-D, 200 pm.

decrease in size of the newly established segments from
anterior to posterior end. Here, since the cells within a
segment continue to proliferate, the established seg-
ments also grow in width. This finding corresponds well
with the observed external and internal anatomy of the
embryos studied (Figures 4A, B and 5D).

Taken together, the results of our mathematical model
show that segments can be patterned successfully with-
out the involvement of a localised posterior proliferation
zone in embryos of short germ developing arthropods
and onychophorans.

Conclusions

The term “posterior growth zone” is commonly used to
describe the terminal body region, which gives rise to
segments in embryos of most panarthropods, annelids,
and chordates [1,4,5,7,11,76]. However, according to our
results, the “posterior growth zone” of panarthropods is
not a localised “zone” of proliferation but rather an area,
in which segments are patterned, as evidenced by various
gene expression data available from various arthropods
[35,77-81]. This contrasts with the “posterior growth
zone” of annelids, in which both an increased number of
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Figure 5 Cell division patterns in embryos of the placental viviparous onychophoran Epiperipatus isthmicola (Peripatidae). The full
number of leg-bearing segments (30-32 in females and 27-29 in males) has not been established yet. Double-labelling with the DNA-selective
dye Hoechst (Bisbenzimide, blue) and anti-phospho-histone H3 antibody (a-PH3, red). (A) Gastrula stage embryo. (B) Elongating germ band
embryo with separate mouth and anus openings. (C) Elongating embryo with 10 leg-bearing segments. (D) Elongating “coiled stage” embryo
with 20 leg-bearing segments. Arrowheads indicate concentric rings of proliferating cells in the antennal segment. (E) A “coiled stage” embryo
with 26 leg-bearing segments. Abbreviations: an, antennal segment; as, anus; at, presumptive antenna; bp, blastopore; jw, jaw segment/
presumptive jaw; mo, embryonic mouth; sp, slime papilla segment/presumptive slime papilla. Scale bars: A, 25 um; B, 50 um; C and D, 100 um, E,

cell divisions and segment patterning occur [13-18,82].
With respect to vertebrates, the term “posterior growth
zone” is applied in different ways and refers either to the
tailbud, which proliferates cells for somites, or to the
pre-somitic mesoderm area, which establishes segmental
borders [1,22,24,83-85]. Since the terminal body region
differs considerably in composition and extent among
panarthropods, annelids, and chordates, the term “poster-
ior growth zone” is imprecise and therefore cannot be
used to support the homology hypothesis [1] of segmen-
tation between these three animal groups.

Materials and methods

Specimens and embryos

Females of the onychophoran species Euperipatoides
rowelli Reid, 1996 and Epiperipatus isthmicola (Bouvier,

1905) were collected and maintained in the laboratory as
described previously [67,86]. Females were dissected at
various times of the year to obtain a range of consecutive
developmental stages. Embryos were staged according to
previous descriptions of onychophoran embryogenesis
[42,66,67,87,88]. For positive controls, Capitella teleta
Blake, Grassle & Eckelbarger 2009 ("Capitella sp. 1" sensu
[15]) larvae and juveniles were obtained from a culture at
the Department of Evolutionary Biology (University of
Bonn, Germany). The animals were reared in 20 x 20 cm
plastic boxes containing 1 cm sieved mud (500 pm) cov-
ered with 4 cm ultrafiltrated seawater from the northern
Wadden Sea at 18°C. Water and sediment were changed
every two weeks and the boxes aerated continuously. To
obtain developmental stages, brood tubes were taken
from the sediment and opened with minute needles.
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Figure 6 Cell division pattern in larvae of the polychaetous annelid Capitella teleta (Scolecida, Capitellidae). Confocal maximum
projections of stage 8 larvae in ventral (A and B) and ventrolateral views (C and D); anterior is left. Double-labelling with an o.-PH3 antibody
(red) and DNA-selective dye (green). Note a localised region of high cell proliferation (arrows) in front of the pygidium (py). Abbreviations: mo,
presumptive mouth; py, pygidium. Scale bars: 50 um.

Anti-phospho-histone H3 immunolabelling and DNA
staining

Onychophoran embryos were handled as described pre-
viously [66,67]. Annelid larvae were staged according to
Seaver et al. [15]. Embryos and larvae of all species stu-
died were fixed overnight in 4% paraformaldehyde in
phosphate-buffered saline (PBS; 0.1 M, pH 7.4) at 4°C
and then washed in several changes of PBS and either
further processed immediately or preserved in PBS con-
taining 0.05% sodium azide for several weeks at 4°C. Pre-
incubation was carried out in PBS-TX (1% bovine serum
albumin, 0.05% sodium azide, and 0.5% Triton X-100 in
PBS) for 1-3 hours at room temperature. Incubations
with primary antibody (a.-PH3; rabbit polyclonal anti-
phospho-histone H3 mitosis marker; catalogue no.
06-570, Upstate, Temecula, CA, USA) and secondary
antibody (goat anti-rabbit IgG conjugated to Alexa Fluor-
ochrome 594, catalogue no. A11037, Invitrogen, Carls-
bad, CA, USA) were carried out as described previously
[66]. The DNA-selective fluorescent dye Hoechst (Bis-
benzimide, H33258, catalogue no. 861405, Sigma-
Aldrich; 1 mg/ml in PBS) was applied for 15 minutes.
After several washes in PBS, the embryos and larvae were
mounted in Vectashield Mounting Medium (catalogue

no. H-1000, Vector Laboratories Inc., Burlingame, CA,
USA) and analysed with a confocal microscope.

Anti-BrdU and anti-phospho-histone H3 immunolabelling

To reveal DNA synthesis, the incorporation of 5-bromo-
2’-deoxyuridine (BrdU; Sigma-Aldrich, St. Louis, MO,
USA) was used. Onychophoran embryos were dissected
and incubated for 20 minutes to 24 hours in a 0.1 mg/
ml solution of BrdU (Sigma-Aldrich, St. Louis, MO,
USA) in physiological saline [89] at 18°C. At the end of
the incubation period, the embryos were rinsed in phy-
siological saline and fixed for 30 minutes in 4% parafor-
maldehyde. DNA was denatured with a 2N HCI solution
in PBS-TX for 30 minutes at room temperature. After
two washes in PBS-TX, the embryos were incubated in
10% normal goat serum (Sigma-Aldrich, St. Louis, MO,
USA) for 1 hour at room temperature, followed by an
overnight incubation with two primary antibodies in
PBS-TX at 4°C: (1) anti-BrdU monoclonal antibody
(Becton Dickinson, Franklin Lakes, NJ, USA; diluted
1:50), and (2) a-PH3 antibody (as described above).
After several PBS-TX washes, the embryos were incu-
bated with two secondary antibodies (Invitrogen, Carls-
bad, CA, USA), each diluted 1:500 in PBS: (1) goat
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Figure 7 Cell division pattern at the posterior end in larvae of the polychaetous annelid Capitella teleta (Scolecida, Capitellidae).
Confocal (A, C) and light micrographs (B, D) of posterior ends of an early (A, B) and a late stage 8 larvae (C, D), labelled with an a-PH3 antibody.
Note a localised region of high cell proliferation (arrows) in front of the telotroch (te). Scale bars: 50 ym.

Time t

Posterior = Anterior

Figure 8 Space time diagram of cell state as a function of position (horizontal axis) and time (vertical axis) in a uniformly proliferating
tissue with a linear growth rate. Due to proliferation throughout the tissue, the length increases with time t as L(t) = t + 2. The parameters in
the Jaeger and Goodwin model [50,51] are set as A = 0.5, 8 =5, Top = 1 for 0 <t < 50. The cell state ranges from -10 <z < 10 and this is

represented on the graph as shading between black and white (corresponding to z = -10, z = 10 respectively). The region above the dotted
yellow line has segmented. Areas outside the tissue are coloured in blue.
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anti-mouse IgG (H+L), conjugated to Alexa Fluoro-
chrome 488 (catalogue no. A11017), and (2) goat anti-
rabbit IgG conjugated to Alexa Fluorochrome 594 (cata-
logue no. A11037). Hoechst staining was applied as
described above. After several washes in PBS, the
embryos were mounted in Vectashield Mounting Med-
ium and analysed with a confocal microscope. For con-
trols, the embryos were treated in the same way, but
without the addition of BrdU to the physiological saline.
This resulted in a complete lack of anti-BrdU labelling
in the nuclei. The specificity of the secondary antibody
was tested by abolishing the primary antibody from the
experimental procedures, which resulted in a complete
lack of a positive signal within the cells. The only struc-
tures showing autofluorescence in the green and UV
channels were the sclerotised claws and jaws.

Microscopy and image processing

Embryos and larvae were analysed with the confocal
laser-scanning microscopes LSM 510 META (Carl Zeiss
Microlmaging GmbH) and TCS SPE (Leica Microsys-
tems Wetzlar). The image stacks were merged digitally
into partial and maximum projections with the Zeiss
LSM Image Browser software (version 4.0.0.241) and
Image] (version 1.43q). Image intensity histograms were
adjusted by using Adobe (San Jose, Ca) Photoshop CS2.
The adjustment was kept at a minimum to allow the
micrographs of the same plate to have similar intensity.
Final panels were designed with Adobe Illustrator CS2.

Mathematical modelling

Our model adapts the one used by Jaeger and Goodwin
[50,51] for animal segmentation and is based on cellular
oscillators, where the phase determines the state of the
cell and cells oscillate between two states. Jaeger and
Goodwin [50,51] assume that there is a localised posterior
proliferation zone-they call it a progress zone. In the Jae-
ger and Goodwin model, cells in the progress zone are
oscillating in phase with each other. However, when they
leave the progress zone, their oscillations slow down with
their physiological age. Accordingly, the cells towards the
anterior oscillate slower since they have a higher physiolo-
gical age than the posterior ones. Segmentation occurs,
when the state of the cell no longer oscillates and remains
constant. This mechanism results in a gradient of slowing
cellular oscillations and sets up a “wave” of cell state stabi-
lisation moving in an anterior-to-posterior direction,
which leads to a spatially periodic pattern of cell state that
can be interpreted as sequentially forming segments.

In contrast to the Jaeger and Goodwin model [50,51],
we assume that all cells have the ability to proliferate at
some rate r(x, t), which can be a function of spatial posi-
tion x, and time ¢. In our model, a system of discrete time
equations describes the phase and period of the
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oscillators. It is convenient to convert the discrete time
system of equations to a continuous time system, which
is solved using MATLAB software (MathWorks™). We
model the developing tissue in one spatial dimension, x,
growing in time ¢. In our distributed growth model, cells
can proliferate anywhere in the developing tissue. Thus,
the older cells are no longer located towards the anterior
of the tissues and the younger ones are no longer located
towards the posterior. Accordingly, the assumed mechan-
ism that cell oscillations slow with age [50,51] cannot
result in the formation of segments in our model. We
therefore modified the equations of the previous model
and choose the oscillation period to be correlated with
distance from the posterior end, rather than the cell age.
Such positional information can be obtained from a gra-
dient of signalling molecules in the cell’s local environ-
ment. The modified cellular oscillator model gives rise to
a gradient of oscillation period along the tissue length,
with the faster oscillations at the posterior end.
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