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Abstract

Background: Genetically heterogeneous mice express a trait that is qualitatively and psychometrically analogous to general
intelligence in humans, and as in humans, this trait co-varies with the processing efficacy of working memory (including its
dependence on selective attention). Dopamine signaling in the prefrontal cortex (PFC) has been established to play a critical
role in animals’ performance in both working memory and selective attention tasks. Owing to this role of the PFC in the
regulation of working memory, here we compared PFC gene expression profiles of 60 genetically diverse CD-1 mice that
exhibited a wide range of general learning abilities (i.e., aggregate performance across five diverse learning tasks).

Methodology/Principal Findings: Animals’ general cognitive abilities were first determined based on their aggregate
performance across a battery of five diverse learning tasks. With a procedure designed to minimize false positive
identifications, analysis of gene expression microarrays (comprised of <25,000 genes) identified a small number (,20) of
genes that were differentially expressed across animals that exhibited fast and slow aggregate learning abilities. Of these
genes, one functional cluster was identified, and this cluster (Darpp-32, Drd1a, and Rgs9) is an established modulator of
dopamine signaling. Subsequent quantitative PCR found that expression of these dopaminegic genes plus one vascular
gene (Nudt6) were significantly correlated with individual animal’s general cognitive performance.

Conclusions/Significance: These results indicate that D1-mediated dopamine signaling in the PFC, possibly through its
modulation of working memory, is predictive of general cognitive abilities. Furthermore, these results provide the first direct
evidence of specific molecular pathways that might potentially regulate general intelligence.
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Introduction

While the behavioral correlates of general intelligence have

been extensively studied, an elucidation of the neural or molecular

determinants of this trait has been slow, despite its having been

described as the ‘‘holy grail’’ of intelligence research [1]. Recent

progress has been made, however, using functional brain imaging

studies. For the most part these studies have suggested that the

same brain regions that are engaged by working memory tasks,

e.g., prefrontal cortex (PFC), are also recruited during perfor-

mance on intelligence tests [2–5]. These results converge with a

larger body of research to suggest that working memory (and in

particular, its reliance on selective attention) and general

intelligence are closely related constructs [6–10]. Despite this

progress, a more complete understanding of the molecular and

cellular networks that are involved in general intelligence has to

some degree been hindered by restrictions on work with human

subjects (where for instance, it is typically not possible to assess

gene expression in brain tissue). To mitigate this impediment, we

used recently developed methods to assess the general cognitive

abilities (here termed general learning abilities) of laboratory mice.

We have previously reported the existence of a general learning

factor in mice that is structurally analogous to general intelligence

in humans [11–12] Specifically, we observed that when genetically

heterogeneous mice were assessed on a battery of learning tasks

(e.g., Lashley III maze, passive avoidance, spatial water maze,

odor discrimination, fear conditioning) designed to tax different

sensory/motor, information processing, and motivational systems,

approximately 30–40% of the variance in performance across the

tasks could be explained by a single factor. This factor was

determined to be independent of stress reactivity and sensory or

motor abilities, as variations in these modalities did not load on a

general learning factor or correlate with individual animals’

performance in the learning battery [13]. Directly modulating

stress reactivity through pharmacological means (i.e., chlorodia-

zepoxide) also did not change the structure of the factor [14].

Furthermore, this cognitive trait was determined to share

properties of human intelligence, including a reliance on working

memory and selective attention [15–16].

In order to elucidate the molecular pathways related to general

intelligence, here we characterized the gene expression patterns in

the PFC of mice with high general learning abilities relative to
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those of mice with low general learning abilities in an effort to

identify functional clusters of genes that may underlie this

cognitive trait. Due to the close relationship between PFC activity

and performance on intelligence batteries, we focused this analysis

on gene expression in the PFC. We hypothesized that genes

related to working memory capacity and selective attention would

be differentially expressed in these two groups of animals (owing to

the close relationship between working memory and general

intelligence). Furthermore, in an attempt to find a direct

relationship between gene expression and general intelligence,

having identified differentially expressed genes, we then assessed

expression levels for those target genes in a population of 50 mice,

whose general learning abilities had been previously quantified.

This strategy allowed us to directly explore the relationship

between specific molecular pathways and general intelligence.

Methods

Subjects
CD-1 mice exhibit considerable behavioral variability, and thus

are particularly well suited for studies of individual differences.

These mice are an outbred strain that was derived in 1926 from an

original colony of non-inbred Swiss mice consisting of 2 males and

6 females. Estimates of genetic variation in this line have indicated

that after 50 years of breeding, they remained very similar to wild

mouse populations [17]. For this study, 60 male CD-1 mice (two

replications of 30 mice each) were obtained from Harlan Sprague

Dawley (Indianapolis, IN). The mice arrived in our laboratory

between 66–80 days of age, and ranged from 25–34 grams at the

start of testing. Testing began when the mice were 90–110 days of

age, an age which corresponds with young adulthood. The mice

were housed individually in clear shoebox cages in a temperature

and humidity controlled colony room and were maintained on a

12 h light/dark cycle. In order to minimize any effect of individual

differences in stress reactivity to handling, prior to the start of the

experiment all of the animals were handled for 90 sec/day, five

days/week over a period of two weeks prior to the start of

behavioral testing.

Behavioral Methods
The 60 CD-1 mice used in this replication were assessed (in 2

independent replications) on five learning tasks (i.e., the Lashley III

maze, passive avoidance, spatial water maze, associative fear

conditioning and odor guided discrimination) which have

previously constituted the core tasks used to evaluate general

learning abilities. These tasks were chosen so that they place

unique sensory, motor, motivational, and information processing

demands on the animals. Thus the only commonality between

these tasks is that which is most general (i.e., a general learning

ability). Briefly, passive avoidance is an operant conditioning task

in which animals must learn to suppress a native behavioral

tendency (movement off an elevated platform) in order to avoid

aversive light and noise stimulation. The spatial water maze

encourages animals to integrate spatial information to efficiently

escape from a pool of water. Odor discrimination is a task in which

animals must discriminate and use a target odor to guide their

search for food. Lastly, fear conditioning (assessed by behavioral

‘‘freezing’’) is a conditioning test in which the animals learn to

associate a tone with the presentation of a shock. In all of these

tasks the animals were trained well past the point of asymptotic

performance. In this way the total amount of learning was equated

as much as possible between all the animals. This was done so as to

minimize any affect the extent of learning might have on gene

expression. Each of these five tasks is described in detail below.

Lashley III Maze (LM)
This maze consisted of a start box, three interconnected alleys

and a goal box. Previous studies have shown that the latency to

find the goal box and the number of wrong turns and re-tracings

decreased over successive trials. When extra-maze cues are

minimized, the animals tend to use egocentric methods to locate

the goal box (e.g., fixed motor patterns).

A Lashley III maze, scaled for use with mice, was constructed from

black Plexiglas and located in a dimly lit room (10 Lux at the floor of

the maze). A 3 cm diameter white circle was located in the center of

the goal box, and a 45 mg Bio-serv food pellet (dustless rodent grain)

was placed in the cup to motivate the animal’s behavior.

Food-deprived animals were acclimated and trained on two

successive days. Prior to acclimation they were exposed to three

pellets of the reinforcer in their home cage. On the acclimation

day, each mouse was confined in each of the first three alleys of the

maze for 4 min and the final alley, wherein three food pellets were

placed in goal box, for 6 min. At the end of each period, the

animal was physically removed from the maze and placed in the

next alley. This was done so as to acclimate the animals to the

apparatus prior to training/testing. On the training days, the

animals were placed in the start box and allowed to freely navigate

the maze during which time the number of errors (wrong turns

and re-tracings absent a turn) were recorded. Upon consuming the

pellet, the animals were returned to their home cage for an 18 min

inter-trial interval during which time the maze was cleaned. The

animals completed five trials during the first day of training and

three trials on the second.

Passive Avoidance (PA)
In this assay, animals learned to suppress their exploratory

tendency in order to avoid aversive stimuli. The animals were

placed on a platform and upon stepping down they were exposed

to an aversive compound stimulus consisting of a bright light and

loud oscillating tone (i.e., ‘‘siren’’).

A chamber with a white grid floor 16612 cm (l6 w),

illuminated by a dim light, was used for both acclimation and

testing. An enclosed platform (70645645 cm, l6 w6 h)

constructed of black Plexiglas and elevated 5 cm above the grid

floor was located at the back of the chamber. There was only one

opening from the platform facing the grid floor which allowed the

animal to step down onto the floor. The exit from the platform

could be blocked remotely by a clear Plexiglas guillotine-style

door. When an animal left the platform and made contact with the

grid floor, the aversive stimulus compound was initiated. The tone

(80 dBc above a 50 dBc background, 2.4–3.7 kHz) was generated

by a piezoelectric buzzer (RadioShack, 273-057) and the light was

generated by a 100W halogen flood light (located 14 cm from the

base of the platform).

During training, the animals were placed on the platform with

the door closed, confining them in the enclosure. After 5 min, the

door was opened and the latency of the animal to leave the

platform and make contact with the floor was recorded. After they

made contact, the aversive stimuli were initiated and the door was

lowered, exposing them to the stimuli for 4 sec, after which they

were allowed access to the enclosure again. This procedure was

repeated for two additional trials. For purpose of ranking the

animals, the ratio of the step down latency on the second trial to

step down latency on the first trial (prior to any learning) served as

the index of learning.

Spatial Water Maze (WM)
This task required the animals to locate a submerged platform

in a pool of opaque water. Absent distinct intra-maze cues,
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animals’ performance in this maze is highly dependent on the

integration of extra-maze spatial cues. The animals are motivated

by their aversion to water. The latency and the path length to

locate the platform decrease over successive trials, despite entering

the pool from different locations.

A round pool (140 cm diameter, 56 cm deep) was filled to

within 20 cm of the top with water that is clouded with a nontoxic,

water soluble black paint. A hidden 14 cm diameter black

platform was located in a fixed position 1 cm below the surface

of the water. The pool was enclosed by a ceiling high black curtain

on which five different light patterns (which served as spatial cues)

were fixed at various positions.

On the day prior to training, each animal was confined to the

platform for 360 sec. by a clear Plexiglas cylinder that fits around

the platform. On the next two training days, the animals were

started from one of three positions for each trial such that no two

subsequent trials start from the same position. The animal is said

to have successfully located the platform when it places all four

paws on the platform and remains for 5 sec. After locating the

platform or swimming for 90 sec, the animals were left or placed

on the platform for 10 sec. They were then removed for 10 min.

and placed in a holding box before the start of the next trial. Each

animal completed 14 total trials (six on the first training day, and

four on each of the following two days). The latency to find the

platform was recorded for each trial. During the first replication

the path length distances to locate the platform were also recorded

using custom Matlab software (Mathworks, Natick, MA).

Associative Fear Conditioning (FC)
In this task the animals received a tone (CS) paired with a mild

foot shock (US), after which the animals exhibit fear of the tone as

evidenced by ‘‘freezing’’ during its presentation. The training box

was contained within a sound- and light-attenuating chamber.

This training box (16.5626.5620 cm) was brightly lit with a clear

Plexiglas front/back, and one stainless steel and one clear Plexiglas

side wall. The floor was composed of a steel grid (5 mm spacing)

from which a 0.6 mA constant current footshock could be

delivered from a shock scrambler (Lafayette Instruments, Lafay-

ette, IN). The tone CS (60 dB, 2.9 kHz) was delivered by a

piezoelectric buzzer (Med Associates, EV-203a).

The animals were acclimated to the training context by placing

each animal in the box for 20 min on the day prior to training.

Training on the subsequent day occurred in a single 18 min

session during which the animals received three noise-shock

pairings after 6 min, 10 min, and 16 min. The CS presentation

consisted of a pulsed (0.7 sec on, 0.3 sec off) 20 sec. tone.

Coincident with the offset of the tone, the shock (US) was

presented for 500 msec.

To quantify the conditioned fear responses, the animals were

videotaped and both the time spent freezing 20 sec prior to the

initiation of the tone as well as during the tone were scored by an

independent observer. Freezing was defined as no movement of

the front or hind feet exceeding 5 mm (the distance between the

floor grids) for at least 1 sec. The conditioned response to the CS

was said to be freezing during the tone presentation minus freezing

prior to the tone. For purpose of ranking the animals, CS freezing

during the second training trial was used.

Odor Discrimination (OD)
Rodents are adept at using odor to guide their search for food.

In this task, mice navigated through a field using unique odors to

guide them. The animals learned to choose a food cup that was

signaled by a target odor among three odor choices. For this

purpose, plastic food cups were used that held a cotton swab

loaded with 25 ml of odor (anise, banana or coconut flavored

extract). This swab was located at the bottom of the cup and was

covered with a wire mesh. On each trial, the food cups were

randomly arranged in three corners of the square test field, but

accessible food was always marked by the target odor (in this case

coconut).

The odor discrimination chamber consisted of a black Plexiglas

60 cm square field with 30 cm high walls located in a dimly lit

room with good ventilation. One of three plastic food cups was

placed in three corners. Only the target cup (marked by the

coconut odor) had the food (30 mg portion of chocolate flavored

puffed rice) accessible on top of the wire mesh. The other two cups

had food located under the wire mesh, allowing the mice to smell

the food but not access it.

Each animal had one day of acclimation and one day of testing.

At the end of the light cycle on the day prior to this acclimation,

food was removed from each animal’s home cage. The next day

each mouse was placed in the box for 20 min. with no food cups

present. At the end of the day, each animal received three pieces of

the reinforcer in their home cage. On the training day each animal

received six trials in which they were placed in the corner of the

training chamber which did not contain a food cup. On the first

trial, an additional reinforcer was placed on the edge of the target

cup (coconut). At the end of each trial the food cups and the

starting location were rearranged but coconut always remained as

the target odor. For each trial, the number of errors prior to

retrieving food were recorded (where an error was constituted by

making contact with or sniffing within 2 cm of an incorrect food

cup). For purpose of this analysis, the average errors across trials

two and three served to index learning.

Brain Dissection
Two weeks following the completion of the learning battery the

animals were sacrificed and their brains extracted. Specifically, the

animals’ were live decapitated according to standard animal

ethical protocols and their brains quickly dissected to remove the

prefrontal cortex. The tissue was immediately placed in a solution

of RNAlater (Ambion) to preserve RNA integrity.

RNA Isolation
Total RNA isolation followed the protocol recommended in the

RiboPure RNA Isolation Kit (Ambion). Tissue samples were first

homogenized in a TRI reagent solution and combined with 1-

bromo-3-chloroprapane. The resulting mixture was centrifuged

and the aqueous solution removed. The total RNA containing

solution then underwent purification using glass fiber cartridges.

Each animal was assigned a factor scores derived from the

principal component analysis (see Results, below), and these factor

scores were used to determine each animal’s aggregate perfor-

mance across the battery of learning tests (i.e., to characterize the

general learning ability of each animal). The resulting RNA from

the four best learners were pooled and the same was done for the

four worst learners. The total RNA was maintained at 270uC for

storage (of several weeks prior to analyses). By using pooled tissue

samples from the best and worst learners, spurious differences in

gene expression (i.e., those not directly related to variations in

general learning abilities) were likely to have been minimized.

cDNA Synthesis and Microarray Hybridization
cDNA synthesis and microarray hybridization were carried out

at the Keck Microarray Facility at Yale University (New Haven,

CT). The gene expression analysis utilized the Illumina Sentrix

MouseRef-8 BeadChip containing target probes for ,25,000

annotated mouse genes.
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As per the Keck Microarray Facilities procedures, the

preparation of labeled cRNA for hybridization onto Illumina

BeadChips followed the recommended Illumina protocol using a

TotalPrep RNA Amplification kit (Applied Biosystems). Double

stranded cDNA and biotin-labeled cRNA were synthesized and

purified from 500 ng of total RNA. Purification of the cRNA

followed, and integrity of the cRNA was assessed by running

aliquots on the Bioanalyzer prior to hybridization.

Hybridization buffer from the BeadChip kit (Illumina) was

mixed with 1500 ng of biotin-labeled cRNA, heated to 65uC for 5

minutes, and then loaded onto the BeadChip. The BeadChips

were sealed in a hybridization chamber and placed in an oven at

58uC with a rocker for 16–20 hours. After the hybridization, the

BeadChips were washed and stained as outlined in the Illumina

protocol. The BeadChips were then scanned on the Illumina

Iscan. Scanned files were loaded into BeadStudio software for

analysis and arrays were background normalized.

Gene Expression Quantification by QPCR
QPCR was carried out at the Burnham Institute (La Jolla, CA).

Applied Biosystems Taqman probes were chosen for each of the

10 genes plus one house-keeping gene, GAPDH (Table 1). The

probes chosen crossed at least one exon-intron junction so as not

to be specific to any alternative splice forms. The cDNA was

synthesized from 11 ml of total RNA (65–70 ng/ml) using Roche

Trancriptor First-Strand cDNA Synthesis Kit. For QPCR 20 ml of

cDNA was diluted to 60 ml (2 ml for each reaction). Taqman

QPCR was performed using Taqman universal master mix (ABI

Part # 4304437). All reactions were done in duplicate and relative

concentrations values were calculated using a standard curve for

known quantities of GAPDH.

In addition to the 10 genes for which we quantified expression

we also quantified one control/housekeeping gene, glyceraldehyde

3-phosphate dehydrogenase (GAPDH). This was done so as to

both verify the efficacy of the QPCR as well as to control for

differences in starting RNA concentrations by normalizing the

expression values against this gene. However, it was found that

GAPDH values were not equal between the fast learners and the

slow learners. While there was not a significant relationship

between GAPDH gene expression and general learning abilities,

there was a negative correlation such that faster learners tended to

express more GAPDH mRNA transcripts. Therefore using this

gene to normalize the results would necessarily skew the results

away from finding any relationship with general learning abilities.

Due to this complication, we used the expression values for

Psmc3ip to normalize the data. Psmc3ip was chosen because there

was no relationship between the raw/unnormalized expression

values for this gene and general learning abilities nor was there a

relationship when this gene was normalized against GAPDH.

Using Pscmc3ip to control for differences in starting RNA

concentration, therefore, would most accurately represent the

data.

Results

The original sample of 60 mice was divided into two

independent biological replications of 30. A principle component

factor analysis of learning performance on the battery of five

learning tasks extracted a single stable factor in each of these two

replications. This general learning factor explained between 41–

42% of the performance variations in each of the learning tasks

(Table 2). Although 30 subjects are generally considered small for

factor analysis, the structure of resulting factor was very similar to

the results of a previous analysis that included 241 animals [11].

Also, it is very similar to the results of intelligence batteries using

human subjects where a general factor has typically been reported

to explain from 38–50% of the underlying variance [18]. From

Table 1. Applied Biosciences Taqman probe sequences used for QPCR.

Gene Symbol Assay ID NCBI Gene Reference Probe Sequence

Drd1a Mm01353211_m1 NM_010076.3 TGGTCTCCCAGATCGGGCATTTGGA

Slc25a18 Mm01183193_m1 NM_001081048.2 TGCTGGCCGCTTAGCTGTCTGTCAT

Ddx6 Mm00492142_m1 NM_181324.3 CAATCTTGTTTGCACTGATCTGTTT

Rgs9 Mm00599991_m1 NM_011268.2 CACCCAGCCAGGTCAGCACTTGGCT

Kcnh1 Mm00495110_m1 NM_010600.2 GAGAGAGAGTCAGGGCATCAGCAGC

Nudt6 Mm00463700_m1 NM_153561.2 AGATATTGACACAGCAGTCCGAGAG

Psmc3ip Mm00464703_m1 NM_008949.2 TGGAGGCCGAGCTGAAGGAATTAAC

Ppp1r1b Mm00454892_m1 NM_144828.1 CAGCAGGGGCACTGTGGGGCAGAAG

Scn1a Mm00450580_m1 NM_018733.2 ACTGAAGGCTGTGTCCAGAGATTCA

Atp8a1 Mm00437713_m1 NM_001038999.1 GCAGAACCTGCTTCACGGCTATGCT

doi:10.1371/journal.pone.0014036.t001

Table 2. Principal component factor analyses of the
performance in the learning battery as well as gene
expression values for the PFC genes identified through the
microarray analysis as being differentially expressed.

Learning Tasks Replication 1 Replication 2 Combined

Lashley Maze 0.79 0.73 0.76

Water Maze 0.62 0.67 0.64

Fear Conditioning 0.55 0.40 0.47

Passive Avoidance 0.57 0.90 0.77

Odor Discrimination 0.63 0.40 0.51

Eigenvalue 2.03 2.12 2.05

% Variance Explained 41% 42% 41%

Principal component factor analyses of the performance in the learning battery.
Columns (replication 1, replication 2, and combined) show how each task loads
on the general learning factor in each replication and in a combined analysis.
The structure of the resulting general learning factor in each replication was
stable and explained between 41–42% of the variance in performance in the
learning battery.
doi:10.1371/journal.pone.0014036.t002
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Figure 1. Sixty animals were assessed in a battery of learning tasks. Following testing on five learning tasks, the aggregate performance
(factor scores) of each individual animal across all tasks was used as an index of their general learning abilities. The performance of the top and
bottom eight animals from this distribution of general cognitive abilities are illustrated on each of the tasks. It was these eight fast and eight slow
learners that contributed to the initial gene expression analysis. Based on these illustrations, it can be concluded that aggregate performance
(general learning ability) is a good predictor of animals’ performance on individual learning tasks. Brackets indicate standard error of the mean.
doi:10.1371/journal.pone.0014036.g001
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this analysis, a general learning factor score was calculated for

each of the animals (a factor score is analogous to an intelligence

quotient in that it is a measure of where an animal falls on the

observed distribution of general learning abilities). In this way we

were able to identify both those animals with the best and the

worst general learning abilities in each replication (Fig 1).

Due to high individual variance in gene expression, RNA

samples from the fastest learners were pooled, and similarly, the

same was done for the poor learners. In doing so those genes that

were differently expressed were less likely to reflect genes unrelated

to animals general cognitive performance (i.e., false positives).

Since the samples were pooled, no estimate of variance was

possible, and therefore, a cut-off was chosen for the ratio of fast/

slow learners’ expression levels for each gene. This fold difference

( = 1.34, the limit of detection for the Illumina chip [based on

Illumina technical report]) was used to classify genes as being

differentially expressed in the two sample of tissue. Of the 24,000

genes whose expression was assessed in each replication, less than

0.03% were differentially expressed in the PFC (Table 3) across

both replications. (Approximately 100 genes were differentially

expressed in each replication. Of that 100, nine were present in

both replications, and it is those nine that were designated as genes

of interest.) Three of these genes, the dopamine D1 receptor

(Drd1a), Rgs9, and Darpp-32, share a common functional

pathway (dopamine signaling). To formalize whether the list of

differently expressed genes belonged to a particular gene ontology

(GO), we used the GOrilla tool to compare the differently

expressed genes against all of the genes assessed by the gene chip.

This analysis assigned the function ‘dopamine D1 receptor

activity’ a significant p-value (p = 5.13E-4) [19]. (It is worth noting

that of the all of the genes that were differentially expressed in the

two replications, approximately 65% were up-regulated in the

fastest learners. In contrast, when those genes that were

differentially expressed only in both replications were isolated, all

nine genes-of-interest were up-regulated in the fastest learners. At

present, it is unclear if this uniform up-regulation represents a

meaningful relationship between gene expression and intelligence

or if it is simply a statistical anomaly.)

To further explore and validate these results, the expression

values of the nine genes that were identified as being differentially

expressed in the PFC were assessed in the top 24 and bottom 24

animals from the original 60 mice using quantitative real-time PCR.

The expression values for these genes were then correlated with the

animals’ general learning factor scores. Of the nine genes, only four

(Nudt6: r (46) = 20.29, p,.05; Darpp-32: r (46) = 20.38; Drd1a: r

(46) = 20.37, p,.05; Rgs9: r (46) = 20.44, p,.05) were signifi-

cantly correlated with general learning abilities. Importantly, the

three genes related to dopamine signaling identified as elevated by

the previous gene expression analysis were significantly correlated

with general learning abilities (Fig. 2). It is worth noting that while

Rgs9 is generally considered to be expressed primarily in the basal

ganglia, it is expressed at low to moderate levels in the mouse

prefrontal cortex [20]. We found similarly moderate Rgs9 levels

here (6% of the Darpp-32 levels, see Fig 3). To account for possible

non-parameteric relationships (as might be introduced by the high

values of several data points) we also performed a Spearman’s rank

correlation (which mitigates the influence of extreme values by

assessing the correlation of nominal ranks rather than actual raw

values). Of the four genes found to be statistically correlated using

Pearson’s coefficient, Drd1a and Nudt6 were found to be

statistically correlated with general learning abilities using Spear-

man’s rank correlation (Drd1a: r(46) = 20.36, p,.01; Nudt6:

r(46) = 20.35, p,.02). The remaining two genes (Rgs9 and

Darpp-32) showed a trend towards significance (Rgs9:

r(46) = 20.25, p,.09; Darpp-32: r(46) = 20.25, p,.09).

When the expression values of the PFC genes were included in a

rotated factor analysis (a rotated factor analysis extracts the most

number of uncorrelated factors) to determine their shared

variance, two factors were extracted. A primary factor (dopa-

mine-specific factor) accounted mostly for the variance shared by

the three dopamine related genes while an uncorrelated second

factor accounted for the variance shared by all the genes minus the

dopamine specific variance (Table 4). In other words, the

dopamine factor quantified the unique variance shared by the

dopamine genes minus any shared variance they had with the rest

of the genes. When the factor scores extracted from these two

factors were included in a factor analysis with the learning battery

performance data, only the dopamine specific variance loaded

with the learning tasks (Table 5). Furthermore, the dopamine

factor correlated significantly with the general learning factor

Table 3. Based on a fold change of at least 1.35 in both independent replications, 10 genes were identified as being differentially
expressed in the PFC of mice that had exhibited fast relative to slow general learning performance.

Prefrontal Cortex

Gene Description Direction of Regulation Function

Atp8a1 Atpase UP ATP binding

Ddx6 DEAD (Asp-Glu-Ala-Asp) box polypeptide 6 UP required for microRNA-induced gene silencing

Kcnh1 potassium voltage-gated channel, subfamily H
(eag-related), member 1

UP Delayed-rectifier potassium channel

Nudt6 nudix (nucleoside diphosphate linked moiety X)-
type motif 6

UP Trophic factor

Slc25a18 solute carrier family 25 member 18 UP transport of glutamate across the inner mitochondrial
membrane

Scn1a sodium channel, voltage-gated, type I, alpha UP Pore forming unit voltage-gated sodium channel

Darpp-32 dopamine, cAMP-regulated phosphoprotein of
32,000 kDa

UP phosphoprotein phosphatase inhibitor activity

Rgs9 regulator of G-protein signaling 9 UP negative regulation of signal transduction

Drd1a dopamine receptor D1A UP dopamine D1 receptor activity

doi:10.1371/journal.pone.0014036.t003
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(r (46) = 20.44, p,.05). This suggested that the variance common

to the three dopamine specific genes uniquely predicted perfor-

mance on the learning tasks.

Discussion

Here we observed a relationship between general intelligence

(assessed in genetically heterogeneous mice) and dopamine

signaling in the prefrontal cortex. To our knowledge this is the

first time that such a direct relationship between a specific

molecular pathway and general intelligence has been reported

(although related analyses, based on peripheral tissue samples,

have been conducted [21]). Specifically, it was determined that an

up-regulation in three dopamine-related genes (Darpp-32, Rgs9,

and Drd1a) was significantly correlated with animals’ aggregate

performance across a battery of learning tests. While it is perhaps

premature to speculate about the functional consequence of an up-

regulation in these three genes in faster learners, it seems likely that

they interact to suppress the activation of protein phosphatase 1

(PP1) and thereby enhance synaptic plasticity and the efficacy of

D1 mediated signaling. Activation of D1 dopamine receptors

results in a cascade of events which phosphorylates Darpp-32,

which in turn inhibits PP1 [21–22]. PP1 inhibits learning and

memory by negatively regulating downstream proteins and kinases

important for synaptic plasticity and by reducing neuronal

excitability [23–25]. An increase in the main functional unit of

D1 receptors (Drd1a) as well as Darpp-32 could therefore act in

concert to decrease the suppression of learning and memory.

Conversely, D2 dopamine receptor activation reduces phosphor-

ylation of Darpp-32 which in turn releases inhibition of PP1.

However, Rgs9 dampens the downstream effects of D2 activation

[26]. Therefore, an increase in Rgs9 activity may also act to

enhance the suppression of PP1. Via this route, D1-mediated

dopamine signaling efficacy in the prefrontal cortex could act to

enhance working memory function and therefore increase general

intelligence. In support of this possibility, it is known that that

during working memory tasks, activity of dopaminegic midbrain

neurons is enhanced and dopamine levels in the prefrontal cortex

increase [27–28]. Similarly, studies have shown that sequence

differences in Darpp-32 in humans are associated with differences

in Darpp-32 expression, increases in neostriatal volume, enhance-

ments in connectivity between the striatum and the prefrontal

cortex and better performance on both working memory tasks and

general intelligence batteries [29].

Two of the genes that were differentially expressed in the

prefrontal cortex, Rgs9 and Darpp-32, are studied primarily for

their role in the basal ganglia where they exhibit orders of

magnitude higher expression levels. Despite this, these genes have

also been shown to be expressed in the cortex. Darpp-32 shows

widespread cortical expression [30]. While Rgs9 is often thought

to be specific to the basal ganglia, in mice it has been

demonstrated to be expressed at low to moderate levels in the

cortex [20,31]. Nevertheless, it is possible that the present results

also suggest changes in basal ganglia-related pathways as being

related the general learning abilities. This seems plausible as there

are large bidirectional pathways linking the PFC and the basal

ganglia. Relatedly, most models of selective attention suggest a

reciprocal role for both the basal ganglia and the PFC [32]. In fact,

fMRI studies have demonstrated that activity levels in the PFC

and the basal ganglia are increased prior to filtering of irrelevant

information in selective attention tasks. Lastly, the degree to which

both these regions were activated predicted individual differences

in working memory capacity [33].

It is worth noting here that a large body of research has

demonstrated that D1 mediated dopamine signaling plays a

crucial role in facilitating learning early in acquisition but that its

role is diminished as the animals’ performance reaches asymptotic

levels [30]. This finding is consistent with the present results as we

Figure 2. Correlations between normalized gene expression in
the PFCs of 48 mice (y-axis) and their general learning ability
factor scores, which is analogous to general intelligence in
humans (lower scores = faster learning). Three dopamine-related
genes showed significant negative correlations: A) Darpp-32, B) Drd1a,
C) Rgs9.
doi:10.1371/journal.pone.0014036.g002
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only detect a general learning factor in our mice when we examine

learning at the early stages of acquisition, a point at which

differences in D1 signaling seem to be involved [11;34].

Dopamine signaling in the PFC increases the neural excitability

of pyramidal neurons, increasing their gain in response to

excitation. Models of PFC neurons’ persistent firing during a

working memory task have demonstrated that this dopamine-

mediated increase in gain acts to stabilize persistent activity and

protect it from interference [35]. This finding fits with the

hypothesized role of the prefrontal cortex in working memory and

in general intelligence. That is, the PFC acts to maintain attention

towards goal relevant information and to ignore salient distracters.

In light of this model our findings integrate nicely into the existing

general intelligence literature using human subjects. Similarly,

these results fit with our previous behavioral work that

demonstrated a significant relationship between working memory

capacity/selective attention and general learning abilities [15–16].

Independent of the three dopamine-related genes, only one

other gene, Nudt6 (also known as basic fibroblast growth factor;

bFGF), showed a significant correlation with general learning

abilities. This gene is expressed by astrocytes where it acts as a

potent trophic factor for neurons [36]. In culture bFGF has been

shown to promote the survival of prefrontal cortical neurons [37].

Outside the brain, bFGF has been shown to promote angiogenesis

[38]. In addition, bFGF is up-regulated in mice that underwent

voluntary wheel running for 4 days as compared to sedentary

controls, implicating this gene in the positive cognitive effects of

exercise [39]. The potential implications of the upregulation of this

Figure 3. Overall gene expression in the prefrontal cortex of each gene whose expression was assessed with QPCR.
doi:10.1371/journal.pone.0014036.g003

Table 4. A maximal-likelihood rotated factor analysis
including all of the prefrontal genes revealed a primary factor
which accounts for the common variance shared by the
dopamine-associated genes and secondary factor which
explains the remaining variance.

Differentially
Expressed PFC Genes Dopamine Factor Remaining Variance

Atp8a1 0.34 0.92

Ddx6 0.39 0.85

Drd1a 0.78 0.54

Kcnh1 0.38 0.88

Nudt6 0.24 0.75

Darpp32 0.78 0.56

Rgs9 0.98 0.15

Scn1a 0.24 0.89

Slc25a18 0.31 0.90

Eigenvalue 2.81 5.18

% Variance Explained 31% 57%

doi:10.1371/journal.pone.0014036.t004

Table 5. A factor analysis including the learning tasks and the
factor scores extracted from Table 3 revealed that the
dopamine-associated genes share a unique relationship with
the learning tasks.

Learning Tasks
and Gene Clusters General Learning Factor

Lashley Maze 0.49

Water Maze 0.35

Fear Conditioning 0.30

Passive Avoidance 0.97

Odor Discrimination 0.32

Dopamine Factor 20.68

Remaining Variance 20.01

Eigenvalue 1.99

% Variance Explained 28%

doi:10.1371/journal.pone.0014036.t005
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gene for general learning abilities are two-fold. It is possible given

the relatively low levels of bFGF found in our samples that the

differences were indicative of differential levels of prefrontal

vascularization in fast and slow learners. Poor blood flow would

have obvious detrimental effects on cognitive performance. This is

demonstrated by the correlation between age-related cognitive

decline and cerebral blood-flow [40–41]. The second possibility is

that the direct trophic effect bFGF exerts on neurons enhances

neuronal survival in fast learners. This may be directly related to

general learning abilities (e.g., enhanced survival increases the

efficacy of synaptic plasticity). Conversely, it may be a secondary

effect of potentially increased neuronal activity that may

accompany fast learning abilities. For instance, enhanced activity

of PP1 through Darpp-32 phosphorylation could exert stress on

neurons, as when activated, PP1 works to conserve energy through

a recycling of protein factors, and the reversal of the cell to an

energy-conserving state [23]. In turn trophic factors, such as

bFGF, may be needed to maintain cell survival in face of this

increased stress.

It is also important to note that the nature of the present study

was correlative and therefore not able to discern the direction of

any potential casual relationships. It is conceivable that, for

instance, poor general learning abilities resulted directly in

reduced dopamine expression in the PFC or that poor learners

were more sensitive to environmental factors affecting dopamine

related pathways. To directly test these possibilities are beyond the

scope of the present study. However, the veracity of these alternate

hypothesizes appear unlikely given that there is a large body of

literature suggesting a close causative relationship between

working memory and PFC dopamine and that we recently

demonstrated a direct causative relationship between working

memory and general learning abilities in mice [42]. Nevertheless,

appropriate caution must be taken in drawing any broad

conclusions from the current results.

In total, these results implicate a small number of genes,

particularly a cluster related to dopamine D1 signalling in the

PFC, as being related to and potentially as being mediators of

general cognitive abilities (c.f., general intelligence). It is critical

that these results not be interpreted to suggest that only these genes

contribute to this regulation. As a first approximation, here,

methods were used that maximized sensitivity to dominant genes

while minimizing the likelihood of false positive gene identifica-

tion. It is likely that additional research will identify more and

more complex interactions between a compendium of genes

involved in the regulation of this complex cognitive trait.
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