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chromosome 21
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Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic
cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome
21. DS has a complex phenotype, and a major goal of DS research is to identify genotype–phenotype
correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features
could identify genomic regions associated with specific phenotypes. We have developed a BAC array
spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution
mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report
the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19
partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been
mapped to within B85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map
within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions
for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad,
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and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate
genomic elements per phenotype.
European Journal of Human Genetics (2009) 17, 454–466; doi:10.1038/ejhg.2008.214; published online 12 November 2008
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Introduction
Down syndrome (DS) is one of the most frequent

congenital birth defects, and the most common genetic

cause of mental retardation; it presents with a complex

clinical spectrum of variable features affecting most organ

systems. Affected individuals share certain clinical features,

such as cognitive impairment, congenital heart disease and

characteristic facial and physical appearance. In the vast

majority of cases, DS results from the presence of an extra

copy of chromosome 21.1,2

A major goal of understanding the molecular pathology

of DS is identifying genotype–phenotype correlations, that

is the identification of HSA21 genes or other functional

genomic elements that contribute to the specific aspects of

the phenotype. There have been several general ap-

proaches to this problem: (i) mapping of partial trisomy

21 cases in human,3 – 8 (ii) the construction of partial

trisomy mouse models with different orthologous regions

of HSA219 – 11 and (iii) the analysis of gene expression in

cells and tissues of DS individuals or mouse models of DS,

both of the transcriptome12 – 15 and genes from the

aneuploid chromosome.16,17 Expression studies, while

showing dysregulation of gene expression, have been

inconclusive in identifying genes, or small HSA21 regions,

for specific DS phenotypes.

The rationale for the first approach is that cases of partial

trisomy 21 associated with DS features could identify

genomic regions associated with specific phenotypes.

Because of variable penetrance, only the presence of a

particular phenotypic trait is informative for mapping.

Studies of other rearrangements, including deletions and

translocations, involving HSA21 may also provide

information on the contribution of HSA21 genes to DS.

The earliest studies hypothesized that a relatively small

region of HSA21 may play a major role in DS phenotypes,

and proposed the concept of a DS critical region

(DSCR).4,7,18,19 The DSCR was defined with a proximal

boundary between markers D21S17 (35 892 kb) and

D21S55 (38 012 kb), and a distal boundary at MX1

(41 720 kb).5,8 This is a region spanning 3.8–6.5 Mb and

containing B25–50 genes. However, analysis of further

cases indicated that it was more likely that there were

critical regions for particular phenotypes and not for the

majority of the phenotypes.5 For example, it was pre-

viously concluded that a DS heart defect critical region

maps to an B5.2 Mb region.6

Although the notion of a DSCR has gained some

acceptance in DS research, the data supporting it remain

controversial. Further, recent work on a mouse model

either trisomic or monosomic for the syntenic DSCR found

no evidence that the region was required to produce the

characteristic facial phenotype,11 and that it was necessary,

but not sufficient, for the hippocampal phenotype seen in

DS.20 The limited number of partial trisomy samples, and

low resolution of the mapping in earlier studies, restricted

the identification of critical regions. Array comparative

genome hybridization (aCGH) now allows high-resolution

mapping of deletions and duplications using either

oligonucleotides21 or BAC clones.22

We report here the development of a BAC array covering

HSA21q to refine genotype–phenotype mapping in DS.

Our study includes a considerable number of cases given

the rarity of the partial aneuploidies of chromosome 21; 19

partial trisomy patients, with information on 23 pheno-

typic features, and 11 partial monosomy patients, with

information on 27 phenotypic features were analyzed. The

position of the genomic breakpoints of the partial

aneuploidies was mapped to within 85 kb on average, and

the results where confirmed by real-time quantitative PCR

in 20 cases. We also tested five cases with a normal

karyotype based on clinical findings indicative of a DS

phenotype, but did not find any imbalances in chromo-

some 21. The minimal critical regions for certain pheno-

types have been reevaluated and new boundaries have

been established.

Materials and methods
Clinical samples

Patients were recruited on the basis of a chromosomal

abnormality involving chromosome 21 or a phenotype

with the features of DS, and the karyotypes of all 41

probands were obtained (Table 1). The phenotypes of

probands were ascertained by different clinical geneticists

and are reported in Tables 2 and 3. DNA samples were

obtained from all cases and used for BAC array CGH.

Cases 1–25 are patients with DS features according to the

criteria of Jackson et al23 (Table 2). Cases 1–3 are complete

trisomy 21 and were included as controls for array CGH.

Cases 4, 5 and 26 involve translocations of HSA21, and

were examined to see whether the translocations are

balanced. Cases 6, 7 and 8–25 are partial trisomies for

Genotype–phenotype correlations in Down syndrome
R Lyle et al

455

European Journal of Human Genetics

http://dx.doi.org/10.1038/ejhg.2008.214


chromosome 21; the origins of partial trisomy are de novo

direct duplication, de novo translocation or missegregation

of a parental balanced translocation. We include clinical

data of 18 cases (data for cases 1, 2, 4, 7, 21, 22 and 24 are

unavailable). For cases with partial trisomy, features

considered to be common in DS were evaluated wherever

possible (Table 2).

Cases 31–42 are patients with partial monosomy 21

(Tables 1 and 3). Despite the phenotypic variability in

partial monosomy 21, there are several common features

including craniofacial, skeletal and cardiac defects, genital

malformations and severe mental retardation.24 – 33 All

ascertained partial monosomy cases presented with mild-

to-severe mental retardation.

Cases 26–30 were included because of a DS-like

phenotype. Case 27 presented with a DS-like phenotype,

including microcephaly, upslanted palpebral fissures, thin

philtrum, camptodactyly and moderate mental retarda-

tion. Karyotype analysis indicates a normal HSA21, but

tetrasomy 18p. Case 28 is a patient with relative micro-

cephaly, failure to thrive, developmental and speech

delays, midline cleft palate, pharyngeal dysfunction,

gastroesophageal reflux, strabismus and farsightedness.

Case 29 presented with microcephaly, brachycephaly, low

posterior hairline, scarce and flared eyebrows, upslanted

palpebral fissures, malar hypoplasia, small nares, small

ears, thin philtrum, down-turned corners of the mouse,

small mouth, tongue with midline groove, crowded teeth,

sacral dimple, fifth finger clinodactyly and developmental

delay. The result of karyotype analysis is 46, XX. Case 30

was referred for mental retardation, heart malformation

and dysmorphism at the age of 6 years. At the first

Table 1 Summary of cases presented

Case Karyotype
HAS21

Karyotype/FISH
HSA21 aCGH

result Reference

1 47,Xinv(Y),+21 T21 T21 This report
2 47,XY,+21 T21 T21 This report
3 47,XX,+21 T21 T21 This report
4 46,t(21;21),+21 T21 T21 This report
5 46,XY,t(21;21),+21 T21 T21 This report
6 46,XY,�21, +dir dup(21)(q11.2q22.3) PT21 PT21 8, 18 and 23
7 46,XX, dir dup(21)(p11q22.3) T21 T21 This report
8 47,XX,+del(21)(q22.1q22.2) PT21 PT21 This report
9 47,XY,+der(21)t(3;21)(p26.1q22.12)dn PT21 PT21 24

10 47,XY,+der(21)t(8;21) PT21 PT21 This report
11 47,XX,+der(21),t(15;21)(q26.2;q22.1)mat PT21 PT21 8 and 25
12 47,XX,+der(21)(pter-q21.1::q21.3-qter).ish der(21)(wcp21+,VIJ2yRM2029+) PT21 PT21 7
13 47,XY,+der(21)t(10;21)(21pter-21q21::10q26-10qter)mat PT21 PT21 This report
14 46,XX, dup(21)(pter-q13::q21.3-qter) PT21 PT21 This report
15 46,XX,�11,+der(11)t(11;21)(q24;q21) PT21 PT21 This report
16 46,XX,�10,+der(10),t(10;21)(10pter-10q26::21q21-21qter)mat PT21 PT21 7
17 46,XX,der(21)(p11.2-qter::q22.11-qter) PT21 PT21 This report
18 46,XY,rec(21)dup(21q)inv(21)(p11q21) PT21 PT21 This report
19 inv dup(21)(q22.3q22.1) PT21 PT21 This report
20 46,XY, der(22)(t21;22)(q22.1;q11.2) PT21 PT21 This report
21 dup(21q) PT21 PT21 This report
22 46,XY,dup(21)(q22.3) PT21 PT21 This report
23 46,XX,�21,+dir dup(21)(q22.2q22.3) PT21 PT21 8
24 46,XX,�5,+der(5)t(5;21)(p15;q22) PT21 PT21 This report
25 46,XX,�21,+der(21)t(21;21)(p13;q22.2) PT21 PT21 8
26 45,XX,t(21;21)(q11;p11) N N This report
27 47,XX,+i(18)(p10) N N This report
28 46,XX N N This report
29 46,XY N N This report
30 46,XX N N This report
31 46,XX,�21,+der(15)t(15;21)(q13;q22.1) PM21 PM21 26
32 46,XY,�21,+del(21)(q11.1q21) PM21 PM21 27, 28
33 45,XY,der(2)(2pter-2q37::21q21-21qter)mat,�21 PM21 PM21 This report
34 45,XX,�21/46,XX,21q- PM21 PM21 This report
35 46,XX,del(21q) PM21 PM21 This report
36 46,XX,der(21)t(3p;21q) PM21 PM21 This report
37 46,XX PM21 PM21 29
38 46,XX,del(21)(q21) PM21 PM21 This report
39 46,XX,del(21)(q22.3) PM21 PM21 This report
40 46,XY,der(21)t(10;21)(21pter-21q22::10q24-10qter)mat PM21 PM21 This report
42 47,XXX.ish del(21q22)(AML1x1) PM21 PM21 This report
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Table 2 Clinical features for trisomy and partial trisomy cases

Case

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Clinical features T21 T21 T21 T21 T21 PT21 T21 PT21 PT21 PT21 PT21 PT21 PT21 PT21 PT21 PT21 PT21 PT21 PT21 PT21 PT21 PT21 PT21 PT21 PT21

Phenotype
present
PT21*

Short stature + + + � � + � + + � � + 5/10, 50%
Microcephaly + + � + � � 1/4, 25%
Brachycephaly + + � + � � � + � + + + � � 5/12, 42%
Flat facies + + � � � � + + 2/6, 34%
Upslant palp.
fissures

+ + + + � � + + + � + 6/9, 67%

Epicanthic folds + + � � � + � � + + � + + + + 7/13, 54%
Brushfield spots � + � � � � + � 2/8, 25%
Flat nasal bridge + + + � � � � + + + 4/8, 50%
Vaulted palate � � � + � � + 2/7, 29%
Furrowed tongue + + + � � + � � + + � � + � 5/12, 42%
Open mouth + + + � � � � � � + + + + � � 5/13, 39%
Malpositioned
ears

� � � � � + + 2/6, 34%

Small dysmorphic
ears

+ + � + + � + + + + � 7/10, 70%

Cardiac anomaly + � � � � � � � � + + � � � 2/12, 17%
Duodenal stenosis � � � � 0/3, 0%
broad short hands + + + � � � + + + + + � 7/11, 64%
Clinodactyly
fifth finger

+ � � � � + + � + � + � 5/12, 42%

Wide-gap toes
1 and 2

+ + � � � � + + � � � 4/11, 37%

Abnormal
dermatoglyphics

� � � � + + � 2/7, 29%

Palmar crease + � � � � + � + � 3/9, 34%
Hypotonia + + + � + + + + + + � + 8/10, 80%
Lax ligaments + � � + � + + � + + 5/9, 56%
IQ/MR + + + + + + + � + � + + + + + + + � 13/16, 82%

+, feature present; �, feature absent; blank, feature unknown. * The number and percentage of partial trisomy cases for a particular clinical feature where the status of the clinical feature
is known.
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evaluation, he presented a mild-to-moderate mental

retardation with speech delay, hyperactivity and dys-

morphic features, including midface hypoplasia, small

ears, intermittent convergent strabismus, short upturned

nose with anteverted nares. Small hands were also present

with normal skin creases and clinodactyly of the fifth toes.

A large ventricular septal defect was discovered at the age

of 2 months. Cytogenetic analysis reported normal kar-

yotype 46,XY, and no subtelomeric abnormality was

detected by MLPA.

Preparation of an HSA21q BAC array

A total of 409 BACs were selected to cover the long arm of

human chromosome 21. The BACs have a mean length of

157 kb and a mean overlap of 85 kb giving an Btwofold

tiling path (Supplementary Figure 1). There are seven gaps

(range: 9449–297 923 bp, mean 101 653 bp) because of

the lack of spanning BAC clones in the libraries used.

Sixty-four BACs from other chromosomes were used

as normalization controls. BACs where obtained from

libraries RPCI-11 (CHORI, www.chori.org/bacpac) and

CTD (California Institute of Technology).34 The majority

of BACs were obtained as DNA from CHORI. For BACs

obtained as cultures, DNA was prepared using the Montage

BAC96 kit from (Millipore) on a Beckman 2000 robot. All

BAC DNAs were amplified by DOP PCR,22 and diluted to

200 ng ml�1 in Nexterion Spot I (Schott) spotting buffer.

BACs were printed in duplicate onto Nexterion AL slides

(Schott) using an SDDC-2 ESI robot (BioRad). After

printing, slides were incubated for 15 min in a humid

chamber, 1 h at 120 1C, and then stored in a desiccator.

Array hybridization and washing

In all, 600 ng of DNA was labeled with Cy3 or Cy5

(Amersham) using the BioPrime labeling kit (Invitrogen)

following the manufacturer’s instructions. Array hybridiza-

tion and washing was performed according to Fiegler et al22

except that probe denaturation and prehybridization were

at 70 1C instead of 72 1C.

Array analysis

Raw data were obtained from hybridized arrays using a GSI

Lumonics ScanArray4000 scanner and ImaGene software

(BioDiscovery). Analysis was performed in two stages. First,

duplicate BAC spot values were averaged, and then all

values were normalized to the mean of all control (non-

HSA21) BACs. Second, samples were analyzed using CGH-

explorer35 to determine ploidy and to identify breakpoints.

Table 3 Clinical features for partial monosomy cases

Case

Clinical features 31 32 33 34 35 36 37 38 39 40 42
Phenotype

present (%)*

Short stature + + + � + 4/5 (80)
Short neck + + � 2/3 (67)
Microcephaly � + + � + 3/5 (60)
Brachycephaly � 0/1 (0)
Dolichocephaly + � 1/2 (50)
Low hairline + � 1/2 (50)
Epicantic eye fold � � + + � 2/5 (40)
Hypertelorism � + + + 3/4 (75)
Microphtalmia + � � 1/3 (34)
Pronounced median raphe of the filtrum + � 1/2 (50)
Highly arched palate + + � 2/3 (67)
Downslant palp.fissures � � + + 2/4 (50)
Synbrachydactily + + � 2/3 (67)
Brushfield spots � 0/1 (0)
Flat nasal bridge � � 0/2 (0)
Broad nasal bridge + + � � 2/4 (50)
Broad mouth + + � + 3/4 (75)
Large ears + + � + 3/4 (75)
Large nose + + + � 3/4 (75)
Cardiac anomaly � � � + 1/4 (25)
Clinodactily of fifth finger � + � + 2/4 (50)
Palmar crease � + � 1/3 (34)
Hypotonia + � � 1/3 (34)
Hypertonia + + � � 2/4 (50)
Seizure + + � 2/3 (67)
Lax. ligaments � � 0/2 (0)
IQ or MR + + + + + + + 7/7 (100)

+, feature present; �, feature absent; blank, feature unknown. *The number and percentage of partial monosomy cases for a particular clinical feature
where the status of the clinical feature is known.
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Calculations were carried out in Excel (Microsoft Corpora-

tion), and statistics and graphing in R (www.R-project.org).

Genotype–phenotype mapping

To map phenotypes along HSA21, we used a scoring system

for each BAC, as follows. A binary scoring system was used

because, although DS phenotypes are quantitative, we only

have data on presence or absence of the phenotype. First,

we considered only cases with the presence of a particular

phenotype (Figures 3 and 4). Each BAC was given a value of

1, if it was trisomic in the presence of the phenotype, or a

value �1, if euploid in the presence of the phenotype. For

each phenotype, a score for each BAC was then calculated

by summing the values for those cases where the

phenotype is present. Similarly, for monosomy samples,

each BAC was given a value of 1 for monosomy or �1 for

euploid, and each BAC scored for phenotype by summing

the positive cases. Second, to try to include penetrance in

the analysis, we adjusted the scores to take into considera-

tion trisomic cases, which do not have the phenotype

(Supplementary Figure S2). This was carried out by giving a

value of �1 to BACs trisomic in cases without the

phenotype and summing across all cases (both presence

and absence of the phenotype).

Quantitative PCR

SYBR green assays were designed using the program

PrimerExpress (Applied Biosystems) with default para-

meters in every case. Repetitive sequences were masked

using REPEATMASKER (www.repeatmasker.org), and am-

plicon sequences were checked by BLAT36 against the

human genome to ensure that they were specific for the

region under study. All reactions used 300 nM of each

primer, 10 ng of genomic DNA and PowerSybrGreen

MasterMix (AppliedBiosystems). PCRs were set up using a

Biomek 2000 robot (Beckman), in a 10-ml volume in 384-

well plates with two replicates per sample. Reactions were

run in an ABI 7900 Sequence Detection System (Applied

Biosystems) with the following conditions: 50 1C for

2 mins, 95 1C for 10 mins and 50 cycles of 95 1C 15 s per

60 1C 1 min. For data analysis, Ct values were obtained

using SDS 2.0 (Applied Biosystems), input DNA quantities

were normalized to four assays from chromosome 10 and

relative DNA copy number obtained by pairwise compar-

isons of test and three control DNAs. Calculations were

carried out in Excel (Microsoft Corporation) and graphing

in R (www.R-project.org).

Results and discussion
We present 41 cases in this study, including 30 with partial

aneuploidy for chromosome 21 (Table 1): 19 cases of partial

trisomy 21 (12 new and seven previously reported

cases)7,8,18,37 – 39 and 11 cases of partial monosomy 21

(eight new and three previously reported cases).24,40 – 42 We

also studied five cases presenting a DS-like phenotype with

a normal karyotype. The remaining six trisomy 21 cases

consisted of two t(21;21) and one duplication involving

HSA21 tested to identify possible partial trisomy and three

free trisomy 21 cases used as controls. The clinical features

of the 41 cases were collected from the original medical

records given by the referring physician. The available

data and clinical evaluations are summarized in Tables 2

and 3.

All 41 cases were analyzed by aCGH on the HSA21q BAC

array (Figures 1 and 2). The results by aCGH were

concordant with cytogenetic observation in all cases.

Validation by real-time quantitative PCR was carried out

for 20/30 (64%) of cases with partial aneuploidy, and

confirmed the aCGH results (Figure 1c).

We investigated four cases (27–30), which presented

with the aspects of a DS phenotype, two of which had

karyotypes with abnormalities involving HSA21. Case 27

was investigated because of the presence of several features

of DS, and a tetrasomy 18p karyotype, which might have

masked a cryptic trisomy 21. However, aCGH revealed a

normal HSA21 content. Cases 28–30 had some features of

DS leading us to suspect a possible chromosome 21 cryptic

duplication. Again, aCGH analyses revealed a normal

HSA21 content for all three cases. Case 26 was included

as normal control with a balanced t(21;21) and normal

phenotype.

Despite the phenotypic variability between cases of full

and partial monosomy 21 reported in the literature,

features are frequently described include intrauterine

prenatal and postnatal growth retardation, down-slanted

palpebral fissures, low set ears, hypertonia, heart defect

and mental retardation.6 We report the clinical findings

of 7/12 cases for partial monosomy 21. All the cases

reported (7/7) were described with mental retardation.

Short stature is present in 4/5 cases of partial monosomy

21. Large ears, large nose, broad mouth and hypertelorism

are frequently associated with partial monosomy 21,

each with 3/4 cases presenting the phenotype when

assessed.

Case 39 was reported with subtle dysmorphic anomalies

including marfanoid habitus. The thin marfanoid build

was previously associated with distal monosomy 21q.4,24

The breakpoints of the different partial aneuploidies

appear to be nonrandomly distributed along the length of

21p. If one divides 21q in the bins of 5 Mb, the segments

between 30–35 Mbs and 35–40 Mbs contain 10 and 16

breakpoints (Figure 2), respectively; in contrast, all other

such segments contain 0–6 breakpoints each. This dis-

tribution of breakpoints result in a P value¼0.0064

(Fisher’s exact test). This could be the result of an

ascertainment bias because the cases have been collected

based on phenotypic consequences; alternatively, this

could reflect a differential propensity of DNA sequences

for breakage.
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Partial monosomy 21

We present eight new cases of partial monosomy (cases

33–36, 38–40 and 42) and a refinement of the mapping for

three previously reported cases (31,40 3224,41 and 3742).

Cases 31 and 32, presenting a deletion of the proximal

region of chromosome 21, were described with a severe

phenotype including severe mental retardation, craniofa-

cial abnormalities (broad forehead, downward-slanting

palpebral fissures and low set, large ears). The 11 partial

monosomies ranged in size from 1.48 Mb (case 42) to

21.06 Mb (case 31). All the partial monosomies were

unique as none of the patients seems to share a common

breakpoint (Figure 4). The smallest deletion (case 42) was

estimated by aCGH to be only 1.48 Mb (Figure 4), and

contains eight genes including DSCR1 and RUNX1. Case 42

has a relatively severe phenotype including mental retar-

dation, microcephaly, short stature and cardiac anomaly.

The largest deletions mapped on chromosome 21 are

18.20 Mb (case 31) and 17.51 Mb (case 32) between the

centromere and 21q22.11. Both of these cases have a severe

phenotype including severe mental retardation, craniofa-

cial abnormalities (broad forehead, downward-slanting

palpebral fissures and low set, large ears). Cases 37 and 38

with distal deletions ranging from 11 Mb (case 35) to

5.63 Mb (case 37) have a relatively milder phenotype

including moderate mental retardation and absence of

craniofacial anomalies. Case 39 was reported with subtle

dysmorphic anomalies including marfanoid habitus. The
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thin marfanoid build was previously associated with distal

monosomy 21q.26,43

The partial monosomy cases described here indicate how

deletion of three broad regions of HSA21 contribute to the

phenotype of monosomy. The first region, from the

centromere to B31.2 Mb produces a severe phenotype.

This covers the gene-poor region of HSA21, but contains

B50 genes. In the second region from 31.2–36 Mb, there

are no cases with a deletion spanning this region, and only

one case (42) with a partial deletion of this region (case 42),
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and this case has a severe phenotype. This indicates that

this region, which has a high gene density (B80 genes),

contains a combination of genes that may not be

tolerated in a monosomic state. The third region, from

B36–37.5 Mb to the telomere, contains a large number

of genes B130, but its monosomy results in a milder

phenotype.

These data agree with previously published cases of

partial trisomy 21.24,27 – 29 For example, Chettouh et al24

presented six cases, four of whom had large proximal

deletions and a severe phenotype, similar to cases 31 and

32 in our study. Also, Ehling et al27 presented two cases

with distal deletions and a mild phenotype, consistent

with cases presented here.
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Given the rarity of partial monosomies, it is difficult to

draw firm conclusions. However, for monosomy pheno-

types, it seems that there is no region which would

correspond to a ‘critical region’ (Figure 3). The cases

presented here and in other studies24,27 – 29 show that

many of the individual phenotypes can be present when

different regions of HSA21 are deleted.

Partial trisomy 21 and critical regions

The 19 partial trisomies reported here range in size from

5.98 Mb (case 23) to 28.56 Mb (case 6), and each case is

unique as none of the patients share a common breakpoint

(Figure 2). The clinical features of the cases included in this

study were collected from the original medical records

provided by the referring physicians. We evaluated the

most frequent clinical feature described for the 19 cases of

partial trisomies, and the available data and clinical

evaluations are summarized in Table 2.

DS affects multiple systems and produces both func-

tional and structural defects. T21 is frequently associated

with mental retardation, congenital heart defects (mainly

atrioventricular septal defect), abnormalities of the gastro-

intestinal tract, abnormalities of neuromuscular tone,

characteristic facial and physical features, a high incidence

of seizures, modified audiovestibular and visual functions

and the early onset of Alzheimer’s disease (AD). To date,

almost every aspect of the phenotype of DS is subject to

high degree of variability even in cases of full trisomy 21.

Only two of these features are observed in all DS patients:

mental retardation and neuropathological modifications

similar to those observed in the brains of AD patients (in

DS patients over the age of 35 years).

Typically, DS patients exhibit a progressive decline in

IQ beginning in the first year of life. By adulthood, IQ is

usually in moderate-to severe retardation ranged (IQ¼
25–55) with an upper limit on mental age of B7–8 years,

although a few individuals have IQ in the lower normal

range (70–80 years).44 We report 13/16 (82%) cases with

mental retardation in patient with partial trisomy 21, a

lower rate compared to the value of 100% described in DS

patients with full trisomy 21. The minimum region defined

in our study maps is between 37.94 and 38.64 and contains

KCNJ6, DSCR4 and KCNJ15. However, cases 9, 10, 11 and

13 define a second region from the centromere to 26.96

contributing to MR.

Hypotonia, which is frequently observed in neonates, is

difficult to associate with a well characterized develop-

mental anomaly,45 but is reported as the most frequent

sign of DS.1 In our study, hypotonia was present in 80%

of the partial trisomy 21 cases, and enables the mapping

of hypotonia region to two small genomic segments

37.4–38.4 and 46.5-qter.

The mapping of the triplicated genomic segment of

chromosome 21 that harbors the functional elements

contributing to congenital heart defect (CHD)46,47 is of

importance to understand the pathogenesis of these

anomalies. CHD is present in only 2/12 (17%) compared

to the overall risk of CHD of 40% reported in DS patients.

Earlier studies of rare individuals with CHD and partial

duplications of chromosome 21 established a candidate

region from D21S3 to PFKL,6 which agrees with the two

cases presented here (Figure 3). However, the sample in our

study maps the CHD region in a large genomic segment

between 31.5 Mb and qter.

Earlier data show that not all the DS patient display

microcephaly and the main feature observed is brachyce-

phaly. Our study on partial trisomy 21 shows that 25 and

42% of partial trisomy 21 were reported with microcephaly

and brachycephaly, respectively. Major craniofacial ab-

normalities well described in DS were reported with

variable rate in our study; for example, upslanting

palpebral fissure is present in 67% of the cases, flat facies

in 34% and brushfield spots in 25% of the cases. Figure 3

shows the extent of the phenotypic mapping positions of

these features.

In summary, partial trisomy patients display particular

phenotypes at a lower frequency than trisomy 21 patients

(Table 2).

Genotype–phenotype correlations

The goal for mapping phenotypes to specific regions of

HSA21 is to identify which genes (or small regions)

contribute to DS phenotypic features, and thus to under-

stand DS pathogenesis.48 Phenotype candidate regions are

defined as the minimum region of overlap between cases

positive for the phenotype. To map these regions, we

calculated a score for each BAC along HSA21 (see Materials

and methods for details). The scores are plotted in Figures 3

and 4, highlighting the highest scoring regions for each

phenotype. Clearly, the majority of the phenotypes map to

distal HSA21; averaging the phenotype score indicates a

region B37–44 Mb, which is involved in most DS

phenotypes. This is not surprising, as this is the most

gene-rich region of chromosome 21.49

Confidence in these scores can be ascertained by

assessing how many total cases express the phenotype

compared to those with no phonotype (ie, penetrance; see

the last column of Table 3). Adjusting the scoring system

described above for each BAC was done to take this type of

data into consideration (see Materials and methods;

Supplementary Figure S2). For example, cases 16 and 18

have cardiac anomaly, and the line (Figure 3) represents the

region of overlap between the trisomic regions for these

two cases (Figure 2). However, in addition to these data, we

have data from many more cases (8, 9, 10, 11, 12, 20, 23

and 25) that do not have cardiac anomaly, but are also

trisomic for at least a part of this region. For many

phenotypes, this analysis may reduce the size of the

candidate regions, but it has the problem that it does not
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take into account the complicating factor of reduced

penetrance (Supplementary Figure S2).

Cases 9, 10, 11, 12 and 13 are interesting as they are

trisomic for proximal HSA21 and do not include

the ‘DSCR’ (Table 1). These cases, and three other

similar cases reported previously,50 exclude the possi-

bility of there being a single DSCR, in the sense of a

single region being responsible for all aspects of the

phenotype.

Although the most likely region for many phenotypes

maps in 34–41 Mb, other regions are important for

microcephaly, abnormal dermatoglyphics, short stature

and furrowed tongue. Gene density correlates with DS

(average) phenotype (Spearman rho 0.58, Po0.0001), and

this indicates that many genes along HSA21 make a

contribution to the overall DS phenotype.

For a true DSCR, there must be no patients who have the

major features of DS but do not have this region. Rather
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this is a susceptibility region (SR) modified by other loci

on HSA21 and elsewhere in the genome. The DSCR may

thus be described as a phenotype SR. These SRs make sense

against a background of expression variation.51,52

Mouse partial trisomies that are syntenic to trisomy 21 in

humans provide important information regarding the

genome mapping of phenotypic characteristics. For exam-

ple, trisomy syntenic for the ‘DSCR’ named Ts1Rhr11 did

not display learning and memory abnormalities or facial

dysmorphism, and thus did not provide evidence for the

‘DSCR’. However, genetic differences between strains and

the problem of comparing phenotypes between mouse and

human are an issue for DS mouse models in general. As in

many other biological investigations, the positive result is

significant, whereas the negative is uninformative.

Many more additional studies are needed to reduce the

candidate regions for certain phenotypes. Given the rarity

of these partial aneuploidies for chromosome 21, collec-

tion of cases from several centers need to be centralized

and analyzed with a common diagnostic platform. In

addition, a careful and structured evaluation of the

phenotypic characteristics will result in meaningful com-

parisons and conclusions. The use of oligonucleotide

platforms for array comparative genomic hybridization

for diagnostic purposes may reveal a considerable number

of additional cases that could otherwise be undiagnosed.

There is a need for a web-based reporting and collection of

both phenotypic and genotypic characterization.
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