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Genome-wide association studies have identified a large number of single-nucleotide polymorphisms
(SNPs) that individually predispose to diseases. However, many genetic risk factors remain unaccounted
for. Proteins coded by genes interact in the cell, and it is most likely that certain variants mainly affect the
phenotype in combination with other variants, termed epistasis. An exhaustive search for epistatic effects
is computationally demanding, as several billions of SNP pairs exist for typical genotyping chips. In this
study, the experimental knowledge on biological networks is used to narrow the search for two-locus
epistasis. We provide evidence that this approach is computationally feasible and statistically powerful.
By applying this method to the Wellcome Trust Case–Control Consortium data sets, we report four
significant cases of epistasis between unlinked loci, in susceptibility to Crohn’s disease, bipolar disorder,
hypertension and rheumatoid arthritis.
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Introduction
The past years have witnessed remarkable success in the

identification of low-penetrance, high-frequency suscept-

ibility variants in common, complex diseases.1 – 10 These

show the efficiency of case–control association mapping,

when sample sizes are sufficiently large (in thousands) and

when the set of single-nucleotide polymorphism (SNP)

marker is sufficiently dense (hundred of thousands of

markers). Enthusiasm has replaced a long discussion of the

feasibility of association mapping studies for two main

reasons. On the one hand, replication in a second cohort

(or population) of genome-wide significant findings allows

weeding out of the false-positive findings that the field

previously has suffered from. On the other hand, the major

breakthrough was technological rather than methodo-

logical. The completion of the human genome,1 followed

by the HapMap project,2 has led to the design of efficient

genotyping chips that can be run on thousands of cases

and controls. A prominent example is the typing of 17 000

individuals for 500 000 SNPs in seven common diseases

(bipolar disorder (BD), coronary artery disease (CAD),

Crohn’s disease (CD), hypertension (HT), rheumatoid

arthritis (RA), type 1 diabetes (T1D) and type 2 diabetes

(T2D)), by the Wellcome Trust Case–Control Consortium

(WTCCC).3 These data have been released for scientific

investigation and are used in this study.

However, a large part of the genetic variance in many of

these diseases is still unaccounted for. It can be explained

by several reasons: first, genes are assumed to interact with

their environment; second, the coverage of the SNP chips

is not perfect; third, there may be many rare, highly
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penetrant variants that association mapping is not

designed for; fourth, the detection of variants with low

genotypic risk might require sample sizes larger than what

is currently available; and fifth, susceptibility might be

caused by the interaction of genetic variants. Many efforts

have been made to identify gene–environment interaction

in susceptibility to complex diseases. The next generation

of chips will improve coverage, alleviating the second

problem. The third issue, low-frequency variants, will be

dealt with by using resequencing data. Replicating high

ranking SNPs with larger sample sizes, as well as combining

data sets in meta-analysis, will provide insight into very

low odds ratio variants, avoiding the fourth problem. In

this study, we focused our attention on the detection

of interaction, also known as epistasis, referring to the

fourth item.

Detecting epistasis is a challenge, as it requires improve-

ments in analysis methods rather than genotyping

technology. To our knowledge, only one study dealing

with SNP–SNP interaction at the genome scale has been

published, and it reports only negative findings.4 Searching

exhaustively for two-locus epistasis using a 500-k chip

requires testing of 125 billion SNP pairs. Such a large

number of tests is a challenge both statistically and

computationally. Statistically, it implies that significant

tests after correction for multiple testing should have

P-values lower than 10�13. Extrapolating from single

variant findings, such low P-values should be very rare

for the sample sizes of existing studies, even though it has

been shown that searching for all SNP pairs may be a

powerful approach.5 Although it is computationally possi-

ble to perform 125 billion tests, these tests have to be very

simple to be run in a reasonable time even on large CPU

clusters.

Alternatively, the search for interacting SNPs can be

prioritized. As many epistatic models result in some

marginal effect, an obvious approach is to restrict the

search to marker pairs where at least one of the markers

shows a single association. Simulations have proved that

this approach can be powerful,6 but so far its use on

genome-wide real data sets has not been reported.

A complement approach is to restrict the search to marker

sets that a priori are expected to interact on the basis of our

biological knowledge.7

Such an approach has been very recently proposed.8

In this review article, Pattin and Moore have suggested

that the use of expert knowledge extracted from protein

interaction databases may allow for a more efficient

analysis of genome-wide studies. Here, we propose a similar

approach by combining the biological and statistical

perspective of epistasis. We postulate that two genes that

biologically interact are good candidates to a statistical

analysis of epistasis in susceptibility to complex diseases.

We present the first approach coupling association

mapping and interactomics.

In this article, we have reduced the search to SNPs

belonging to gene pairs known to interact and referenced

in protein databases. We apply this method to the data

from the WTCCC and report the first genome-wide scan for

epistasis based on biological networks. The significance

level is evaluated with a Bonferroni-like procedure that

accounts for the correlation between SNPs. We show that

our correction is more powerful than a usual Bonferroni

correction. We report significant interactions in suscepti-

bility to CD, BD, HT and RA.

Materials and methods
The proposed method is made by a few steps that go from

the Protein Interaction Database to the test of interaction

between two SNPs in susceptibility to a complex disease.

The main steps are summarized in a flowchart shown in

the Supplementary Figure 1.

Protein interaction database

Among the large variety of protein interaction databases,

we used the STRING database9 to guide the search for

epistasis. STRING is one of the largest database of known

and predicted protein–protein interactions. It combines

reported interactions from dedicated interaction data-

bases10 and multipurpose databases centred on specific

model organisms.11 The interactions include direct

(physical) and indirect (functional) associations derived

from four sources: genomic context, high throughput,

co-expression and previous knowledge. Although no

distinction has been made between different types of

interaction, more has been made on the confidence of the

interaction. In the STRING database, each protein–protein

interaction has a confidence score. We focused only on the

high-confidence interactions (ie, interactions with a score

larger than 0.7) and restricted the search to autosomal

chromosomes. This selection leads to approximatively

71 000 potential protein–protein interactions that we

wanted to test for epistasis.

For each relevant protein, we located the corresponding

gene using the Ensembl database12 and identified all SNPs

typed in a region of 100 kbp on either side of the gene. We

extended the regions around the genes by 100 kbp to either

side, as there may be regulatory variants or SNPs in

significant linkage disequilibrium (LD) to the gene at this

distance.

Data

We applied our approach to the recently released data from

the WTCCC3 on BD, CAD, CD, HT, RA, T1D and T2D. For

each disease, 2000 patients in the British population were

genotyped using the Affymetrix GeneChip 500 k Mapping

Array Set. The seven disease data sets share a set of 3000

controls.
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We filtered the data in the following way: we masked

genotypes with a posterior probability (or CHIAMO score)

lower than 0.95 as ‘missing data’. Markers were then

removed if the percentage of missing data was larger than

1%, the minor allele frequency lower than 10% or if they

were not in Hardy–Weinberg equilibrium (Po0.05).

Finally, to remove statistical interaction caused by LD

rather than disease association, we excluded all SNP pairs

located in linked gene pairs (ie, genes on the same

chromosome and separated by less than 5 Mbp). After

filtering, the number of SNP pairs for each disease was

between 3 107 904 and 3 850 339.

Statistical analysis

In this study, we propose to test the interaction between a

pair of SNPs by performing a likelihood ratio test. This test

aims at comparing a logistic regression that takes into

account only marginal effects of both SNPs with a full

logistic regression model that includes pairwise interaction

between the two SNPs. This statistical procedure was

proposed by Cordell13 but has never been used for

genome-wide data analysis. It can be formalized as follows.

Let p be the probability of being affected. Let xj
i correspond

to factors related to the underlying genotype j at locus i.

The interaction model that incorporated interacting

coefficients between the two SNPs can be written as

log
p

1� p

� �
¼b0 þ b1x1

1 þ b2x1
2 þ b3x2

1 þ b4x2
2 þ b5x1

1x2
1

þ b6x1
1x2

2 þ b7x2
1x1

2 þ b8x2
1x2

2

where the coefficients b0, b1, b2, b3 and b4 represent genetic

parameters that correspond to the mean effect and additive

and dominance effects at the two loci. Parameters b5_8

correspond to epistatic effects. We propose to compare the

interaction model with a null model where the interacting

coefficients have been removed, which leads to

log
p

1� p

� �
¼ b0 þ b1x1

1 þ b2x1
2 þ b3x2

1 þ b4x2
2

The model comparison is performed by a likelihood ratio

test (with four degrees of freedom) between the above two

models.

Population stratification

Similar to a previous study,3 we observe that the overall

effect of population structure on our association results

seems to be relatively small. We corrected for relatedness

using the genomic control method. We estimated the

inflation factor by adapting the procedure described in

earlier studies.14,15 We computed the mean and the median

of our test statistic and divided them by 4 and 3.36,

respectively, corresponding to the expected mean and

median of the w2 test statistics with four degrees of

freedom. The corresponding inflation factors for

each disease are 1.06–1.07 for BD, 1.02–1.02 for CAD,

1.08–1.09 for CD, 1.02–1.02 for HT, 1.04–1.05 for RA,

1.02–1.02 for T1D and 1.02–1.03 for T2D.

Correction for multiple testing

P-values have to be adjusted for multiple comparisons, to

estimate the significance level of interaction. We propose

to apply a Bonferroni-like correction based on the effective

number of SNP pairs. In our network-based approach, there

are two levels of dependencies. First, for a particular pair of

genes, each SNP from the first gene is tested against each

SNP from the second gene. Second, gene pairs are not

independent, as one gene can belong to more than one

gene pair. Although the second source of dependency

might have an impact on the significance level, we

accounted only for the multiple comparisons arising in a

single gene pair test. If nGG is the number of gene pairs and

nG1
i and nG2

i are the number of SNPs in the first and second

gene, respectively, of the pair i, then the total number of

tests, denoted by N, is

N ¼
XnGG

i¼1

ni
G1�ni

G2

To account for the dependency between tests, we propose

to estimate the number of effective tests in a single gene

pair i, denoted by neff
i , and to use it in the above formula in

place of nG1
i �nG2

i . The effective number of SNP pairs was

calculated using the Eigen values of a correlation matrix,16

where the correlation between two pairs of SNPs can be

measured with the entropy and the mutual information17

as follows:

CorððS1
1; S

1
2Þ; ðS2

1; S
2
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1; S

1
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where H is the entropy measure and I is the mutual

information measure. As described by Li and Ji,16 letting

nGG
i be the number of SNP pairs in the gene pair i, and lk

(k¼1ynGG
i ) the eigen values of the correlation matrix, the

number of effective tests in the gene pair i neff
i is given by

ni
eff ¼

Xni
GG

k¼1

f ðjlkjÞ

with f(x)¼ II(xZ1)þ (x�Ixm), where II is the indicator

function and Ixm is the floor of x. We estimate the number

of effective SNP pairs as follows:

Neff ¼
XnGG

i¼1

ni
eff

A Bonferroni correction consists of multiplying the

P-values by N, and an effective correction is made by
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multiplying the P-values by Neff. The use of our effective

correction leads to a number of effective tests in the range

of (506,173y600,010) for the seven diseases, leading to

a globally nominal level in the range of (8.3� 10�8,

9.9�10�8).

Quantile–quantile plots

We constructed quantile–quantile (Q–Q) plots by plotting

the order statistics from a set of values against their

expected values obtained from the theoretical distribution

under the null distribution. To make the interpretation

easier, we adapted the idea developed by the WTCCC and

calculated the 95% concentration bands (shaded grey in all

Q–Q plots).18 The concentration band was calculated, with

10.000 simulations, assuming that SNP pairs are indepen-

dent, and it does not reflect the effective level of

significance.

SNPFile software

We performed all the analysis using a new binary file

format for SNP data. SNPFile is a Cþ þ library that stores

genotype data together with any kind of additional data,

using a flexible serialization mechanism. It is dedicated to

the manipulation of genome-wide SNP data sets and is

accessible through http://www.daimi.au.dk/~mailund/

SNPfile/. Software that implements the proposed epistatic

test is available (http://www.daimi.au.dk/~memily/BiRC/

Software.html) and is compatible with the SNPFile format.

As input of this code, one needs an interaction file referring

to all gene pairs to be tested.

Results
A powerful statistical procedure to detect epistasis
based on interactomics

To assess for the power of the proposed statistical

procedure, described in the section on Statistical Analysis

under Materials and methods, we looked at the distribu-

tion of the interaction statistics for 10 000 random SNP

pairs, expected to follow the null hypothesis of non-

interaction. We found that our interaction statistic,

calculated as a likelihood ratio, followed a w2 distribution

with four degrees of freedom: type I error rate at 1, 5, 10

and 20% levels were 0.94, 4.8, 10 and 20%, respectively.

We then tested the efficiency of our correction for

multiple comparisons (see Materials and methods) on

simulated data sets based on the WTCCC data. Ten

thousand gene pairs were generated in the set of genes

from the STRING database. For each of the 10 000 gene

pairs, the number of effective pairs was calculated with the

procedure described in Materials and methods and com-

pared with the total number of pairs that is used in the

conventional Bonferroni correction. Type I error rate at the

5% level shows that a Bonferroni correction is overly

conservative: we estimate that the probability of rejecting

the null hypothesis of non-interaction to be 0.8%. It proves

that LD structure within genes induces dependency

between SNP pairs, lowering the power to detect epistasis.

The use of the effective number of pairs gave a better

correction, improving the power to detect interaction, and

we estimate that the probability of rejecting the null

hypothesis at a 5% level is 4.5%; still conservative but

much less so than the Bonferroni correction. From this

simulation study and the analysis of the seven case/

controls data sets, we can conclude that the number of

effective tests is approximatively six times lower than the

total number of tests, which is in agreement with one

previous investigation.19

Overall results from the WTCCC data analysis

After applying our data quality filter, as described in

Materials and Methods, we were left with 3 107 904–

3 850 339 tests per disease in the WTCCC data. Thus, as

the total number of selected SNP pairs was equal to

10.700.176, approximatively two-thirds of SNP pairs were

removed by the quality filter. The analysis of one data set

took between 130 and 160 h, corresponding to an average

of 25 000 tests per hour, on typical computer, showing the

feasibility of our approach. In comparison, testing all

possible pairs (125 billions pairs) would take 570 years on a

single computer.

Figure 1 shows the quantile–quantile plots for the

interaction test in the seven diseases using the 71 000

well-established protein–protein interactions in the

STRING database.9 The shaded region in the plots corre-

sponds to the 95% concentration band obtained from the

null hypothesis of non-interaction (corresponding to a w2

test with four degrees of freedom). The most interacting

SNP pairs are reported in Table 1 for each disease.

The P-value yielding genome-wide significance at the 5%

level after multiple comparisons depends on the disease

and is in the range (8.3�10�8, 9.9�10�8). There are four

cases of significance, one in each of CD, BD, HT and RA.

Consistent with the quantile–quantile plots, CD shows the

strongest interaction with a P-value of 1.13�10�9, yielding

an overall P-value of 6.10�4 after correction. Despite the

computational cost, we performed 10 re-analyses of CD

data sets where individual phenotypes were permuted.

Results shown in Supplementary Table 1 argue in favour of

highly significant statistical interaction. The four signifi-

cant interactions are individually discussed in the follow-

ing paragraphs.

Crohn’s disease

For CD, we observe an excess of points outside the 95%

concentration band at the tail of the distribution. In total,

eight SNP pairs show a significant interaction. All of them

belong to the same putative biological interaction: the

eight pairs are made by two SNPs from the first region and

four SNPs from the second region. This interaction
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involves genes Adenomatous Polyposis Coli (APC) and the

IQ-domain GTPase-activating protein 1 (IQGAP1). Removing

all APC-IQGAP1 SNP pairs from the analysis completely

eliminates the deviation from the expected Q–Q plot

(see Figure 2).

The interaction pattern for the most significant SNP pair

(rs6496669 on 15q26 and rs434157 on 5q22) is reported in

Table 2. These SNPs have a minor allele frequency (MAF) of

0.20 and 0.33, and affected individuals show an excess

of genotype pairs (AA, GG), (AG, GG) and (AA, GA),

corresponding to epistatic model M11 proposed by

Evans et al.6 Looking at SNP pairs in the neighbourhood

of rs6496669 and rs434157 shows the same interaction

pattern (data not shown). Risks, relative to the most

common homozygote genotype (GG, AA), are reported in

Table 2. For genotypes (AG, GG) and (GA, AA), the relative

risks are significantly higher than 1:2.10 (95% CI: 1.33–

3.34) and 1.67 (95% CI: 1.22–2.30). Although the risk for

the genotype (AA, GG) does not reach the level of

significance (1.34 with 95% CI: 0.55–3.24) possibly

because of its low frequency, its value is larger than 1.

The joint OR, that combined the three at-risk genotypes, is

1.85 (95% CI: 1.45–2.37) and this is significantly larger

than 1 (Fisher’s exact test, P¼8.88�10�7), confirming that

carrying at least three minor alleles combining rs6496669

and rs434157 elevates the risk for CD in the WTCCC data

set. Interacting SNPs are in LD with genes APC and IQGAP1

(see Supplementary Figure 2). Biologically, b-catenin

colocalizes with IQGAP1, APC and N-cadherin ruffles in

NIH 3T3 fibroblasts, and APC/IQGAP1 has been identified

to regulate cell migration.20 Furthermore, the two inter-

acting regions have been related to the development of CD.

First, APC located close to MCC (mutator in colorectal

cancer) has been associated with CD.21,22 Second, IQGAP1

is recognized as a negative regulator of cell–cell adhesion.

Its role in carcinogenesis has already been reported,23 and

it has been mentioned that IQGPA1 might be involved in

gastric and colorectal cancers.24,25
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Figure 1 Overall analysis of the WTCCC data. Quantile –quantile plots of the test statistic observed in the seven studied diseases. The shaded
region is the 95% concentration band, calculated assuming independent SNP pairs.
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Bipolar disorder

A statistical interaction was found between rs2237091

(chromosome 5q32) and rs1798011 (chromosome 12q22

located in the PDGFR-B gene and the KITLG gene,

respectively). These SNPs have a MAF of 0.10 and 0.43,

respectively (Table 3). The genotype pairs (GG, CT), (GA,

TT) and (GG, TT) are overrepresented in affected indivi-

duals, resembling the interaction pattern M11 reported by

Evans et al.6 Table 3 also shows the risks relative to

genotype (AA, CC) and shows that the relative risk for

(GA, TT) was 1.88 (95% CI: 1.31–2.71) and for (GG, CT) it

was 1.34 (95% CI:0.58–3.05). The joint OR, which

combined the three at-risk genotypes, has a value of 1.92

(95% CI: 1.4–2.64), significantly larger than 1 (Fisher’s

exact test P¼ 5.68� 10�5), confirming that carrying at least

three minor alleles combining rs2237091 and rs1798011 is

a risk predictor for bipolar disorder in the WTCCC data set.

Biologically, the two genes can be linked to bipolar disorder

as follows: PDGFR-B and KITLG are both member of the

cytokine–cytokine receptor interaction pathway.25

Furthermore, they are both known to interact with the

KIT tyrosine kinase receptor, which can be viewed as an

indirect interaction between PDGFR-B and KITLG.

Hypertension

The analysis of the hypertension data set shows a

significant statistical interaction between rs11208766 and

rs2859576 placed within PDE4B gene (chromosome 1p31)

and PDE8B gene (chromosome 5q13), respectively. Geno-

type pair (AA, GA) appeared to be underrepresented in

affected individuals (see Table 4), leading to a protective

epistasis model. The risk, relative to genotype (AA, GG),

was equal to 0.42 (95% CI: 0.30–0.58), which is signifi-

cantly lower than 1 (Fisher’s exact test; P¼7.63�10�8),

confirming that carrying this genotype for the SNP pair

(rs2237091, rs1798011) significantly protects from deve-

loping hypertension in the WTCCC data set. Genes PDE4B

and PDE8B are connected to hypertension as members of

phosphodiesterase-4, which have been recently reported to

have protective effects in the early stage of pulmonary

arterial hypertension in mice.26

Rheumatoid arthritis

Analysis of the epistasis between APP and APBB3 genes, in

susceptibility to RA, shows a significant interaction

between rs2830075 (chromosome 21q21) and rs2163786

Table 1 Reports of the most interacting SNP pairs for the seven diseases from the WTCCC data

Disease SNP1
Chr1

(position)
Marginal
effect 1 SNP2 Chr2 (position)

Marginal
effect 2

Interaction
test

Number
of tests

Number of
effective tests

CD rs6496669 15 (88696269) Pval¼0.86
RR¼ 1.01

rs434157 5 (112219541) Pval¼0.69
RR¼1.02

1.13�10�9 3 334 147 530 071

BD rs2237091 5 (149529990) Pval¼0.13
RR¼ 1.12

rs1798011 12(87459093) Pval¼0.28
RR¼1.05

8.32�10�8 3 533 600 552 050

HT rs11208766 1 (66084927) Pval¼0.44
RR¼ 0.95

rs2859576 5 (76592073) Pval¼0.42
RR¼1.03

9.07�10�8 3 231 429 512 112

RA rs2830075 21 (26424313) Pval¼0.59
RR¼ 1.02

rs2163786 5 (139966674) Pval¼0.54
RR¼1.03

9.10�10�8 3 258 999 512 925

CAD rs4655797 1 (65913717) Pval¼0.85
RR¼ 1.01

rs10247918 7 (31627635) Pval¼0.18
RR¼1.06

2.33�10�7 3 107 904 506 173

T1D rs2771102 9 (90146698) Pval¼0.46
RR¼ 1.03

rs7150423 14 (76020264) Pval¼0.90
RR¼1.00

3.45�10�7 3 850 339 600 010

T2D rs2276549 2 (29452755) Pval¼0.01
RR¼ 0.89

rs10217742 9 (87198969) Pval¼0.65
RR¼1.02

5.21�10�7 3 395 047 528 824

The marginal effect of each SNP has been calculated using a standard allelic w2 test. The corresponding marginal relative risks (RRs) is also reported. The
number of effective tests has been obtained through the method described in the text.
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Figure 2 QQ plot for Crohn’s disease (CD). Quantile –quantile
plots of the test statistic observed for the CD. The black dots
correspond to the entire data set. The blue dots result from the
removal of SNP pairs included in APC-IQGAP1 regions. The shaded
region shows the 95% concentration band for the non-interaction
hypothesis.
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(chromosome 5q31.3). These two SNPs are common (MAFs

of 0.34 and 0.49, respectively) and follow an epistatic

model, labelled M2 by Evans et al.,6 where the genotype

pair (TT, GA) is overrepresented in affected individuals (see

Table 5). The risk, relative to genotype (CC, AA), for the

specific genotype (TT, GA) was 1.60 (95% CI: 1.19–2.15),

which is significantly larger than 1 (Fisher’s exact test;

P¼3.6�10�4), confirming that carrying this genotype

predisposes to RA in the WTCCC data set. Experimental

evidence of biological epistasis between APP and APBB3

has been reported earlier.27,28 Furthermore, amyloid pre-

cursors are associated with glycocorticoids sensitivity

whose variations play an important role in susceptibility

to many inflammatory diseases, such as RA.29

Table 2 Genotype counts for the SNP pair in Crohn’s disease (rs6496669, rs434157) and odds ratio relative to the most
common double homozygote genotype: (rs6496669, rs434157)¼ (GG, AA)

rs6496669

rs434157 AA AG GG

Controls GG 11 (13) 33 (48) 87 (70)
GA 81 (103) 413 (399) 440 (434)
AA 226 (195) 858 (879) 835 (840)

Crohn’s disease GG 10 (8) 47 (31) 31 (47)
GA 92 (69) 252 (265) 284 (289)
AA 99 (129) 608 (586) 566 (560)

OR relative to GG/AA (95% CI) GG 1.34 (0.55–3.24) 2.10 (1.33–3.34) 0.53 (0.34–0.80)
GA 1.67 (1.22–2.30) 0.90 (0.74–1.09) 0.95 (0.79–1.14)
AA 0.65 (0.50–0.84) 1.05 (0.90–1.21) 1

Table 3 Genotype counts for the SNP pair in bipolar disorder (rs2237091, rs1798011) and odds ratio relative to the most
common double homozygote genotype: (rs2237091, rs1798011)¼ (AA, CC)

rs2237091

rs1798011 GG GA AA

Controls TT 0 (5) 59 (77) 509 (470)
CT 13 (14) 242 (257) 1153 (1191)
CC 9 (6) 173 (151) 820 (802)

Bipolar disorder TT 9 (3) 70 (51) 275 (313)
CT 11 (9) 187 (171) 831 (792)
CC 2 (4) 80 (101) 517 (534)

OR relative to AA/CC (95% CI) TT X 1.88 (1.31–2.71) 0.86 (0.71–1.03)
CT 1.34 (0.58–3.05) 1.22 (0.98–1.53) 1.14 (0.99–1.32)
CC 0.37 (0.05–1.49) 0.73 (0.55–0.97) 1

Table 4 Genotype counts for the SNP pair in hypertension (rs11208766, rs2859576) and odds ratio relative to the most
common double homozygote genotype: (rs11208766, rs2859576)¼ (AA, AA)

rs11208766

rs2859576 GG GA AA

Controls GG 7 (9) 19 (16) 7 (6)
GA 130 (138) 248 (268) 184 (144)
AA 605 (598) 1203 (1193) 599 (623)

Hypertension GG 9 (7) 8 (10) 3 (4)
GA 101 (92) 199 (178) 57 (96)
AA 392 (398) 784 (793) 440 (415)

OR relative to AA/AA (95% CI) GG 1.74 (0.63–4.99) 0.58 (0.23–1.30) 0.60 (0.12–2.23)
GA 1.05 (0.79–1.41) 1.09 (0.87–1.37) 0.42 (0.30–0.58)
AA 0.88 (0.74–1.05) 0.88 (0.76–1.03) 1
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Discussion
To identify interactions between SNPs in large-scale

genome-wide association data, we introduced a new

method, which uses information from known biological

networks to limit the number of tests. Other existing

methods propose either to test exhaustively all SNP pairs or

to test only loci marginally significant. Our method is

complementary to these approaches. First, by focusing on

potentially good SNP pair candidates, which take part in a

protein–protein interaction network, our method

increases the significance level, and true findings, missed

by testing all pairs exhaustively, may be picked up by our

method. Second, by accounting for the correlation

between SNP pairs, we control for multiple comparisons

in a more efficient way than a Bonferroni correction.

Moreover, the proposed statistical procedure can detect a

large variety of epistatic models and allow for the detection

of interaction between loci that do not display marginal

effects.

We applied our approach on the seven data sets released

by the WTCCC.3 The four potential cases of epistasis (for

CD, BD, HT and RA) reported in this study would not have

been found with any of the competing methods. Apart

from four potential interactions, discussed in details, we

did not find any evidence of interaction for the three other

diseases (CAD, T1D and T2D). Although it might be due to

the restriction of intragenic regions, this suggests that such

interactions are either rare or that the statistical power is

limited by the present sample sizes. Accordingly, the first

attempts to screen for pairs of markers failed in finding any

interaction effect.4

As the number of two-locus epistatic models is very large,

it is not straightforward to evaluate the statistical power of

our approach. Moreover, many other factors can affect our

ability to detect interaction. Even with very large data sets

made by 2000–3000 individuals, some genotypes will be

represented by very few individuals. As a consequence,

detecting interaction with a multiplicative underlying

epistatic model is almost impossible for loci having an

allelic frequency lower than 0.1. We used simulations to

address the question of the allelic frequencies effect on the

power of our proposed statistical procedure. We found that

our test becomes conservative when minor allele frequen-

cies decrease and marginal effects increase. Therefore, the

approach is most powerful for identifying interaction of

common SNPs with very limited marginal effects, which

are exactly the types of interaction missed by other

approaches based on marginal effects. Another limiting

factor is the use of tag-SNPs, which considerably affects the

statistical power of detecting interaction, in comparison

with single marker association. Considering a pair of

variants where none of the SNPs are on the chip, the use

of tag-SNPs to detect the true interaction may fail, leading

to a dramatic loss of power even with data sets with

thousands of individuals.

Despite these power issues, we found four statistical

significant interactions, in susceptibility to CD, between

SNPs near the genes APC and IQGAP1, to bipolar disorder,

involving genes PDGFR-B and KITLG, to hypertension with

a protective effect implicating two phosphodiesterase-4,

and to RA, between two amyloid beta A4 precursor. The

statistical significance of the test was assessed by a

Bonferroni-like correction for multiple comparisons. As

the Bonferroni correction might be over-conservative, we

accounted for the correlation within genes, due to LD.

Following techniques developed by Li and Ji,16 we used a

Bonferroni-like correction by multiplying the P-values by

the effective number of independent comparisons. As

correlation induced by non-independent gene pairs has

been omitted, our correction is most likely to be over-

conservative. Even with a significant result, we cannot

definitely state that this is a true interaction. Replication

in other data sets, and preferably other populations, is

necessary. Using simulations (see Supplementary

Tables 2a and b), we estimate the power to replicate such

interactions, at a nominal level of 5%, to 0.96 for CD, 0.94

for BD, 0.93 for HT and 0.91 for RA, with a typical data set

with one thousand cases and controls. If the sample size of

Table 5 Genotype counts for the SNP pair in rheumatoid arthritis (rs2830075, rs2163786) and odds ratio relative to the
most common double homozygote genotype: (rs2830075, rs2163786)¼ (CC, AA)

rs2830075

rs2163786 TT TC CC

Controls GG 106 (79) 324 (335) 304 (310)
GA 129 (158) 670 (690) 667 (648)
AA 105 (101) 346 (331) 337 (334)

Rheumatoid arthritis GG 27 (53) 235 (223) 212 (206)
GA 134 (105) 480 (459) 412 (430)
AA 63 (67) 205 (220) 219 (222)

OR relative to CC/AA (95% CI) GG 0.39 (0.25–0.62) 1.16 (0.88–1.42) 1.07 (0.84–1.37)
GA 1.60 (1.19–2.15) 1.10 (0.90–1.36) 0.95 (0.77–1.17)
AA 0.92 (0.64–1.32) 0.91 (0.72–1.16) 1
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the replication cohort is divided by 2 (500 cases and 500

controls), power drops to 0.73 for CD, 0.56 for BD, 0.68 for

HT and 0.63 for RA, whereas it reaches 100% for all diseases

if the sample size is doubled (2000 cases and 2000

controls). Consequently, we can hope, with the current

cohort’s size, that our potential interaction can be

replicated in another data set. Furthermore, with the

upcoming of meta-analysis, data set sample sizes are

boosted increasing the power to replicate findings.

The interaction pattern between rs6496669 and

rs434157 indicates that carrying at least three of the four

minor alleles of SNPs increases the risk for CD by a factor

1.85. The source of the interaction between APC and

IQGAP120 relates to cell migration. The two genes have also

been associated previously with colorectal cancer21,25 and

directly to CD.30 More precisely, germline mutations (in

which gene APC) cause familial adenomatous polyposis

(FAP), which is an autosomal dominant inherited disease

characterized by the presence of adenomatous polyps in

the colon and rectum, with the inevitable development of

colorectal cancer.21 The link between colon cancer and CD

is well established, with people affected by CD having a

relative risk of 5.6 for developing colon cancer.31 In

addition, experimental work has highlighted some associa-

tion between CD and disorder of the APC gene.30 Recently,

it has been suggested that APC might be involved in the

apoptosis process implicated in colon cancer.22 As IQGAP1

is recognized as a negative regulator of cell–cell adhesion,

this is consistent with the fact that IQGAP1/APC impacts

on the regulation of cell migration as reported earlier.20

Analysis of epistasis in susceptibility to bipolar disorder

reveals a significant interaction between rs2237091 and

rs1798011: carrying at least three of the four minor alleles

significantly increases the risk for bipolar disorder by a

factor 1.81. Biological evidence has already emphasis on

this interaction. A recent study has reported that a co-

expression between KIT Ligand (KITLG) and PDGFR-B

provides a good prognosis in neuroblastoma.32 In addition

it has been reported that PDGF Receptor Beta (PDGFR-B)

transcripts were significantly increased in schizophrenia

brains,33 pointed out that PDGFR-B plays a role in bipolar

disorder. Finally PDGFR-B and KITLG both belong to the

cytokine-cytokine pathway, which is known to have an

effect in schizophrenia.34 More precisely, growing evidence

suggests an interplay between the immune and the

nervous system, which might be reflected by the interac-

tion between rs2237091 and rs1798011 in susceptibility to

bipolar disorder.

Single-nucleotide polymorphism pair (rs11208766,

rs2859576) shows an interaction pattern that protects for

developing hypertension in the WTCCC data set. These

two SNPs belong to two phosphodiesterase-4, and experi-

mental evidence argues in favour of protective effects of

these enzymes with hypertension.26 More precisely, phos-

phodiesterase-4 are enzymes that break a phosphodiester

bond, and these enzymes have been identified as new

potential therapeutics.35

The fourth SNP pair involves rs2830075 and rs2163786

in susceptibility to RA. These two SNPs are located in APP

and APBB3 (Fe65L2) genes. Experimental evidence argues

in favour of an interaction between Fe65L2 and APP.27

More precisely, Fe65L2 is a ligand of the cytoplasmic

domain of APP. This interaction might play a role in the

RA. First, Glucocorticoids (Gc) increase amyloid precursor

proteins36 and may be linked to RA, as variation in Gc

sensitivity is associated with inflammatory diseases.

Second, many evidences support a negative association

between Alzheimer and RA.37 – 39 This might be an

explanation of the potential interaction found between

rs2830075 and rs2163786.

To conclude, using biological knowledge to drive the

search for interacting SNPs at the genome scale is

complementary to existing methods. It allows for the

detection of epistatic SNP pairs that do not show marginal

effects and without any focus on a specific interaction

model. A similar statistical procedure can be designed to

detect higher-order interactions. However, such a test is

most likely to be limited in terms of power because of a

higher degree of freedom and, as one expects, very low

counts for an n-tuplet SNPs.

Furthermore, our approach reduces the level of signifi-

cance both by selecting candidate tests and by efficiently

correcting for multiple comparisons. In addition, our

method allows for a biological feedback of the findings,

something lacking in many association studies. As an

example, it provides candidate genes that might be

involved in the interaction. These benefits are illustrated

by the results reported for CD, BD, HT and RA.
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