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A new diagnostic workflow for patients with
mental retardation and/or multiple congenital
abnormalities: test arrays first
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High-density single-nucleotide polymorphism (SNP) genotyping technology enables extensive genotyping
as well as the detection of increasingly smaller chromosomal aberrations. In this study, we assess molecular
karyotyping as first-round analysis of patients with mental retardation and/or multiple congenital
abnormalities (MR/MCA). We used different commercially available SNP array platforms, the Affymetrix
GeneChip 262K NspI, the Genechip 238K StyI, the Illumina HumanHap 300 and HumanCNV 370 BeadChip,
to detect copy number variants (CNVs) in 318 patients with unexplained MR/MCA. We found
abnormalities in 22.6% of the patients, including six CNVs that overlap known microdeletion/duplication
syndromes, eight CNVs that overlap recently described syndromes, 63 potentially pathogenic CNVs
(in 52 patients), four large segments of homozygosity and two mosaic trisomies for an entire chromosome.
This study shows that high-density SNP array analysis reveals a much higher diagnostic yield as that of
conventional karyotyping. SNP arrays have the potential to detect CNVs, mosaics, uniparental disomies
and loss of heterozygosity in one experiment. We, therefore, propose a novel diagnostic approach to all
MR/MCA patients by first analyzing every patient with an SNP array instead of conventional karyotyping.
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Introduction
Mental retardation (MR) is a life-long disability with a

major impact on the lives of the patients and their families.

The prevalence of MR is 2–3%, and the underlying cause

remains unknown in 65–80% of patients.1 – 3 Diagnosing is

a challenge because of the broad spectrum of potentially

underlying disorders and the wide range of available tests.

Knowing the cause is necessary for assessing recurrence

risk, short- and long-term prognosis and to decide on

treatment options.

Changes in genetic dosage of one or more genes are

common causes of MR.3 Routine microscopic analysis of

chromosomes isolated from peripheral blood lymphocytes

has been used successfully to identify such genetic

imbalances over the past 50 years. This conventional

karyotyping has the advantage of surveying the entire

genome for chromosome abnormalities in a single experi-

ment, but it cannot detect imbalances smaller than

approximately 5 Mb. Smaller chromosomal aberrations

can be identified with fluorescent in situ hybridization (FISH)

and multiplex ligation-dependent probe amplification
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(MLPA) analysis. These techniques are used either to confirm

a clinical suspicion by screening for well-known microdele-

tion syndromes associated with MR or for the analysis of all

subtelomeric regions of the genome. The subtelomeric

regions are known to be frequently affected in MR.1 The

use of FISH and MLPA analysis is limited because only a few

genomic regions can be screened in a single experiment and

it can therefore not be applied genome wide.

Patients with unexplained MR with or without multiple

congenital abnormalities (MR/MCA), who are referred to

genetic laboratories, are initially screened with conven-

tional karyotyping and, if required, with targeted FISH or

MLPA analysis. The combined diagnostic yield of these

analyses is approximately 5–10%.4 Consequently, a clini-

cal diagnosis is lacking in the majority of these patients,

which impedes the development of treatment strategies

and adequate genetic counseling. Therefore, new high-

resolution whole-genome technologies facilitating an

increased detection rate of subtle chromosome imbalances

are needed to improve the diagnosis of MR/MCA patients.

Recent developments in array technology allow whole-

genome analysis for copy number variants (CNVs) at a

resolution 10–10 000 times higher than that of conven-

tional karyotyping. Comparative genome hybridization

(CGH) studies using arrays with large insert clones (usually

bacterial artificial clones (BACs)) have shown the potential

of array technology to identify diagnostic CNVs in gen-

erally 16.7% of the unexplained MR/MCA patients.4 – 11

The pathogenic CNVs detected in CGH studies range in

size from 0.25 to 15 Mb.12 Resolution is limited by the size

of the probes and the distance between the clones, that is

100 kb to 1 Mb. Therefore, the ideal technique would

identify abnormalities with an even higher resolution.

The single-nucleotide polymorphism (SNP) arrays have

been widely used for genotyping and can identify sub-

microscopic CNVs as well as low-level chromosomal

mosaicisms and uniparental disomies (UPDs).2,13 – 15

We performed SNP array analysis on DNA from 318

patients with unexplained MR/MCA and an apparently

balanced karyotype to search for potentially pathogenic

submicroscopic CNVs with two different commercially

available SNP array platforms. In this study, we show the

importance of implementing the SNP array analysis in a

diagnostic setting and advocate a whole-genome copy

number screening using an SNP array as a new diagnostic

tool for every MR/MCA patient rather than conventional

karyotyping.

Materials and methods
Patients

A total of 318 patients referred for MR/MCA were recruited

without further selection. Previously performed conven-

tional karyotyping, targeted FISH or molecular tests

revealed no etiological diagnosis. Detailed phenotypic

information on all patients found to have a pathogenic

or potentially pathogenic CNV is provided in Supplemen-

tary Table 1. DNA was extracted from whole blood using a

Gentra Puregene DNA Purification Kit (Gentra Systems,

Minneapolis, MN, USA), following the manufacturer’s

instructions. The study was approved by the Leiden

University Medical Center Clinical Research Ethics Board,

conforming to Dutch law and the World Medical Associa-

tion Declaration of Helsinki.

SNP arrays

The Affymetrix GeneChip Human Mapping 262K NspI

and 238K StyI arrays (Affymetrix, Santa Clara, CA, USA)

contain 262 262 and 238 304 25-mer oligonucleotides,

respectively, with an average spacing of approximately

12 kb per array. An amount of 250 ng DNA was processed

according to the manufacturer’s instructions. SNP copy

number was assessed using the software program CNAG

version 2.0.16

The Illumina HumanHap300 BeadChip (Illumina Inc.,

San Diego, CA, USA) contains 317 000 TagSNPs, with an

average spacing of approximately 9 kb. The Illumina

HumanCNV370 BeadChip (Illumina) contains 317 000

TagSNPs and 52 000 non-polymorphic markers for specifi-

cally targetting nearly 14 000 known CNVs. This array has

an average spacing of approximately 7.7 kb. A total of

750 ng DNA was processed according to the manufacturer’s

instructions. SNP copy number (log R ratio) and B-allele

frequency were assessed using the software programs

BeadStudio version 3.2 (Illumina) and Partek Genomics

Suite version 6.3 (Partek Inc., St Louis, MO, USA).

Evaluation of CNVs

Deletions of at least five adjacent SNPs or of a minimum

region of 150 kb and duplications of at least seven adjacent

SNPs or of a minimum region of 200 kb were analyzed.17

This approach was adopted to minimize the number of

false-positive findings. The detected CNVs were classified

into three different groups: I, known pathogenic CNVs

(known microdeletion or microduplication syndrome); II,

potentially pathogenic CNVs, not described in the Data-

base of Genomic Variants (DGV; The Centre for Applied

Genomics, The Hospital for Sick Children, Toronto,

Canada, http://projects.tcag.ca/variation/); and III, known

polymorphic CNVs described in the DGV or observed in

our in-house reference set (60 controls), whereby at least

three individuals must be reported with the same rearran-

gement. All type III CNVs were further excluded from this

study.

All type II CNVs were assessed with Ensembl (Wellcome

Trust Genome Campus, Hinxton, Cambridge, UK, http://

www.ensembl.org: Ensembl release 52 – December 2008)

and DECIPHER (Wellcome Trust Genome Campus,

Hinxton, Cambridge, UK) for gene content and similar
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cases, respectively. All patients with a type II CNV were

added to DECIPHER when consent was obtained.

Validation of CNVs

The known and potentially pathogenic CNVs were con-

firmed with MLPA, FISH or another type of SNP array on a

second independent sample. If parents were available,

segregation analysis was performed by MLPA, FISH or SNP

array.

MLPA experiments were performed as described.18 At

least two synthetic MLPA the probes were designed within

the CNV and probes were commercially obtained from

Biolegio (Malden, The Netherlands). Amplification pro-

ducts were identified and quantified by capillary electro-

phoresis on an ABI 3130 genetic analyzer (Applied

Biosystems, Nieuwerkerk aan de IJssel, The Netherlands).

Fragment analysis was performed with the GeneMarker

Software V1.51 (SoftGenetics, State College, PA, USA).

Thresholds for deletions and duplications were set at 0.75

and 1.25, respectively.

FISH analysis was carried out by standard procedures as

described.19 BAC clones mapping to the CNVs were

selected on the basis of their physical location within the

affected region (http://www.ensembl.org: Ensembl release

49 – March 2008).

Results
A total of 318 patients were screened for submicroscopic

CNVs. All patients had an apparently normal balanced

karyotype, and targeted FISH or molecular tests, if

performed, revealed no rearrangements. The Affymetrix

GeneChip was applied to 132 patients and the Illumina

BeadChip platform was applied to 186 patients. Eight

(5.71%) Affymetrix and two (1.06%) Illumina experiments

failed. On average, two CNVs per patient were obtained

(Affymetrix 3 and Illumina 1.7). All polymorphic CNVs

were excluded from further research.

Supplementary Table 1 shows a summary of all detected

CNVs. Six patients showed a CNV that has a clear clinical

significance as it overlaps a known microdeletion/duplica-

tion syndrome. In eight patients, we detected a CNV that

was recently described as a new microdeletion/duplication

syndrome.20 –26 63 Potentially pathogenic CNVs were

observed in 52 patients (16.4%). Four patients showed

striking regions of loss of heterozygosity (LOH) (Table 1 and

Figure 1). Regions of homozygosity, ranging in size from

200 kb to 15 Mb, are common in healthy individuals.27

Here, four patients showed regions of LOH extending

more than 15 Mb. Two patients showed a single segment

of LOH (BC227 and BC318) and one patient a single

segment, however in mosaic form (BC302), and one

patient, two segments (BC308). The parents of the patients

were not related.

Two patients showed a low-level chromosomal

mosaicism. Patient CR355 was a girl diagnosed with

Table 1 Regions of LOH detected in patients with no
consanguine parents

ID Chromosome Starting SNP Ending SNP Size in Mb

BC227 12q15q23.2 rs3905279 rs7312593 33.78
BC302a 16q11.2qter rs166161 rs7498985 43.31
BC311 13q14.2q22.1 rs12875203 rs9318228 27.16

20p11.21qter rs6138531 rs10485816 37.26
BC318 17q21.32q23.2 rs6503455 rs758466 15.17

aLOH was found in mosaic.
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Figure 1 37.26 Mb region of LOH on chromosome 20q in case BC311 detected with the Illumina 317K BeadChip. Beadstudio log R ratio estimate
for each individual SNP in the first plot and genotype call for every SNP in the second plot. The x axis shows the position on the chromosome.
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microcephaly, ventricular septum defect, diaphragmatic

hernia, umbilical hernia and postaxial polydactyly of the left

hand (Figure 2g and h). Pregnancy was conceived by in vitro

fertilization and the girl was born at a gestational age of 36

5/7 weeks, with a birthweight of 2475 g. Her psychomotor

development was delayed and she failed to thrive. She

developed severe respiratory insufficiency and died at the

age of 7 months. Initial conventional karyotyping of five

metaphases did not show rearrangements. SNP array

analysis showed a subtle increase in copy number for

chromosome 13, suggesting an extra copy of chromosome

13 in 14% of the cells (Figure 2a). FISH experiments

confirmed the presence of trisomy 13 in 18% of cultured

lymphocytes (Figure 2c and d) and supplementary karyo-

typing detected in 7 of the 50 (13%) metaphases an extra

chromosome 13.

Patient CR377 was a boy referred at the age of 2 years and

9 months because of short stature, speech delay and motor

delay (Figure 2i). Pregnancy had been uneventful and the

boy was born at a gestational age of 40 5/7 weeks after

vacuum extraction, with a birthweight of 3610 g. In

early childhood, he suffered from recurrent respiratory

Figure 2 (a) CNAG copy number analysis for patient CR355 using the Affymetrix 262K GeneChip. Log R ratio estimate for each individual SNP in
the first plot and for an average of 10 SNPs in the second plot. Both plots show a slight increase in log R ratio for whole chromosome 13. Blue line in
first plot: copy number estimate calculated with the Hidden Markov Model. The x axis shows the position on the chromosome. Green stripes:
heterozygous SNP calls. (b) CNAG copy number analysis output for patient CR377 using the Affymetrix 262K GeneChip. Both plots show a slight
increase in log R ratio for chromosome 14. (c) FISH experiment (probes LSI13 (green) and LSI21 (red); Vysis, Abbott Laboratories, Abbott Park, IL, USA)
showing a normal cell. (d) FISH experiment showing the presence of a mosaic trisomy 13 in 18% of the 200 cells analyzed. (e) FISH experiment
(probes LSI CCNDI, 11q13 (red) and LSI IGH, 14q32 (green); Vysis) showing a normal cell. (f) FISH experiment showing the presence of a mosaic
trisomy 14 in 9% of the 200 cells analyzed. (g) Facial picture of patient CR355. Facial dysmorphisms included upslant of palpebral fissures, a broad
nasal bridge and uplifted earlobes. (h) Picture of postaxial polydactyly of the left hand of CR355. (i) Facial pictures of case CR377, 3 years and 7 months
(I and II), and 4 years and 8 months (III). Note marked asymmetry when smiling, asymmetric upslanted palpebral fissures, left-sided epicanthus,
hypertelorism, low-set and small right ear.
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infections and recurrent otitis media. At referral, his height

was 84 cm (�3.4 SD). He had a broad thorax, pectus

excavatum, a right-sided simian crease and short second

phalanges of both digiti V. On follow-up at the age of

3 years and 7 months, his height was even more

compromised (�4.2 SD). At the age of 4 years and

8 months, a marked discrepancy in leg length was noted,

the right being shorter. At that time, the skin around both

wrists and ankles showed an apparent reticular pattern

of hypo- and hyperpigmentation. The body asymmetry

combined with an abnormal skin pigmentation pointed

in the direction of a mosaic condition. Conventional

karyotyping on 31 metaphases had shown one cell with

trisomy 14, which, confirming to professional guidelines,

was interpreted as an artifact. SNP array results displayed

a subtle increase in copy number for chromosome 14,

suggesting an extra copy of chromosome 14 in 19% of the

cells, and mosaicism was confirmed with FISH experiments

on cultured lymphocytes (9%) (Figure 2b,e and f). UPD of

chromosome 14 for the normal cells was excluded (results

not shown).

Discussion
In this study, SNP arrays were used to search for pathogenic

CNVs in patients with unexplained MR/MCA. The detected

CNVs can be divided into the following groups: clearly

pathogenic CNVs that overlap known microdeletion/dupli-

cation syndromes, CNVs that overlap recently described

syndromes, potentially pathogenic CNVs and polymorphic

CNVs (Supplementary Table 1). In total, we detected known

syndromes in six patients, recently described CNVs in eight

patients and 63 potentially pathogenic CNVs in 52 patients

(in total, 20.7%). The polymorphic CNVs were excluded

from further research.

Six CNVs were considered pathogenic as they are

associated with well-established microdeletion syndromes.

These syndromes were recognized afterwards by a clinical

geneticist, which underlines the difficulty of establishing a

diagnosis by clinical observation. Eight patients showed

CNVs that were recently identified in other studies. For

these new syndromes, no obvious phenotype has been

established yet, and more patients with the same abnor-

malities are needed to unravel the associated phenotype.

The discovery of these ‘known’ CNVs highlights the

advantage of the whole-genome screening methods to

detect a known deletion or duplication syndrome in one

single experiment.

Unraveling the clinical relevance for the potentially

pathogenic CNVs is a new challenge. Regions containing

coding genes can be present in variable copy number

without obvious clinical manifestations, which makes it

very hard to determine whether a subtle CNV has a clinical

significance. Recent papers have already presented flow

schemes for the interpretation of these CNVs.28,29 In this

study, first, all polymorphic CNVs were excluded by

comparing against the DGV and our in-house reference

set. Second, for all CNVs containing coding genes

annotated by Ensembl (release 52, December 2008), the

inheritance was determined by checking both parents

(if available).

For 27 potentially pathogenic CNVs, we could establish

that the rearrangement was inherited from one of the

unaffected parents. Several studies have shown that some

CNVs are indeed polymorphisms contributing to common

variations in healthy individuals.30,31 A large number of

small rearrangements, detected in patients with MR and

inherited from phenotypically normal parents, have been

reported, whereby it was speculated that some of these

imbalances may indeed be benign variations and others

are likely to represent susceptibility loci for disease.32,33

A particularly intriguing example is the submicroscopic

1q21 deletion, characteristic for thrombocytopenia absent

radius syndrome, which is found in all patients with the

syndrome, but is inherited from a phenotypically normal

parent in a subset of cases.34 It is becoming increasingly

clear that many CNVs come with a highly variable

phenotype, including what is considered as ‘normal.’

Among the many examples are the 22q11 deletion and

duplication,21 the 16p11.2 deletion,23 – 25 and the Xp

deletions involving the neuroligin and VCX genes.35

Mechanisms that can explain why some inherited CNVs

occasionally result in abnormal development have been

postulated.32,36 These mechanisms include: a mutation in

the same region on the other chromosome; a mutation in

one or more unlinked modifying genes; imprinting;

mosaicism in one of the parents; or any other unidentified

genetic, epigenetic or environmental factor.21,32 Further-

more, it is frequently assumed that parents are pheno-

typically normal, although a closer inspection by a clinical

geneticist might reveal subtle anomalies.32

Twenty-two de novo potentially pathogenic CNVs are

detected and are likely to be relevant for the phenotype of

the patient. For 14 potentially pathogenic CNVs, the

inheritance could not be determined. Interpretation of

these CNVs is even more difficult. Attempts should be

made to receive DNA from the parents or, alternatively,

other relatives. However, for all potentially pathogenic

CNVs, phenotypically concordant patients with the

same abnormality need to be found to be sure of their

pathogenicity. Therefore, databases such as DECIPHER

(https://decipher.sanger.ac.uk/) have been created to com-

pile molecular cytogenetic data from clinical studies all

over the world to provide the basis for understanding

the role of different CNVs in genetic diseases. For the

63 potentially pathogenic CNVs detected in this study, no

complete overlapping cases were described in DECIPHER.

More array data on MR patients and healthy controls

will be needed to determine the clinical relevance of

these CNVs.
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In 9 of the 26 de novo CNVs (pathogenic and potentially

pathogenic), DNA from the parents was tested on SNP

array, enabling us to determine the parental origin. Seven

CNVs occurred in the paternally derived chromosome.

Only two CNVs occurred in maternally derived chromo-

somes, giving a paternal–maternal ratio of 6:2. Parental

origins of microdeletions and duplications have been

investigated in several genomic disorders. Deletions in

Williams and DiGeorge syndrome were equally of paternal

and maternal origin equally.37 Deletions in neurofibroma-

tosis type 1 and in 1p36 syndrome were predominant on

the maternally derived chromosome.38,39 By contrast,

duplications in Charcot-Marie-Tooth disease type I and

deletions in Wolf–Hirschhorn and Cri Du Chat syndromes

occur more frequently in the paternally derived chromo-

some.40 – 42 Much more parent-of-origin data are needed to

document the possible existence of regional parental bias.

ArrayCGH (aCGH) screenings performed on mentally

retarded patients are a powerful tool for the detection of

CNVs.4 – 11 These arrays consist of large-insert clones, and

the smallest pathogenic CNVs detected are approximately

0.25 Mb. The high-density whole-genome SNP arrays,

which were initially developed for genotyping, are now

widely used to search for smaller CNVs.2,13 – 15 In approxi-

mately 25% of patients with unexplained MR/MCA,

CNVs are detected by aCGH and SNP array studies.

The array technology is the most effective method

resulting in the most clinical diagnoses compared with

conventional karyotyping, FISH analysis and mutation

screening. Although it was suspected that array analysis

would not be able to detect mosaicisms, the aCGH and SNP

array techniques actually appear to be more sensitive in

detecting low-level mosaicism than conventional karyo-

typing.43,44 If mosaicism is not suspected, the number of

cells counted with conventional karyotyping may not be

sufficient to detect the aberrant subset of cells, and a single

abnormal cell might be interpreted as an artifact of cell

culture.45 Two such cases of low-level mosaicism were

reported in this study. Our patients with mosaic trisomy

13 and 14 have phenotypical characteristics that resemble

MR/MCA patients

SNP array

Known syndrome
Polymorphic CNV/ no CNV

‘normal’
Potentially pathogenic CNV

Done (gene mutation?)
Check parents (array,
FISH or karyotyping)*

Done (Check parents)

InheritedDe novo ?

Done, likely pathogenic CNV
Done, likely not relevant

(gene mutation?)Unknown clinical significance

Clinical relevance can be determined when CNV is found in phenotypically concordant patients or in
healthy individuals 

Figure 3 Flow chart for the new diagnostic approach to patients with mental retardation. *If the CNV exceeds 200 kb, we recommend additional
FISH analysis to confirm the CNV in the patient and screen for balanced translocations or insertions in the parents. If the CNV is smaller than 200 kb,
we recommend a second array analysis on the patient to confirm the CNV and on the parents to test heritability.
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the reported phenotypes of mosaic trisomy 13 and 14

(Figures 2).46 – 51

A major advantage of SNP array analysis is the extra SNP

genotyping information, which enables the detection of

copy number neutral chromosomal aberrations such as

UPD and LOH.52 UPD, which arises when an individ-

ual inherits two copies of a chromosome pair from one

parent and no copy of the other parent, can result in rare

recessive disorders, or developmental problems because of

the effects of imprinting.53 Examples of genetic diseases

linked to UPD include the Prader–Willi syndrome (MIM

176270), Angelman syndrome (MIM 105830), Beckwith–

Wiedemann syndrome (MIM 130650) and Silver–Russell

syndrome (MIM 180860). SNP array analysis is able to

detect uniparental isodisomy and uniparental hetero-

disomy (when both parents are included in the experi-

ment), but the interpretation of new UPD regions is

difficult and further research is required to confirm the

clinical consequences. Recessive and normally non-

penetrant alleles in isodisomic form (two copies of the

same parental chromosome) may cause recessive diseases.

Gene defects underlying autosomal recessive disorders

can be localized and identified by homozygosity mapping.

Furthermore, patients with consanguineous parents dis-

play many regions of homozygosity (LOH) that might

result in a recessive disorder. In this study, we identified

an extended segment of LOH in four patients, with no

consanguineous parents. To identify the responsible gene

or genes is a challenge now, but it may become a realistic

possibility with next-generation high-throughput DNA-

sequencing technology. Finally, the information on the

SNP genotype could be used to verify biological parentage

and cases of suspected incest.

Conversely, a disadvantage of using arrays instead

of conventional karyotyping is the inability to detect

balanced rearrangements. Around 6% of antenatal cases

with balanced reciprocal translocations and inversions are

associated with abnormal phenotypes.54 In these cases, the

breakpoints of the rearrangement probably disrupt a gene,

or small duplications or deletions beyond microscopic

resolution are present. The SNP array analysis will (depend-

ing on the resolution) detect the small abnormalities, but

the disruption of genes will remain unknown. A retro-

spective Dutch study showed that only approximately

0.78% of potentially pathogenic balanced rearrangements

of all referrals will be undetectable by array analysis

without conventional karyotyping.55

The absence of an aberration or the presence of only

polymorphic CNVs after SNP array analysis does not

exclude a syndrome caused by a mutation at the gene

level. Therefore, we emphasize that MR/MCA patients with

normal array results should always be referred to a clinical

geneticist to exclude such known syndromes. Furthermore,

genomic data obtained from the SNP array analysis can be

used in future research for association between genetic

markers and specific phenotypes to hopefully diagnose

even more patients.

In 2006, Rauch et al3 compared the diagnostic yield of

various techniques in MR/MCA patients. These authors

suggested targeted analysis in patients with a clear diagnosis

and conventional karyotyping and molecular screening

in the remaining patients.3 Kriek et al56 proposed another

diagnostic approach to MR/MCA patients, suggesting a

screening with MLPA first and based on the outcome of

additional aCGH or karyotyping. However, more recent

studies have already mentioned the partial replacement of

conventional karyotyping by molecular karyotyping.53,57

In addition, Koolen et al29 described a workflow for the

clinical interpretation of CNVs in individuals with MR. Our

results show that high-density SNP arrays can be success-

fully used as a tool for the detection of CNVs, low-level

mosaicism and copy number neutral abnormalities. Their

high resolution and commercial availability make them

attractive to implement in a routine diagnostic setting.

Here, we combine the flowcharts designed by Kriek

et al56 and Koolen et al29 in a novel approach to the patient

with MR/MCA (Figure 3). We recommend testing every

patient first with an SNP array instead of conventional

karyotyping. The results will be classified in patients with

polymorphic CNVs or no CNV (‘normal’), patients with

CNVs that overlap known syndromes and patients

with potentially pathogenic CNVs. The ‘normal’ patients

could be screened for gene mutation in targeted genes or

in the future with whole-genome next-generation high-

throughput DNA-sequencing technology. The patients

with CNVs overlapping known syndromes are diagnosed

and family members could be checked for inheritance and

recurrence risk. The inheritance of the potentially patho-

genic CNVs should be tested and the patients should be

reported in a database such as DECIPHER. The clinical

relevance of these CNVs can be determined when the

specific CNV is reported in adequate numbers of healthy

individuals or phenotypically concordant patients.

This new approach will diagnose a larger proportion of

CNVs in the first round; however, the interpretation of

the CNVs will be the major challenge. Eventually, more

families will be informed about the cause of the disease

of their family member. This will improve medical care

and genetic counseling. Furthermore, as the SNP array

approach will make targeted FISH and MLPA analysis

redundant, less laboratory tests will be needed, which

leads to a substantial reduction of cost.
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