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A heterozygote–homozygote test of
Hardy–Weinberg equilibrium
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The century-old Hardy–Weinberg law remains fundamental to population genetics. Typically
Hardy–Weinberg equilibrium is tested in unrelated individuals using a v2 goodness-of-fit test that
compares expected and observed numbers of heterozygotes and homozygotes. In this report, we propose
a likelihood ratio test for Hardy–Weinberg equilibrium that accommodates a mixture of pedigree and
random sample data. The underlying statistical model depends on a parameter c determining the ratio of
heterozygous genotypes to homozygous genotypes among pedigree founders. As our heterozygous–
homozygous test accommodates markers with dominant and recessive alleles, it can handle the phase
ambiguities encountered in combining several linked single nucleotide polymorphisms into a single
supermarker. No prior haplotyping is necessary. Our experience on real and simulated data suggests that
the heterozygous–homozygous test has good type-one error and power.
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Introduction
During the 100th anniversary year of the Hardy–Weinberg

(HW) law, it hardly seems necessary to remind readers of its

fundamental role in population genetics.1 – 3 The simple

HW rules for computing genotype frequencies from allele

frequencies undergird almost all linkage and association

studies. Deviations from Hardy–Weinberg equilibrium

(HWE) occur when there is selection, drift, population

admixture, or forms of non-random mating. Tests of HWE

have been used to fine map susceptibility loci,4,5 to screen

for association in genome-wide data,6,7 and to identify

genotyping errors.7 – 9

As HWE testing has been thoroughly reviewed else-

where,10 – 16 we only cover background material directly

pertinent to our new test. When the number of alleles m is

small, it is feasible to test for HWE by comparing observed

genotype numbers to expected genotype numbers using

either a Pearson’s w2-test or a likelihood ratio test (LRT).10

The degrees of freedom of either test are m(m�1)/2. As m

increases in these tests, power decreases and expected cell

counts fall below recommended levels.17 It is possible to

construct a more parsimonious test by aggregating all

heterozygotes and all homozygotes and computing the

observed and expected numbers in the two aggregates.18

Superficially, the statistic
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is appealing, where n is the sample size, ni/j is the number of

observed genotypes of type i/j, and p̂i is the gene counting

estimate of the allele frequency pi. Unfortunately, the GOF

statistic does not follow a w2 distribution when the pi are
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unequal.18 Weir18 suggests replacing the GOF test with the

homozygosity test19
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The test statistic H asymptotically follows a w2 distribution

with one degree of freedom.19

Very few of the HWE tests have been extended to pedigree

data. The obvious LRT extension compares the likelihood

using arbitrary genotype frequencies for the founders to the

likelihood using HW genotype frequencies for the founders.

This test also has m(m�1)/2 degrees of freedom and suffers

from overparameterization for large m. Bourgain et al.20

developed a parsimonious quasi-score test that is parame-

terized by a heterozygous–homozygous fixation index.21

Their model does not readily lend itself to maximum

likelihood estimation because of the complex bounds on

the fixation index. Inspired by the Bourgain et al. model, we

propose a model motivated by a simple acceptance–

rejection mechanism. Our heterozygote–homozygote test

(HH test) admits pedigree data, inbreeding internal to each

pedigree and markers with dominant or recessive alleles

(non-codominant markers). With no segregation distortion,

complete typing of pedigree members, and a codominant

marker, the HH test can dispense with the nonfounders in

the pedigree and concentrate solely on the founders.

Heterozygote–homozygote model
Suppose we are interested in testing HWE at a locus with m

alleles and corresponding allele frequencies (p1,y,pm). In

our model, we postulate that nature operates by first

sampling the genotypes i/i and i/j with the usual HW

probabilities and then subjecting a proposed genotype to

an acceptance–rejection step. Let a be the acceptance

probability for homozygotes, and let b be the acceptance

probability for heterozygotes. If g¼ b/a, then the various

genotypes are ultimately accepted with the probabilities
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The parameters a and b cannot both be estimated. This

identifiability crisis is overcome by estimating their ratio g.

When the individuals in the sample are unrelated,

then the distribution of the genotype count vector

n¼ (n1/1,y,n1/m,y,nm/m) is multinomial with likelihood

proportional to
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By declaring isolated individuals to be degenerate pedi-

grees, the model easily extends to samples consisting of

independent pedigrees or mixtures of pedigrees and un-

relateds. As the log-likelihoods of independent pedigrees

add, it suffices to consider the likelihood of a single pedigree.

If this pedigree has s members, then the likelihood formula
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of Ott22 applies, where Xi is person i’s marker phenotype and

Gi is his/her marker genotype. The product on j is taken over

all founders, and the product on {k,l,m} is taken over all

parent–offspring triples. The prior Prior(Gj) is given by Eq.

(2) or (3). The penetrance for a marker Pen(X|G) is either zero

or one. The transmission probability Tran(Gm|Gk,Gl) follows

the traditional Mendelian law of independent segregation.

Computational efficiency is improved by lumping the

alleles not seen in a pedigree. Our implementation of the

HH test in the pedigree analysis package Mendel23 employs

a combination of genotype elimination24 and allele

lumping.23 Alleles observed in a pedigree are preserved;

the remaining alleles are lumped. Computation of founder

priors must be performed carefully to preserve the correct

form of the likelihood (Eq. (4)). Suppose the first k alleles

are observed, and the remaining m-k alleles are missing in a

pedigree. Eqs. (2) and (3) hold without modification for

founder genotypes formed from the k observed alleles. Let

q denote the lumped allele, and let

r ¼
Xm

j¼kþ1

pj

denote its frequency. To account for lumping, we adjust the

remaining genotype probabilities as follows:
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The numerator of Eq. (5) accounts for the fact that

genotype q/q is a composite of homozygous and hetero-

zygous genotypes.

We maximize the sum of the log-likelihoods subject to

the constraints
Pm
i¼1

pi ¼ 1, piZ0, and gZ0. In our computer

program Mendel,23 maximum likelihood estimation is ac-

complished efficiently by a quasi-Newton algorithm. To form

the likelihood ratio statistic, we maximize the log-likelihood

both under the null hypothesis (g¼1) and the alternative

hypothesis (ga1). Under the null hypothesis, twice the

difference in the two maximum log-likelihoods follows an

asymptotic w2 distribution with one degree of freedom.

For a biallelic marker, the HH test is fully equivalent to

the LRT based on genotypes. Proof of this fact just boils

down to showing that one model is a reparameterization of

the other. We have already demonstrated how to pass from

the allele frequencies p1 and p2 and ratio g of our model to

the genotype probabilities Pr(1/1), Pr(1/2), and Pr(2/2) of

the standard model. The reverse transformation simply

amounts to
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Type-one error rate and power
Now that we have presented our basic theory, we concen-

trate on demonstrating the flexibility of the HH test and on

showing that it has the appropriate type-one error rates and

comparable power to the Homozygosity test (H test). To

address the question of type-one error rates, we simulated

1000 datasets under the null hypothesis of HWE. Each

dataset includes 100 unrelated individuals typed at a marker

with four equally frequent alleles. Using a significance level

of 0.05, we find that the HH test has a type-one error rate of

0.047 (SD¼0.007). In comparison, the benchmark H test

has a type-one error rate of 0.042 (SD¼0.006).

To assess the power of the HH test to detect deviations

from HWE, we conducted two sets of simulations under

our model. Each involved (a) a codominant marker with

four alleles, (b) a grid of g values ranging from 0.31 to 3.0,

and (c) 1000 trials at each grid point. The first set of

simulations used 100 unrelated individuals and assumed

equally frequent alleles; the second used 200 unrelated

individuals and assumed the allele frequency vector

(0.8, 0.1, 0.05, 0.05). We chose these conditions so that

in both cases the power was similar, approximately 0.80,

when g¼2. As power depends on allele frequencies, we had

to double the sample size for the skewed allele frequencies.

To generate genotypes under the alternative hypothesis

ga1, we sampled with replacement as dictated by the

model. This was realized for go1 by defining the

acceptance probabilities a¼1 and b¼ g and for gZ1 by

defining a¼ 1/g and b¼1. Genotypes were successively

sampled for each individual until the first acceptance. We

computed power at each grid point as the fraction of the

datasets that reject the null hypothesis at the 0.05 level.

Figure 1 plots power as a function of g for both the HH test

(solid line) and the H test (dashed line) for equally frequent

alleles; Figure 2 does the same for the allele frequency
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Figure 1 Comparison of the power of the HH and H tests with
equally frequent alleles. Results of simulations to determine power as a
function of g. Each simulation is comprised of 1000 datasets each with
n¼100 unrelated individuals and 4 equally frequent alleles. The solid
line denotes the power of the HH test. The dotted line denotes the
power of the H test.
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Figure 2 Comparison of the power of the HH and H tests with
skewed allele frequencies. Results of simulations to determine power as
a function of g. Each simulation is comprised of 1000 datasets with
n¼200 unrelated individuals and allele frequency vector¼ (0.8, 0.1,
0.05, 0.05). The solid line denotes the power of the HH test. The
dotted line denotes the power of the H test.
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vector (0.8, 0.1, 0.05, 0.05). For both sets of simulation

conditions, the power curves of the H test and the

HH test are not substantially different. At the point

g¼1, both tests continue to show the correct type-one

error rate.

A robust test should also possess good power

against alternatives not covered by the model. We accord-

ingly simulated another 1000 datasets with (a) n¼200

unrelated individuals, (b) 3 codominant alleles with

frequencies p1¼0.5 and p2¼ p3¼0.25, and (c) acceptance

probabilities a1/1¼1.0, a2/2¼ 0.5, a3/3¼0.25, b1/2¼1.0,

b1/3¼0.5, and b2/3¼0.25. In these datasets, the rejection

rate for the H test is 0.328 and the rejection rate for the HH

test is 0.343.

In practice, violations of HWE often stem from

population stratification. We therefore conducted 100

simulations combining 100 random individuals from each

of two different populations separately in HWE. In

population 1 the frequency vector of the three codominant

alleles is (0.4, 0.3, 0.3); in population 2 it is (0.8, 0.1, 0.1). If

we keep the two sets of 100 individuals separate,

the average estimated g in the first set is 0.99 and 1.07 in

the second set. When we analyze the combined

datasets, the averaged estimated g is 0.71. In 86 out of

the 100 combined datasets, the HH test has a P value less

than 0.05.

Finally to validate the HH test in family data, we

simulated nuclear families with missing founder geno-

types. Specifically we simulated 1000 sets of 100 nuclear

families under various scenarios. Each simulation scenario

assumed (a) 3 fully genotyped siblings, (b) a codominant

marker with 3 alleles, and (c) the allele frequency vector

(0.5, 0.25, 0.25). In the first scenario, we took g¼1. In this

case the type-one error rate is 0.046 and the average

estimate of g is 1.07, with 95.2% of the 95% confidence

intervals covering g¼1 (95% coverage rate ¼ 95.2%.) In

the second scenario g¼1.5. Here the average estimate of g
is 1.64 and the 95% coverage rate is 93.0%. In the third

scenario g¼0.50. Now the average estimate of g is 0.52 and

the 95% coverage rate is 93.4%. These results appear

reasonable.

Real data examples
It is also revealing to consider real data. Our first example

involves the classical survey by Waaler 25,26 of X-linked

recessive color blindness. These European data consist of

40 affected women, 725 affected men, 9032 unaffected

women, and 8324 unaffected men. We analyze the data

assuming that the color-blindness locus has two alleles, d

and D, and that men with genotype d and women with

genotype d/d are color blind. The likelihood contributions

for affected and unaffected men are pd and pD, respectively.

Note that these contributions do not depend on g. The

likelihood of an affected woman is

p2
d

p2
d þ p2

D þ g 1� p2
d � p2

D

� �
An unaffected woman is either a D/D homozygote or a

D/d heterozygote. Thus the likelihood of an unaffected

woman is
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As all individuals are unrelated, the likelihood for the full

data is
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Our computer program Mendel can maximize likelihoods

of this sort involving dominant and recessive alleles. All

the user needs to do is define the X-linked locus as non-

codominant in Mendel’s definition file. Details can be

found in the Mendel manual available at the UCLA web

site mentioned later.

One of the virtues of the HH test on this problem is that

it correctly incorporates allele frequency information

contributed by men. The estimate ĝ¼ 4:087 (SD¼1.661),

and corresponding likelihood ratio statistic of 5.119

output by Mendel give an asymptotic P value of 0.0237.

This apparent violation of HWE is hardly surprising

because there are actually two different forms of color

blindness, protanopia and deuteranopia, located on the X

chromosome.

As a more computationally challenging example, we

now consider 1296 highly polymorphic markers on

chromosomes 1, 2, and 3 deposited in the CEPH database

version 10 (website: www.cephb.fr/cephdb/). The number

of families, individuals, founders, and missing founder

genotypes vary from marker to marker. The minimum

number of genotyped families is 8, the minimum number

of genotyped individuals is 84, and the minimum number

of genotyped founders is 24. The maximum number of

families is 40, the maximum number of genotyped

individuals is 510, and the maximum number of geno-

typed founders is 131. To avoid needless computation, we

trimmed ungenotyped family members unless they were

critical in determining relationships between genotyped

family members.27 We also removed all Mendelian geno-

typing errors.8,23,24,28 Under suboption 1 of the Mistyping

option of Mendel, evidence of a genotyping error at a

particular marker in a particular family causes the program

to delete all genotypes at the marker in the family.

Testing of HWE is conducted by comparing maximum

likelihoods under the null hypothesis (Ho: g¼1) and the

alternative hypothesis (Ha: g unrestricted). In both cases
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allele frequencies are estimated. The usual likelihood ratio

statistic

LRT ¼ 2 ln
LHa

LHo

� �

asymptotically follows a w2 distribution with one degree of

freedom. For problems involving this many markers,

Mendel takes tens of minutes of computing time. Exact

times depend on the computing platform and compiler.

The resulting histogram of P values is shown in Figure 3.

Except for a small spike near 0, the distribution appears

uniform. Figure 4 compares H and HH P values based on

founders alone. As expected from our previous simulation

results, P values under the two tests are similar. As the HH

test estimates allele frequencies as well as the heterozygote/

homozygote ratio g, it can provide a more sensitive test of

HWE when an excess in the number of homozygous

genotypes of one kind is balanced by a deficit in the

number of homozygous genotypes of another kind.

Violation of HWE in this situation is masked in the H test

because the test statistic uses only the total counts of

heterozygotes and homozygotes.18

Finally, we illustrate the versatility of the HH test in

handling tightly linked SNPs. Combining neighboring

SNPs is a standard tactic for increasing their information

content. When HWE holds, the frequency of the multi-

locus phenotypes remain constant from generation to

generation and can be predicted using haplotype frequen-

cies. Owing to phase uncertainties, the supermarkers

constructed from tightly linked SNPs are non-codominant.

For the sake of simplicity, let us consider the case of two

neighboring SNPs. More SNPs can be handled by the same

tactics. We denote a bi-locus phenotype as i1i2j1j2, where

i1/i2 is the unordered genotype at the first SNP and j1/j2 is

the unordered genotype at the second SNP. There are nine

possible phenotypes. The corresponding alleles are the four

haplotypes, 1-1, 1-2, 2-1, and 2-2. Eight of the nine bi-locus

phenotypes correspond to a single haplotype pair. For

example, the bi-locus phenotype 1112 is consistent with

only the single haplotype pair 1-1/1-2. The doubly

heterozygous phenotype 1212 is consistent with the two

haplotype pairs 1-1/2-2 and 1-2/2-1. To convert two tightly

linked SNPs into one non-codominant marker with four

alleles, one can use the Combining_Loci option of

Mendel.23,29 The Mendel manual supplies the full syntax

for constructing input files and interpreting output files.

As discussed in the X-linked color-blindness example,

non-codominant markers can be easily handled in com-

puting the pedigree likelihood (Eq. (4)); one simply sums

over all possible genotypes consistent with each observed

marker phenotype.

For example with a supermarker constructed from two

neighboring SNPs, whenever an individual with phenotype

1212 is encountered, both of the genotypes 1-1/2-2 and

1-2/2-1 are visited in likelihood calculation. The priors

shown in Eqs. (2) and (3), the null hypothesis (g¼1), and

the alternative hypothesis (g unrestricted) are interpreted

exactly the same regardless of whether a marker is

codominant or not. As an example, we combined SNPs

rs998132 and rs434410 in the CEPH data. Although

these two SNPs are approximately 3.5 Mb apart, no

recombination events are observed between them. Table 1
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Figure 3 The distribution of HH test P values using data from the
CEPH families. The results are from 1296 markers, each with 3 to 26
alleles. The number of families ranges from 8 to 40, the number of
genotyped founders ranges from 24 to 131, and the number of
genotyped individuals ranges from 84 to 510.
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Figure 4 Comparison of the HH test and H test P values using the
genotyped founders from the CEPH families. The results are for the
same 1296 highly polymorphic markers genotyped in the CEPH
families (Figure 3). The number of unrelated individuals ranges from
24 to 131.
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summarizes our HH test results with the combined

markers. Notice here that the evidence against HWE

increases when we analyze the two markers together.

Discussion
In summary, the HH test has the advantages of allowing (a)

a mixture of pedigree and random sample data, (b) non-

codominant markers, and (c) highly polymorphic markers.

It is motivated by a simple to understand acceptance–

rejection model. It is slightly conservative and almost

always as powerful as the benchmark H test. In some

settings, for example in pedigree data with untyped

founders, it is more powerful than the H test. The HH test

does entail considerably more computing, but this is

hardly a consideration for moderate-sized datasets. Inbred

children are allowed but not inbred or related founders.

Mendelian segregation is assumed to hold in the transmis-

sion of genes from parent to offspring. If departures from

these assumptions are suspected of occuring, the methods

of Bourgain et al.20 will be more appropriate.

The HH test is now implemented in the publicly

available software package Mendel (version 9.0 or later at

www.genetics.ucla.edu/software) as part its Allele_Frequencies

option. The option is fully documented and illustrated by

specific numerical examples. We hope that this free

software implementation will prove attractive to users.
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2 Weinberg W: Über den nachweis der verrebung bein menschem.

Jahresh Verein 1908; 64: 368–382.
3 Stern C: The Hardy-Weinberg law. Science 1943; 97: 137–138.
4 Casellas J: Survival QTL fine-mapping by measuring and testing

for Hardy-Weinberg and linkage disequilibrium. Genetics 2007;
176: 721–724.

5 Nielsen D, Ehm MG, Weir BS: Detecting marker-disease associa-
tion by testing for Hardy-Weinberg disequilibrium at a marker
locus. Am J Hum Genet 1999; 63: 1531–1540.

6 Lee WC: Searching for disease-susceptibility loci by testing for
Hardy-Weinberg disequilibrium in a gene bank of affected
individuals. Am J Epidemiol 2003; 158: 379–400.

7 Wittke-Thompson JK, Pluzhnikov A, Cox NJ: Rational inferences
about departures from Hardy-Weinberg equilibrium. Am J Hum
Genet 2005; 76: 967–986.

8 Douglas JA, Skol AD, Boehnke M: Probability of detection of
genotyping errors and mutations as inheritance inconsistencies
in nuclear-family data. Am J Hum Genet 2002; 70: 487–495.

9 Sen S, Burmeister M: Hardy-Weinberg analysis of a large set of
published association studies reveals genotyping error and a
deficit of heterozygotes across multiple loci. Hum Genomics 2008;
3: 36–52.

10 Elston RC, Forthofer R: Testing for Hardy-Weinberg equilibrium
in small samples. Biometrics 1977; 33: 536–542.

11 Emigh TH: A comparison of tests for Hardy-Weinberg equili-
brium. Biometrics 1980; 36: 627–642.

12 Hernandez JL, Weir BS: A disequilibrium coefficient approach to
Hardy-Weinberg testing. Biometrics 1989; 45: 43–70.

13 Guo SW, Thompson EA: Performing the exact test of Hardy-
Weinberg proportions for multiple alleles. Biometrics 1992; 48:
361–372.

14 Weir BS: Genetic Data Analysis 2: Methods for Discrete
Population Genetic Data. Sunderland, MA: Sinauer Associates
Inc., 1996.

15 Chen JJ, Thomson G: The variance of the disequilibrium
coefficient in the individual Hardy-Weinberg test. Biometrics
1999; 55: 1269–1272.

16 Chen JJ, Duan T, Single R, Mather K, Thomson G: Hardy-
Weinberg testing of a single homozygous genotype. Genetics
2005; 170: 1439–1442.

17 Lee CC, Horvitz DG: Some methods of estimating the inbreeding
coefficient. Am J Hum Genet 1953; 5: 107–117.

18 Weir BS: Independence of VNTR Alleles defined as fixed bins.
Genetics 1992; 130: 873–887.

19 Barker JS, East PD, Weir BS: Temporal and micrographical
variation in allozyme frequencies in a natural population of
Drosophila buzzatii. Genetics 1986; 112: 577–611.

20 Bourgain C, Abney M, Schneider D, Ober C, McPeek MS: Testing
for Hardy-Weinberg equilibrium in samples with related indivi-
duals. Genetics 2004; 168: 2349–2361.

21 Rousset F, Raymond M: Testing heterozygotes excess and
deficiency. Genetics 1995; 140: 1413–1419.

22 Ott J: Estimation of the recombination fraction in human
pedigrees: efficient computation of the likelihood for human
linkage studies. Am J Hum Genet 1974; 26: 588–597.

23 Lange K, Cantor R, Horvath S et al: Mendel version 4.0: a
complete package for the exact genetic analysis of discrete
traits in pedigree and population data sets. Am J Hum Genet
2001; 69S1: 504.

24 Lange K, Goradia TM: An algorithm for automatic genotype
elimination. Am J Hum Genet 1987; 40: 250–256.

25 Crow JF: Basic Concepts in Population, Quantiative, and
Ecological Genetics. San Francisco: Freeman, 1986.

26 Waaler GHM: Uber die Erblichkeitsverhaltnisse der verschiede-
nenArten von angeborener Rotgrunblindheitrdquo. Z Indukt
Abstamm Vererbungsl 1927; 45: 279–333.

27 Lange K, Sinsheimer JS: The pedigree trimming problem. Hum
Hered 2004; 58: 108–111.

28 Sobel E, Papp JC, Lange K: Detection and integration of
genotyping errors in statistical genetics. Am J Hum Genet 2002;
70: 496–508.

29 Sinsheimer JS, McKenzie CA, Keavney B et al: SNPs and snails
and puppy dogs’ tails: analysis of SNP haplotype data using
the gamete competition model. Ann Hum Genet 2001; 65:
483–490.

Table 1 Combined SNP results

Marker name ĝ SE HH P-value

rs998132 0.5132 0.1590 0.0274
rs434410 0.4322 0.1603 0.0206
Combined 0.3401 0.1085 0.0011

HWE attesting with related individuals
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