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Diverse scientific disciplines ranging from materials science to
catalysis to biomolecular dynamics to climate modeling involve
nonlinear interactions across a large range of physically significant
length scales. Here a class of coarse-grained stochastic processes
and corresponding Monte Carlo simulation methods, describing
computationally feasible mesoscopic length scales, are derived
directly from microscopic lattice systems. It is demonstrated below
that the coarse-grained stochastic models can capture large-scale
structures while retaining significant microscopic information. The
requirement of detailed balance is used as a systematic design
principle to guarantee correct noise fluctuations for the coarse-
grained model. The coarse-grained stochastic algorithms provide
large computational savings without increasing programming
complexity or computer time per executive event compared to
microscopic Monte Carlo simulations.

Scientific problems in diverse disciplines ranging from mate-
rials science (1, 2) to biomolecular dynamics (3) to atmo-

sphere�ocean science and climate modeling (4, 5) involve the
nonlinear interaction of physical processes across many length
scales ranging from the microscopic to the macroscopic. In
general, it is not feasible computationally to include all of these
effects in detail in a model involving only the large scales. Thus
there is a great need for developing systematic ‘‘noise’’ models
for representing the interaction of the unresolved degrees of
freedom in a coarse-grained framework that is computationally
tractable.

For example, microscopic simulation methods such as molec-
ular dynamics and Monte Carlo (MC) algorithms provide a
fundamentally derived computational tool capable of describing
complex, out-of-equilibrium interactions between atoms or mol-
ecules. With the current computing capabilities, these methods
yield unprecedented insights into numerous problems ranging
from physiochemical and biological processes to pattern recog-
nition and imaging processing. Despite their widespread use and
the substantial progress in related computational methods,
molecular simulations are limited to short length and time scales,
capable of simulating a relatively small number of atoms�
molecules for quite short time periods, while device sizes and
morphological features observed in experiments often involve
much larger spatial and�or temporal scales. A major obstacle in
addressing this multiscale modeling challenge is the lack of a
rigorous mathematical and computational framework providing
a direct link of microscopic scales to complex mesoscopic and
macroscopic phenomena that are dictated by particle�particle
interactions.

In this direction, the work presented here focuses on devel-
oping a stochastic modeling and computational framework
capable of efficiently describing much larger length scales than
conventional MC simulations while still incorporating micro-
scopic details. Our main paradigm is a microscopic spin flip
model for the adsorption and desorption of molecules between
a surface and the overlying gas phase (1). Such types of micro-
scopic, spin flip processes have also been proposed recently as
providing paradigm models for unresolved features of moist

atmospheric convection (6). Using the spin flip model as a
starting point, we derive a coarse-grained stochastic birth-death
process, describing the microscopic system at mesoscopic length
scales. The stochastic process and the associated coarse-grained
MC simulations can capture large-scale morphological struc-
tures while retaining microscopic information on intermolecular
forces and particle fluctuations. It is shown numerically that the
necessary computer time can be reduced by orders of magnitude
for large systems and intermediate and long-range potentials.

Microscopic and Coarse-Grained Processes
To demonstrate the basic ideas, we consider as our microscopic
model an Ising-type system set on a periodic lattice L that is a
discretization of the interval I � [0, 1]. We divide I in m coarse
cells each with length 1�m (see Inset of Fig. 3). In turn, each
coarse cell is subdivided into q (micro)cells of length 1�mq,
hence I is divided in N � mq cells and L � 1�mq � � I. Each
coarse cell is denoted by Dk, k � 1, . . . , m. We define the coarse
lattice corresponding to the coarse cell partition as Lc � 1�m �
� I, and consider the integers k � 1, . . . , m as the unscaled
lattice points of Lc; the coarse-grained stochastic processes
defined below are set on Lc. Throughout this article we concen-
trate on 1D models; however, our results extend easily to
multiple dimensions.

The Ising model is defined on the lattice L. At each lattice site
x � L the order parameter �(x) is allowed to take the values 0
and 1 describing vacant and occupied sites, respectively. A
configuration � � {�(x):x � L} is an element of the resulting
configuration space �. The energy H of the system, evaluated at
�, is given by the Hamiltonian,

H��� � �
1
2 �

x�L

�
y�x

J�x � y���x���y� � � h��x�,

where h � h(x), x � L, is the external field and J is the
interparticle potential. Equilibrium states of the Ising model are
described by the Gibbs states at the prescribed temperature T,

�L,��d�� �
1

ZL

exp���H����PN�d��.

where � � 1�kT and k is the Boltzmann constant and ZL is the
partition function. Furthermore PN(�) � �x�L�(�(x)) is the
prior distribution on L, where �(�(x)) is the distribution of a
Bernoulli random variable with mean 1�2, for each x � L. The
interparticle potentials J � J(x�y) are defined on the fine lattice
L. We consider symmetric potentials with finite range interac-
tions whereby the integer 2L we denote the number of inter-
acting neighboring sites of a given point on L. The lattice size is
1�N, hence the actual potential radius is L�N. Since we consider
periodic boundary conditions on L, then for 2L � 1 � N we
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recover the case of long-range interactions, where each lattice
site interacts with all N � 1 remaining sites on L. Consequently
the interaction potential J � J(x�y) can be written as

J�x � y� �
1

2L � 1
V�N�x � y�

2L � 1 � , x, y � L, [1]

where V(r) � V(�r), and V(r) � 0, �r� � 1, accounting for
possible finite range interactions. An additional condition re-
quired to obtain error estimates for the coarse-graining proce-
dure is that V is smooth and 	R�	rV(r)�dr 
 � (7). More general
conditions are also possible. Note that for V summable, the
choice of the scaling factor 1�2L � 1 in Eq. 1 implies the
summability of the potential J, even when N, L 3 �.

The dynamics of Ising-type models considered in the literature
consists of order parameter flips and�or exchanges that corre-
spond to different physical processes. Here we focus on spin flip
mechanisms and discuss other mechanisms elsewhere. More
specifically a flip at the site x � L is a spontaneous change in the
order parameter, 1 is converted to 0 and vice versa. Here, we
consider it as a model for the desorption of a particle from a
surface described by the lattice to the gas phase above and
conversely the adsorption of a particle from the gas phase to the
surface (1). This mechanism can describe phase transitions
without order parameter conservation (8). Such a model has also
been proposed recently for modeling certain unresolved features
of tropical convection (6). If � is the configuration before a flip
at x, then after the flip the configuration is denoted by �x. When
the configuration is �, a f lip occurs at x with a rate c(x, �) i.e.
the order parameter at x changes, during the time interval [t, t �
�t] with probability c(x, �)�t. The resulting stochastic process
{�t}t�0 is defined as a continuous time jump Markov process
with generator given by LNf(�) � �x��Nc(x, �)[ f(�x)], where f
is a test function (9). The imposed condition of detailed balance
implies that the dynamics leave the Gibbs measure invariant and
is equivalent to

c�x, ��exp���H���� � c�x, �x�exp���H��x��.

For Metropolis-type dynamics, the energy barrier for desorption
depends only on the energy difference between the initial and
final states. In this article we focus on Arrhenius-type dynamics
where the activation energy of surface desorption is the energy
barrier a particle has to overcome in jumping from the surface
to the gas phase. The Arrhenius rate is:

c�x, �� � d0�1 � ��x�� � d0��x�exp
��U�x��, [2]

where U(x) � �z�x,z�LJ(x�z)�(z) � h(x) is the total energy
contribution from the particle interactions with the particle
located at the site x � L, as well as the external field h. Typically
a term U0 corresponding to the energy associated with the
surface binding of the particle at x can be absorbed in the
external field h in U(x); finally, d0 is a rate constant that
mathematically can be chosen arbitrarily but physically is related
to the pre-exponential of the microscopic processes.

Below we sketch how to replace the microscopic processes by
a coarse-grained one with desirable mathematical properties as
well as computational efficiency. The coarse-grained process
{
t}t�0 is defined on the coarse lattice Lc by equivalently
obtaining the corresponding semigroup generator, starting from
the microscopic process. The coarse-grained random variable

t is defined as an average of the microscopic process {�t}t�0
over each coarse cell Dk: 
t(k) � �y�Dk

�t(y) and satisfies the
constraint 0 � 
t(k) � q, since each coarse cell contains q
microcells. Equivalently we may also consider the coverage

� t(k) � q�1
t(k). First, we define the coarse-grained Hamil-

tonian for the random variable 
, corresponding to the micro-
scopic Hamiltonian H:

H� �
� � �
1
2 �

l�Lc

�
k�Lc
k�1

J��k, l�
�k�
�l�

�
J��0, 0�

2 �
l�Lc


�l��
�l� � 1� � �
k�Lc

h�
�k�.

The coarse-grained potential J� is defined by including the
average of all contributions of pairwise microscopic interactions
between coarse cells and within the same coarse cell,

J��k, l� � m2 � �
Dl�Dk

J�r � s�drds, [3]

where the area of Dl � Dk is equal to 1�m2; similarly we define
V� (k, l). Wavelets with vanishing moments can also be used in the
construction of the coarse-grained potential (7). The coarse-
grained external field h� is also defined as an average of the
microscopic external field h,

h� �k� � m�
Dk

h�r�dr.

If the corresponding continuum function h is smooth, then we
have the error estimate h� (k) � h(x) � O(1�m), for x � Dk. In
this case we can approximate the microscopic Hamiltonian by
the coarse-grained one with errors of the order q�2L � 1.

Next we turn to the nonequilibrium problem and define the
coarse-grained birth-death Markov process {
t}t�0 on the con-
figuration space Hm,q � {0, 1, . . . , q}Lc, where 
 � {
(k):k �
Lc} and 
(k) � {0, 1, . . . , q} in each coarse cell Dk. The
generator of the process obtained from systematic coarse-
graining is (7)

Lcg�
� � �
k�Lc

ca�k, 
�
g�
 � �k� � g�
��

� cd�k, 
�
g�
 � �k� � g�
��. [4]

Here �k � Hm,q is the configuration with a single particle at the
site k � Lc. The update rate with which the value 
(k) is
increased by 1, i.e. the adsorption rate of a single particle in the
coarse cell Dk is given by

ca�k, 
� � d0
q � 
�k��. [5]

Similarly the desorption rate with which the value 
(k) is
decreased by 1 is

cd�k, 
� � d0
�k�exp
��U� �k��, [6]

where U� is defined as the coarse-graining of U:

U� �l� � �
k�Lc
k�l

J��l, k�
�k� � J��0, 0��
�l� � 1� � h� �l�.

Interactions within the same coarse cell, included in H� (
) and
U� (l), are typically neglected in existing ad hoc models for
coarse-grained variables (10–12). Indeed the microscopic deri-
vation of our model shows (7) that same-cell interactions are
lower order when 2L � 1 �� q; however, they cannot be ignored
if the potential radius L is relatively short and�or the interactions
are very strong. Furthermore by including same cell interactions
we still obtain the global mean field theory when the coarse-
graining is performed beyond the interaction radius L. As a
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result we obtain a complete ‘‘hierarchy’’ of MC models from
nearest neighbor to mean field where the latter does not include
interactions but includes noise, unlike the usual ordinary differ-
ential equation mean field theories. The proper addition of
interactions within the cell in the coarse model is derived from
the microscopics and 
t still obeys detailed balance, as estab-
lished next.

Detailed Balance and Mesoscopic Limits
First, we derive the invariant measure for the coarse-grained
process {
t}t�0 and in particular we show it satisfies the detailed
balance condition similarly to the original microscopic dynamics
{� t} t�0. The product binomial distribution Pm ,q(
) �
�k�1

m �q(
(k)), where �q(
(k) � 
) � q!�
!(q � 
! (1�2)q is the
prior distribution on the configuration space Hm,q and arises
naturally from the microscopic prior by including q independent
sites. We define the canonical Gibbs measure on Hm,q; here
Zm,q,� denotes the partition function:

�m,q,��d
� �
1

Zm,q,�
exp���H� �
��Pm,q�d
�.

The condition of detailed balance for {
t}t�0 with respect to
the measure �m,q,� is

ca�k, 
��m,q,��
� � cd�k, 
 � �k��m,q,��
 � �k�,

cd�k, 
��m,q,��
� � ca�k, 
 � �k��m,q,��
 � �k�.

We only verify the first relation; using that H� (
 � �k) � H� (
) �
�U� (k) and the definitions of the rates (5, 6), we have (for
d0 � 1):

ca�k, 
��m,q,��
� � cd�k, 
 � �k��m,q,��
 � �k�

� �q � 
�k��exp���H� �
��Pm,q�
� � �
�k� � 1�

� exp����H� �
 � �k� � U� �k���Pm,q�
 � �k�

� exp� � �H� �
����q � 
�k��Pm,q�
� � �
�k� � 1�Pm,q�
 � �k��

� �
l�1,l�k

m

�q�
�l�� � ��q � 
�k���q�
�k��

� �
�k� � 1��q�
�k� � 1��.

Since (q � 
)�q(
) � (
 � 1)�q(
 � 1), the last curly bracket
is equal to zero, hence detailed balance holds.

Next, we validate the approximation of the microscopic pro-
cess {�t}t�0 by the coarse-grained process {
t}t�0 by demon-
strating that both share the same deterministic mesoscopic limit,
in the limiting regime of long-range interactions N � 2L � 1. In
this case the mesoscopic equation for Arrhenius dynamics
derived from the microscopic process � is

ct � d0
1 � c � exp��h�c exp���V � c��, [7]

where � denotes a convolution. Furthermore in the same scaling
regime the two processes have asymptotically the same fluctu-
ations as a comparison of the respective probability distribution
functions demonstrates, at least in the case of the Gibbs mea-
sures (see ref. 7 and the numerical comparisons in Fig. 1).

Below we outline the derivation of Eq. 7 from the coarse-
grained process. We consider as our observable the empirical
measure �m(dy; t) � 1�mq �l�Lc


t(l)�l(dy), where �l is a Dirac
measure centered at the point l�m � T. Then we define f(
) �
��m, �� � 1�mq �l�Lc


t(l)�(l) for any test function � and
consider the martingale Mt � f(
t) � f(
0) � 	0

t Lcf(
s)ds, with
quadratic variation

�Mt� � �
0

t

Lcf2�
s� � 2f�
s�Lcf�
s�ds

�
2

qm2�
0

t �
l�Lc


ca�l, 
� � cd�l, 
���2�l�ds,

and E�Mt� � O(1�m). By Doob’s maximal inequality we have
that for any time horizon t1, P(supt�[0,t1]�Mt� � �) � 1��2

O(1�m). Thus on a set of probability approximately one we have,

��m��, t�, �� � ��m��, 0�, �� � �
0

t

Lc��m��, s�, ��ds � O���,

[8]

were a short calculation shows that

Lc��m��, s�, �� �
1

qm �
l � Lc


ca�l , 
� � cd�l , 
����l�

�
d0

m �
l � Lc

��l� � d0��m��, s�, ��

� d0��m��, s�, � exp
���V� � �m � om�1� � h� ���.

We remark that the assumption of long-range interactions
allowed us to rewrite the right side of Eq. 8 as a function of
�m(dy, s) and thus obtain an approximate closed equation for
the measure �m(dy, s). The relative compactness of the proba-
bility distributions of the random measures �m(dx, t) in the space
D([0, T], M�) (the set of right continuous functions with left
limits taking values in the space of positive finite measures M�)

Fig. 1. Results of transient simulations from microscopic (q � 1) MC (solid
lines) and coarse-grained MC (dotted lines) for a piecewise constant repulsive
potential with parameters indicated. For N � 400 (uppermost curves) the
noise is significant. For moderate and long-range potentials (e.g., L � 10),
coarse-graining leads to excellent results in all expected equilibrium values,
dynamics, and noise. Lack of detailed balance (NDB) leads to significantly
wrong results, especially for short potentials and small coarse-grainings
(e.g., q � 2).
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follows from the estimate on the quadratic variation �Mt�.
Passing to the m3 � limit in Eq. 8 we obtain Eq. 7 in weak form
(for measure-valued solutions). It is not hard to see that the
measure-valued solutions are absolutely continuous with respect
to the Lebesgue measure thus Eq. 7 follows in the strong sense.
We refer to ref. 9 for similar compactness and regularity
arguments applied to other stochastic processes.

For the purpose of benchmarking simulations against meso-
scopic theory in the next section we state some of the basic
properties of Eq. 7. Steady-state solutions of Eq. 7 satisfy the
algebraic equation �(1 � x) � xe�
x � 0, where � � e��h and

 � V0�, V0 � 	 V(r)dr. For a suitable parameter regime (12),
Eq. 7 is bistable with stable roots (m�, m�) corresponding to the
dense and the dilute phases of the system. One-dimensional
standing and traveling waves for Eq. 7 connect high- and
low-density phases (13). When the parameters (�, 
) satisfy � �
e�
/2, the corresponding wave c is standing, i.e. has zero speed,
and for V(x) � V0�[�.5.,5] can be calculated explicitly:

c�x� � 1⁄2
�2m� � 1� tanh��V0�2m� � 1�x� � 1�. [9]

As established in the next section, the proper inclusion of
stochastic f luctuations inherited from the microscopics in the
mesoscopic models is critical in simulating underresolved fea-
tures that trigger phenomena such as nucleation, pattern selec-
tion, etc.

Coarse-Grained MC Simulations
Kinetic MC or continuous-time MC simulations (14) are

performed where the transition probabilities are computed a
priori and each event is successful. Coarse-grained MC codes are
the same as microscopic MC ones with a few differences. First,
the interparticle potential is coarse-grained at the beginning of
a simulation to represent interactions between particles within
each cell (a feature absent in microscopic MC) as well as
interactions with neighboring cells. Second, the order parameter
is still an integer but varies between zero and q, instead of zero
and one that is typical for microscopic MC.

First, we present transient MC results in one dimension
(trajectories) for the spatially average coverage in Fig. 1 under
periodic boundary conditions, for four sets of adsorption-
desorption parameters and potential length, to illustrate differ-
ent points. The same random number generator seed is used in
computing all these trajectories. Even though the simulations for
N � 400 (Fig. 1, topmost curves) are slightly affected from finite
size effects, we use these simulations to show enhanced noise
compared to ones performed for a larger domain (N � 8,192).
For moderately long potentials (L � 20, Fig. 1, uppermost
curves and L � 32, bottommost curves), the coarse-grained MC
(q � L) follows closely the dynamics of the microscopic MC (q �
1), and the noise level of the corresponding microscopic and
coarse-grained simulations is comparable. This latter observa-
tion is theoretically supported by the fact that the Gibbs states
of the coarse-grained process and the underlying microscopic
process are asymptotically identical, at least in the case of
long-range interactions (2L � 1 � N), as the large deviation
principles for the coarse-grained and the microscopic processes
are the same (see ref. 7 for details). For short-range potentials,
such as L � 1 (Fig. 1, lower set of four curves), for which the
asymptotics in ref. 7 do not apply, coarse graining (q � 2 and q �
128) results in larger, but still relatively small, errors in the
equilibrium solution, as shown from the fluctuating coverage at
long times in Fig. 1. All of these results show that the coarse-
grained process is an accurate stochastic noise model for the
microscopic process.

The detailed balance principle has been used as a design rule
in deriving the coarse-graining processes. To elucidate its im-
portance, we have also carried out simulations with the short-

range interaction term in H� , 
(l)(
(l) � 1) replaced with the
‘‘intuitive’’ term 
(l)2, which does not satisfy detailed balance.
The curve in Fig. 1 for q � 2 (labeled NDB) shows that
nondetailed balance can lead to large discrepancies, especially
for low q and low coverage. Therefore, the correct derivation of
the coarse Hamiltonian and transition probabilities from the
microscopics can be critical regarding numerical accuracy.

The above conditions lead to spatially uniform solutions for
long times. Thus the numerical agreement between microscopic
and mesoscopic MC is encouraging but not a strict test. To test
the accuracy of the coarse-graining procedure, we have also
performed simulations for conditions resulting in spatially vary-
ing solutions describing large-scale features of the microscopic
model. In particular, we benchmark our coarse-grained MC
simulations against an analytic solution, namely that of a stand-
ing wave (Eq. 9) for a piecewise constant potential, at relatively
low temperatures where thermal fluctuations are reduced. To
perform these simulations, two MC simulations were first carried
out for each coarse-graining under periodic boundary conditions
(infinite domain) to numerically evaluate m� and m�. Virtual
domains were next created on each side of the actual simulation
domain of length L each. The boundary conditions were sub-
sequently set in each virtual domain equal to m� on the left and
m� on the right. With these Dirichlet boundary conditions, the
standing wave was simulated for 5 � 104 MC steps (each MC step
corresponds to sampling each site once on the average) after
steady state has been reached. The results are depicted in Fig. 2.
It is seen that the numerical results (symbols) are in excellent
agreement with the analytic solution (solid line), especially for
the finest discretization shown. As expected from analogous
deterministic simulations, the standing wave is not as well
resolved for relatively coarse grids. Finally, in the aforemen-
tioned parameter regimes it is expected that the coarse-grained
MC simulations can also be used to enhance the numerical
bifurcation algorithms developed in ref. 15 for lattice MC
algorithms.

The previous simulations have been carried out under a
uniform external field (pressure). In a variety of problems,
kinetic MC simulations need to be coupled with macroscopic
fluid-phase equations of change, where spatial variations in the

Fig. 2. Standing wave for a piecewise constant potential from analytic
solution (solid line) and various coarse-grainings indicated. Very good agree-
ment between analytical and numerical solutions is obtained.
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external field occur typically over macroscopic scales. Repre-
sentative examples include catalytic reactors, crystal growth,
electrochemical systems, and stochastic modeling of atmospheric
phenomena (1, 6). To mimic such situations, we have also
performed simulations with a gradient in the external field. In
the simulations conducted here, the external field varies linearly
in space between zero at the left boundary and one at the right
boundary. The linear choice is arbitrary. The steady-state solu-
tion obtained varies as a function of position. Since there is
one-to-one map between position and pressure below we use
these terms interchangeably.

First, we tested these simulations in the absence of interac-
tions. In this case nodes are independent of each other (uncou-
pled nodes). Thus if one plots the solution (coverage) at each
location as the function of position (or pressure), the Langmuir
isotherm is obtained in a single run. Excellent agreement
between the MC and the analytical isotherm was obtained (not
shown). Next, we carried out simulations in the case of nontrivial
interactions. For the gradient simulations, the boundary condi-
tions were arbitrarily chosen to be Dirichlet. In particular, the
coverage was set to zero at the left boundary and to value of
the isotherm for the corresponding pressure (� � 1, d0 � 1) at
the right boundary. An example for attractive interactions is
shown in Fig. 3. The value of interactions was chosen in the
regime of a single-valued isotherm, but close to the critical point
where the onset of multiplicity in 1D starts (
cr � 4).

Solutions from different discretizations depicted in the graph
are practically indistinguishable. These simulations indicate that
coarse-grained MC can allow for the coupling of microscopic-
scale phenomena at an interface with continuum or stochastic
simulations of a fluid in contact with the interface. A subtle point
is that the solutions obtained for these conditions coincide with
the isotherm obtained by using periodic boundary conditions at
each pressure, i.e., simulations where nodes are decoupled. This
result indicates that because of the large scales simulated partial
equilibrium at each node is practically established.

Fig. 4 shows the coverage vs. time for the above conditions of
spatially varying external field for a long potential (L � 128)
with different discretizations (q � 1, 32, 128) indicated. The
conclusions are qualitatively similar to the ones under periodic

boundary conditions discussed in Fig. 1. For long-range poten-
tials, results are practically the same independent of coarse-
graining. To explore the accuracy of coarse-graining beyond the
asymptotic limit under external field gradients, we have also
performed similar simulations for a very short potential (L � 1).
The solution of the microscopic MC (q � 1) is close to the
long-range potential (L � 128), as shown in Fig. 4. For q � 2
maximum deviations from the microscopic MC are seen. As q
increases above approximately four, a hierarchy of solutions
results that converges to the mean field limit of long potential for
large-coarse grainings (e.g., q � 128, Fig. 4, triangles). Detailed
balance plays an important role for small q, large coverage, and
short potentials (see topmost line for q � 2, Fig. 4) but plays little
role for large coarse grainings (e.g., q � 128, Fig. 4, squares) or
long potentials (not shown).

Finally, we should comment on the significant computational
savings resulting from coarse-graining. For long-range poten-
tials, the computer time in kinetic MC simulation with global
update, i.e., searching the entire lattice to identify the chosen
site, scales approximately as O(m3). For example, a 100-fold
reduction in the number of sites (q � 100) results in reduced
computer time by a factor of 106. Therefore, coarse-graining can
render MC simulation for the large-length scales feasible. Fur-
thermore, coarse-grained potentials can be short and MC algo-
rithms using local update based on lists of neighbors become
amenable. Such a possible change in algorithms can lead to
additional computer time savings by up to 2 orders of magnitude
for typical MC simulation domains (16).

Conclusions
In this article we have introduced a class of coarse-grained
stochastic processes and associated MC simulations that are
derived directly from microscopic lattice systems and describe
mesoscopic-length scales. Detailed balance is used as a system-
atic design principle to guarantee proper inclusion of noise
fluctuations in the coarse-grained model. Numerical compari-
sons of coarse-grained and conventional (microscopic) MC
simulations delineate the validity regimes of the proposed

Fig. 3. Simulation results under a pressure gradient. (Inset) A schematic of
the coarse-graining process in two dimensions.

Fig. 4. Spatially average coverage vs. time for the conditions of Fig. 3 and
three discretizations (L � 128, q � 1, 32, 128) indicated. Short-range poten-
tial L � 1 results are also depicted for various values of q with and without
(NDB) a detailed balance condition.
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coarse-graining procedure. It is also demonstrated that the
models result in significant computational savings by reducing
the cost of the microscopic MC simulations by a factor of
approximately q3, where q is the size of the coarse-graining.
Consequently the proposed coarse-grained MC simulations
are capable of capturing large-scale features, while retaining
microscopic information on intermolecular forces and particle
fluctuations.

The proposed algorithms have the potential for significant
impact on numerous technologically relevant applications that
are currently intractable with conventional MC simulations.
Examples include pattern formation at mesoscopic-length scales
on catalytic surfaces (17, 18), transport through microporous
films (2), as well as growth processes of materials. Furthermore
coarse-grained MC methods can provide a tool for the simula-
tion of systems having a wide discrepancy of interrelated scales.
One such process is chemical vapor deposition where micro-
scopic interfacial phenomena typically simulated by MC meth-

ods affect the large-scale adjacent fluid flow (1). In the same
broad multiscale context but in an entirely different direction,
coarse-grained stochastic processes can be used as mesoscopic
stochastic models for unresolved features in atmospheric phe-
nomena. For example, such models and MC simulations can be
directly derived from microscopic stochastic models for the
parameterization of tropical convection developed recently in
ref. 6.
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