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On the use of sibling recurrence risks to select
environmental factors liable to interact with genetic
risk factors

Rémi Kazma*,1,2, Catherine Bonaı̈ti-Pellié3,1, Jill M Norris4 and Emmanuelle Génin2,5

Gene–environment interactions are likely to be involved in the susceptibility to multifactorial diseases but are difficult to detect.

Available methods usually concentrate on some particular genetic and environmental factors. In this paper, we propose a new

method to determine whether a given exposure is susceptible to interact with unknown genetic factors. Rather than focusing on

a specific genetic factor, the degree of familial aggregation is used as a surrogate for genetic factors. A test comparing the

recurrence risks in sibs according to the exposure of indexes is proposed and its power is studied for varying values of model

parameters. The Exposed versus Unexposed Recurrence Analysis (EURECA) is valuable for common diseases with moderate

familial aggregation, only when the role of exposure has been clearly outlined. Interestingly, accounting for a sibling correlation

for the exposure increases the power of EURECA. An application on a sample ascertained through one index affected with type 2

diabetes is presented where gene–environment interactions involving obesity and physical inactivity are investigated. Association

of obesity with type 2 diabetes is clearly evidenced and a potential interaction involving this factor is suggested in Hispanics

(P¼0.045), whereas a clear gene–environment interaction is evidenced involving physical inactivity only in non-Hispanic whites

(P¼0.028). The proposed method might be of particular interest before genetic studies to help determine the environmental risk

factors that will need to be accounted for to increase the power to detect genetic risk factors and to select the most appropriate

samples to genotype.
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INTRODUCTION

If gene–environment (G�E) interactions are expected to be important
in multifactorial disease susceptibility,1 genetic and environmental
factors are most often evaluated independently rather than jointly.
Joint analysis and G�E interaction testing is usually performed in a
second step once the observed effects of each factor have been
evidenced.2–4 Using such a strategy, we are likely to miss important
genetic or environmental factors whose effects could only be detected
when accounting for the other factor.5,6 This was clearly evidenced in
the study by Selinger-Leneman et al6 where it was shown that the
power to detect a genetic risk factor interacting with an environmental
risk factor might be considerably reduced when the environmental
exposure of individuals is not accounted for. However, this was very
dependent on the environmental risk factor prevalence, on its effect on
the disease and on its interaction with the genetic factor. In some
situations, accounting for the environmental exposure was even
detrimental in terms of power. This first study called for the need to
develop methods to select environmental factors that might be
involved in G�E interaction and should therefore be accounted for
in genetic studies.

The problem of selecting environmental exposures to account for in
genetic studies becomes even more crucial when performing genome-

wide association studies with hundreds of thousands of markers.
Indeed, in this context, for each exposure to study, there are such a
huge number of tests to perform that one wants to make sure that
only relevant exposures are accounted for. The development of
methods to select these relevant environmental factors will probably
be the first step to test for G�E interactions at the genome-wide levels.

In their previous work, Selinger-Leneman et al6 have shown that
selecting environmental factors based solely on their observed effects is
not an efficient strategy and it might be useful to find a statistical tool
to determine if they are likely to interact with genetic risk factors. This,
however, should be carried out before the genetic analysis and thus
involves the use of methods that do not require genotyping data. One
such method was proposed by Purcell7 for twin data and relies on
variance component modeling. Apart from the fact that it requires
twin data, the method also requires exposure status of both sibs, which
is not always easy to obtain. Our proposed method also uses familial
aggregation of the disease as a surrogate for the genetic factors but
exposure in indexes only. Indeed, as suggested by Stücker et al,8

familial aggregation of disease would be different for exposed and
unexposed indexes if the environmental factor studied is involved in
G�E interaction. A rational for this property is that in presence of
G�E interaction exposed indexes have not the same distribution of
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genotypes as unexposed indexes. Their sibs will consequently have a
different probability of having the disease from those of unexposed
indexes.

In this paper, we used this idea of difference in sibling recurrence
risks based on index’s exposure to propose a test aimed at selecting
environmental factors that are prone to interact with the genetic
component of a multifactorial disease and propose a simple statistical
test. We study the statistical properties of this test under different
models and apply it on a type 2 diabetes (T2D) sample.

MATERIALS AND METHODS
To evidence a difference in the recurrence risk for siblings of exposed and

unexposed individuals, we need data on a sample of sib pairs ascertained

through an affected index (sib 1). The variable of interest is the affection status

of the other sib (sib 2) and the explicative variable is the exposure status of

sib 1. The data can be presented in a contingency table such as Table 1.

Odds ratio of recurrence and Exposed versus Unexposed
Recurrence Analysis
Let KS be the sibling recurrence risk defined as the probability of sib 2 being

affected given sib 1 is affected9. Let KSE (KS�E) be the risk when sib 1 is affected

and exposed (unexposed) to a given environmental factor E. To measure the

difference between these two stratified risks, an odds ratio of recurrence (ORR)

can be calculated by analogy with an odds ratio (OR):

ORR ¼ KSE� 1� KS�Eð Þ
KS�E� 1� KSEð Þ ð1Þ

Deriving the above recurrence risks as a function of observed numbers in

the contingency table (Table 1), the ORR can be expressed as:

ORR ¼ ad

bc

In contrast to the OR of an environmental factor where exposure and disease

statuses are measured in the same individual, in the ORR, exposure is measured

in the affected index and the disease status is measured in the sib.

In the presence of a G�E interaction involving environmental factor E,

we expect the ORR to be different from 1. To test for ‘ORR¼1’, we propose to

perform a 1 degree of freedom (d.f.) w2-test on the contingency table crossing

sib 1’s exposure with sib 2’s affection status (Table 1) or the asymptotically

similar Wald test based on the logistic regression parameter estimate and its

variance. This test will be referred to as the Exposed versus Unexposed

Recurrence Analysis (EURECA) test.

Properties of the ORR and of the EURECA test under different
models
To study the behavior of the ORR and the statistical properties of EURECA,

we considered a model of interaction involving a single gene (G) and a

single environmental factor (E) even though the method practically only

uses environmental information. We computed the expected numbers in

each cell of the contingency table and derived the different recurrence

risks (Table 1) under the different models of G�E interaction defined

by the parameters presented in Table 2. A disease D with population

prevalence fD is considered. It is assumed that D is causally associated only

with E and G.

The E factor is dichotomous with population frequency fE and a main effect

size on D measured by the exposure relative risk, RRE. To model the possibility

for a familial clustering of E, as in Khoury et al,10 we define the conditional

probability of sib 2 being exposed given the exposure status of sib 1 as:

Pðsib 2 E+ jY1Þ ¼ ð1� CEÞ�fE+CE�Y1 ð2Þ

where Y1 is a dummy variable that takes the value 1 when sib 1 is exposed and 0

otherwise, and CE is the environmental correlation between the sibs. Thus,

when CE¼0, sib 2’s exposure status is independent from sib 1’s exposure status

and its probability is always equal to the prevalence of E in the general

population, fE. When CE¼1, correlation between sibs for exposure is complete

and sib 2’s exposure probability is equal to 1 when sib 1 is exposed and 0 when

sib 1 is unexposed.

The G factor corresponds to a predisposing genetic factor localized on an

autosomal biallelic genetic locus. The allele that confers predisposition to

disease is noted A and has a population frequency of q, whereas the other allele

a has a population frequency of 1–q. Frequencies of the different possible

genotypes (AA, Aa and aa) are supposed to follow Hardy–Weinberg propor-

tions in the population (ie, q2, 2q(1–q) and (1–q)2, respectively). The main

effect of the G factor is measured by the genotypic relative risk (RRG) that

corresponds to the ratio of the disease risk in carriers of the predisposing

genotype(s) to the risk in noncarriers of the predisposing genotype(s) among

unexposed individuals. In all situations, we compared dominant and recessive

genetic models for a given frequency fG of predisposing genotype(s), with

fG¼q2 under a recessive model and fG¼q2+2q(1–q) under a dominant model.

Let B designate the baseline risk, that is, the probability of disease for a

noncarrier and unexposed individual. The interaction between E and G is

measured by an interaction coefficient I, which corresponds to a departure

from a multiplicative model when both E and G are present. In the absence of

interaction, the risk of an individual exposed and carrier of the predisposing

genotype is the product of B, RRE and RRG. In the presence of interaction, this

risk is multiplied by the interaction coefficient I (Table 2). The conditional risks

of disease given genotype and exposure status and the numbers of the

contingency table cells were derived using the ITO matrix method of Li and

Sacks11 modified to account for the environmental factor. Computations were

performed with the Maple 10 software12 and explanations are given in the

Supplementary materials.

Type I error and power of the EURECA test were asymptotically estimated

considering a sample of 1000 sib pairs by use of 1 d.f. noncentral w2-distribu-

tions. Alternatively, we calculated the required number of sib pairs to reach

a power of 0.80 with a type I error rate of 0.05.

Application to type 2 diabetes
The Gene ENvironment Interactions (GENI) study13 collected phenotypic and

environmental data of type 2 diabetic subjects and their families living in the
Table 1 Distribution of the sample of sib pairs in cross table

according to exposure of sib 1 and disease status of sib 2

Sib 1 (affected)

Sib 2 Exposed Unexposed

Affected a b a+b

Unaffected c d c+d

a+c b+d N

KSE¼a/(a+c) KSĒ¼b/(b+d) KS¼(a+b)/N

The sibling recurrence risk over the whole sample (KS) and sibling recurrence risks stratified on
sib 1’s exposure (KSE and KSĒ) can be derived from the observed numbers (a, b, c and d). The
odds ratio of recurrence (ORR) is equal to:

ORR ¼ KSE� 1� KS �Eð Þ
KS�E� 1� KSEð Þ ¼

ad

bc

Table 2 Probability of disease given exposure and genotype statuses

according to genetic and environmental model parameters

Genotype

Exposure G� (1–fG) G+ (fG)

E� (1–fE) B B.RRG

E+ (fE) B.RRE B.RRG.RRE.I

Abbreviations: E+, exposed; E�, unexposed; fE, proportion of exposed individuals in population;
G+, carrier of the predisposing genotype(s); G�, noncarrier of the predisposing genotype(s);
fG, proportion of carriers of the predisposing genotype(s) in population; B, baseline risk;
RRE, exposure relative risk; RRG, genotypic relative risk; I, multiplicative interaction coefficient
for individuals both exposed and carrier of the predisposing genotype.
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San Luis Valley and the Denver metropolitan area in Colorado (USA). Among

452 pedigrees (3090 nuclear families) ascertained through one index sib

affected with T2D, we extracted 2699 index sib pairs for which data were

available in the index for at least one of the two studied exposures: obesity and

physical inactivity. Of those pairs, 1734 were Hispanics (H) and 965 were

non-Hispanic whites (NHW). Subjects previously diagnosed by a physician as

having T2D and treated with oral hypoglycemic agents or insulin were

considered affected. For subjects that did not report having T2D or subjects

untreated for T2D, diabetic status was determined by an oral glucose tolerance

test using American Diabetes Association criteria (1997). For diabetic subjects,

self-reported body mass index (BMI) at the time of diagnosis was used. BMI

was calculated at recruitment time for other subjects. Individuals having a BMI

value exceeding 30 kg/m2 were classified as obese. Physical activity assessment

was carried out once during the study using a previously validated question-

naire self-administered by the subjects.14 Energy expenditure was assessed as

metabolic equivalent task (MET) units. The MET is the ratio of the metabolic

rate during exercise to the metabolic rate at rest.15 The average MET per week

(before the diagnosis of T2D for affected individuals) was calculated for each

study participant. The MET variable was divided into sex-specific tertiles, and a

dichotomous variable was created distinguishing individuals in the lower tertile

(‘low physical activity’) from those in the upper two tertiles.

We carried out all the analysis separately for the two population strata (H

and NHW) because the two exposures distributions were significantly hetero-

geneous. We first evaluated the observed main effect of each exposure using

conditional logistic regression applied on discordant sib pairs for the T2D

affection status. The numbers of available subjects were 198 H and 116 NHW

for obesity and 458 H and 309 NHW for physical inactivity. Exposure

frequency was measured in the control samples (unaffected sibs) and used as an

estimate of exposure prevalence in population.

For each exposure, we randomly selected one sib for each index to compute

contingency table numbers and global and stratified recurrence risks (KS, KSE

and KS�E). The numbers of available pairs were 267 H and 321 NHW for obesity

and 246 H and 268 NHW for physical inactivity. We derived an ORR for each

exposure and applied the EURECA test of interaction using a logistic regression

model. To account for correlated pairs belonging to the same pedigree, we

computed the standard error of the logistic regression parameter using a robust

sandwich estimator clustered by family as implemented in Stata/SE 10.1.16

When exposure of the random sib was available, the pairs were also used to

calculate a correlation coefficient between sib pairs for each exposure variable

using Equation 2.

RESULTS

Behavior of the odds ratio of recurrence under different disease
models

To evaluate the pertinence of using the ORR as an indicator of the
presence of a G�E interaction, we investigated the variations of the
ORR under different models first without correlation between siblings
for E (CE¼0). As expected, we observe that in the presence of an
interaction the values of the ORR increase with increasing values of
the interaction coefficient I, but they also depend on the other model
parameters. Impacts of these parameters are shown in Figure 1 for the
exposure parameters (fE and RRE) and in Figure 2 for the genetic

Figure 1 Odds ratio of recurrence (ORR) as a function of the gene–environment interaction coefficient (I) for varying exposure prevalences (fE), varying

exposure relative risks (RRE) and for a recessive and a dominant genetic model. Fixed parameters: disease prevalence, fD¼0.1; frequency of predisposing

genotype(s), fG¼0.1; genotypic relative risk, RRG¼1; sibling correlation for the environmental factor, CE¼0.
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parameters (fG and RRG). For a given value of I, ORR is greater for
high values of fE and RRE (Figure 1) and small values of fG. When
prevalence of the predisposing genotype(s) increases (fG¼0.2), the
changes in ORR seen with varying RRG tend to disappear and even
reverse when interaction values are elevated (Figure 2). ORR is higher
for a dominant as compared to a recessive model at fixed fG.

Because environmental correlation between sibs might induce a
possible confusion with a G�E interaction, we looked into variations
of ORR values for different values of CE, when I¼1 and I¼5 (Figure 3).
We observe that under the null hypothesis (I¼1), the ORR value
(referred to as ORR0) is always equal to 1 in situations where there is
no correlation of the E factor (CE¼0) or when there is no effect of E
(RRE¼1). On the other hand, in the presence of an effect of E (ie,
RREa1) associated with a correlation between sibs for this factor (ie,
CEa0), the ORR0 values are inflated. In presence of a sibling
correlation for E, the estimates obtained with a G�E interaction
(I¼5, Figure 3) should thus be tested against the value of ORR0 rather
than against 1. The null hypothesis of the test becomes ‘ORR¼ORR0’.
The value of ORR0 depends on the disease prevalence, on the
environmental parameters and to a lesser extent on the genetic
parameters. To estimate ORR0, we thus need to obtain some estimates
these different parameters. Disease prevalence is often known from
previous studies in similar populations. The environmental para-
meters (CE, fE, RRE) can be estimated using the studied sample

when data on the environmental exposure of siblings are available (see
the T2D example here). If this is not the case, results from previous
studies on the effect of the environmental can be used. Only the

Figure 2 Odds ratio of recurrence (ORR) as a function of the gene–environment interaction coefficient (I) for varying frequencies of predisposing genotype(s)

(fG), varying genotypic relative risks (RRG) and for a recessive and a dominant genetic model. Fixed parameters: disease prevalence, fD¼0.1; frequency of

exposure, fE¼0.2; exposure relative risk, RRE¼1; sibling correlation for the environmental factor, CE¼0.

Figure 3 Odds ratio of recurrence (ORR) as a function of the sibling

correlation for the environmental factor (CE) and the environmental factor

relative risk (RRE). Fixed parameters: disease prevalence, fD¼0.1; frequency

of exposure, fE¼0.2; frequency of predisposing genotype(s), fG¼0.1;

genotypic relative risk, RRG¼1. Solid curves represent null hypothesis

scenarios and dotted curves represent corresponding situations with a gene–

environment interaction (I) of 5.
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genetic model is not known. We propose to calculate ORR0 for different
genetic model parameters (fG, RRG) and then to use as ORR0 the value
the closest to the observed ORR. This ‘worst-case scenario’ ensures a
robust inference on the test (see example in the Results section,
Application to type 2 diabetes). To compute the expected ORR0, the
Maple source code of ‘EURECA’ is available from the corresponding
author on request. More theoretical derivation of the ORR0 computa-
tion is also given in the Supplementary materials.

Properties of the Exposed versus Unexposed Recurrence Analysis test
In Figure 4, the power of the EURECA test of ‘ORR¼ORR0’ is
reported for varying levels of interaction and CE under dominant
and recessive models. As expected, the power increases with increasing
value of I but more interestingly, this increase depends on CE and is
larger for high CE values than for low CE values. Alternatively, Table 3
reports the number of sib pairs that are needed to reach a power of
0.80 with a type I error rate of 0.05 for increasing values of
I and CE under a plausible disease model (frequent factors, fG¼0.1
and fE¼0.2; with moderate effects, RRG¼2 and RRE¼2). In situations
with no CE and small I, sample sizes are very high and thus unlikely to
be recruited. But considering situations with elevated interaction
coefficients (I43) and with high correlation for exposure in sibs
(CE40), sample sizes are more reasonable.

Considering the same frequencies with a sibling correlation of 0.25
and varying values of RRE and RRG, the required sample sizes are
shown in Supplementary Figure S1. As expected, these sizes are
smaller when G and E have strong effects, but they seem to be more
sensitive to G than to E.

All the previous results considered a disease prevalence (fD) of 0.10.
Variations in power as a function of interaction and disease prevalence
are presented in the Supplementary Figure S2. In summary, it shows
that the best performances of this test are obtained with common
rather than with rare diseases. When the disease is rare, the sibling
recurrence risk (KS) is low and the difference between the exposed and
unexposed index strata due to the G�E interaction is harder to detect.

Application to type 2 diabetes
The results of the T2D application are presented in Table 4. For each
population strata (H and NHW) and each studied exposure, we show
first the environmental parameter estimates: ORE (exposure’s OR), fE
and CE, and then the proposed G�E interaction analysis: ORR and

EURECA test. To account for CE, we calculated the ORR expected
under the null hypothesis (ORR0). The Center for Disease Control
and Prevention 2001 diabetes data for the state of Colorado provided
diabetes prevalence (fD¼4.5%).17 On the basis of this estimate and
using the environmental parameters calculated previously on the T2D
data, we computed expected ORR0 values for a wide range of genetic
parameters (fG¼0.01–0.5, RRG¼0.5–10). An interval of variation of
ORR0 was obtained in this way. To ensure robustness of the test, we
considered the ‘worst-case scenario’ and compared the observed ORR
to the value of ORR0 that was the closest to the observed ORR.

In H, obesity has an ORR equal to 0.67 (95% CI 0.40, 1.11).
Remarkably, in this stratum, obesity has a strong significant observed
effect of 2.48 (95% CI 1.18, 5.22), which, associated with a CE of 0.22
and an fE of 0.29, gives an expected ORR0 varying between 1.25 and
1.27. In this example, we used 1.25 (closest value to the observed ORR
of 0.67) to perform the EURECA test and obtained a P-value of 0.045.
In NHW, obesity has also a significant observed effect with an OR of
3.87 (95% CI 1.54, 9.65) but the interaction test is not significant.

Considering physical inactivity, the interaction test is significant in
the NHW sample only (P¼0.028) and the ORR is 2.13 (95% CI 1.08,
4.19). This exposure has no significant observed effect and does not
aggregate in sib pairs, which is a situation where the proposed test
usually lacks power to detect the G�E interaction (as shown in Table 3
and Supplementary Figure S1).

Because the sex distributions of indexes and of sibs were homo-
genous between the groups of exposed and unexposed indexes, this
variable should not interfere with the EURECA test.

Figure 4 Power of the EURECA test as a function of the interaction

coefficient I and the sibling correlation for exposure CE, after accounting for

inflated type I error rates due to CE, considering a sample size of 1000 sib

pairs. Fixed parameters: disease prevalence, fD¼0.1; frequency of exposure,

fE¼0.2; exposure relative risk, RRE¼2; frequency of predisposing

genotype(s), fG¼0.1; genotypic relative risk, RRG¼2. Dotted curves represent

computations for recessive models and solid curves for dominant models.

Table 3 Sample size (number of sib pairs) required to obtain a power

of 0.80 with a type I error rate of 0.05 as a function of the interaction

coefficient (I) and the environmental correlation between sibs (CE)

Recessive model Dominant model

CE \ I 1 2 3 5 10 1 2 3 5 10

0 N 72417 13885 2946 720 N 41516 8061 1754 448

0.25 N 12250 2568 619 181 N 8418 1745 423 126

0.5 N 5371 1182 307 99 N 3875 841 219 70

0.75 N 3172 725 199 67 N 2345 529 145 47

1 N 2163 511 147 51 N 1625 379 108 35

Fixed parameters: disease prevalence, fD¼0.1; frequency of predisposing genotype(s), fG¼0.1;
genotypic relative risk, RRG¼2; frequency of exposure, fE¼0.2; exposure relative risk, RRE¼2.

Table 4 Results of the application on T2D data

Environmental factor Obesity Low physical activity

Stratum H NHW H NHW

ORE 2.48 3.87 1.13 0.93

95% CI of ORE 1.18, 5.22 1.54, 9.65 0.72, 1.77 0.53, 1.65

fE 0.29 0.37 0.31 0.23

CE 0.22 0.14 �0.02 0.07

ORR0 1.25a, 1.27 1.22a, 1.25 0.99, 1.00a 0.99, 1.00a

ORR 0.67 1.03 1.14 2.13

95% CI of ORR 0.40, 1.11 0.53, 1.99 0.62, 2.08 1.08, 4.19

EURECA 4.03 0.25 0.15 4.78

P-value 0.045 0.617 0.70 0.028

Abbreviations: H, Hispanics; NHW, non-Hispanic whites; ORE, odds ratio estimate of the
environmental factor; fE, estimated frequency of the environmental factor; CE, estimated sibling
correlation for the environmental factor; ORR0, interval of variation of the expected odds ratio of
recurrence under the null hypothesis; ORR, odds ratio of recurrence; CI, confidence interval;
EURECA, Exposed versus Unexposed Recurrence Analysis.
aClosest bounding value used to perform the test.
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DISCUSSION

Contrasting the sibling recurrence risks based on the exposure status
of the index is a simple and attractive approach to select environ-
mental factors involved in a G�E interaction. We propose to measure
this contrast by computing an ORR and show that the ORR is a good
indicator of a G�E interaction. This ORR is not a direct measure of
interaction but rather a measure of the difference between recurrence
risks in exposed and unexposed indexes. For example, using the low
physical activity in NHW result in Table 4, the risk of T2D in an NHW
individual is multiplied on average by a factor of 2.13 when his
affected index sib has a low physical activity compared to an
individual whose affected index sib has a high physical activity. At
this level of information, discriminating between an underlying
genetic component interacting with the exposure and the familial
clustering of this exposure associated to the disease is quite difficult,18

but our results show that it is possible, provided that the effect and
familial correlation of the environmental factor is well documented.

In the context of a dichotomous environmental variable, the
interest of using the ORR, instead of the ratio of recurrence risks,
resides in applying a logistic regression as done in most epidemiologic
studies, but the same approach can be easily extended to multiclass or
continuous environmental factors using the classic general linear
models. The use of continuous variables when available would
probably increase the power but would also make the assumption of
a linear relation. To test for the difference of the ORR with a null
hypothesis value (ORR0), we derive a statistical test, the EURECA test.
To use this test, we need to define the value of ORR0. We have derived
analytically a formula to compute ORR0 based on exposure parameter
and disease prevalence estimates. These estimates are often easily
obtained from the data sample and from the literature. To ensure
robustness of the test, we suggest accounting for the impact on ORR0

of possible variations in these estimates by deriving a range of
variation of ORR0 and to consider in the test the ORR0 value the
closest to the observed ORR. Note that the loss of power due to the
uncertainty of the genetic parameters should be minimal because the
ORR0 variations would usually be small as in the illustrative example
(from 0.01 to 0.03). Interestingly in our example, we found even
under this ‘worst-case scenario’, it is possible to show that observed
ORR for some exposure significantly differs from ORR0. This is in
good agreement with the results of Khoury et al10 showing that the
degree of familial aggregation of most common diseases cannot be
entirely explained by a familial clustering of environmental risk factors
even if we assume an extreme clustering of the environmental factor.

The study of the statistical properties of EURECA has shown that
the test is appropriate to test for common diseases rather than rare
ones (Supplementary Figure S2). Interestingly, even when the tests are
corrected for the exposure correlation in siblings, powers were found
to be higher for elevated values than for lower values of CE. We
hypothesize that the sibling correlation actually has a confounding
effect on one part, but also emphasizes the existing difference in
recurrence risks between strata of indexes due to the G�E interaction.
We only tested positive correlation coefficients between siblings for
exposure because it is probably the most common situation in familial
studies.

Gene–environment interactions are difficult to detect and often
require very large sample sizes. In an effort to increase the power to
detect G�E interaction, new methods have been developed that are
based on particular sampling designs. Among these methods are the
log-linear modeling method that uses case–parent trio data and
compares genotype distribution of exposed and unexposed cases
conditional on parental genotypes,19 methods that use countermatch-

ing designs to enrich the sample with rare exposure or genetic
factors20 or case–control combined designs with both population
and familial controls.21 A common feature of all these different
methods to detect G�E interactions is their need to have a complete
knowledge of the exposure statuses and genotypes of the studied
subjects. Among the methods that use familial aggregation of the
disease as a surrogate for the latent genetic factor, Purcell7 proposed to
apply variance components models in twin studies to evidence G�E
interactions with an environmental factor measured in both twins.
What distinguishes the method we propose here is the type of
information used to assess the G�E interaction. This method relies
on the exposure of the index case and information on the familial
recurrence of the disease. There is no need to have a measure of
exposure in the sibs and for easily recognizable diseases, their affection
status might be obtained from indexes. Large sample sizes can thus be
obtained at a minimal cost. It is true however that if sibs could also be
examined, familial recurrence will certainly be better estimated. It will
also be possible to assess, directly from the data rather than from the
literature, potential environmental correlation between sibs.

The use of the sib recurrence information as surrogate for genetic
risk factors has the advantage of requiring no a priori hypothesis on
the genetic model underlying disease susceptibility. It also permits to
test for the involvement in the disease of genetic factors located
anywhere on the genome at no cost in terms of multiple testing.
This is an important point as the issue of multiple testing in G�E
interaction studies considering thousands of genetic markers coupled
with tens of exposures remains to be resolved. On the contrary, this
approach only stipulates a specific environmental factor and tests for
its interaction with the genetic component implicated in disease risk
increase. As compared to other methods that use both genotypic and
environmental information, this method could lack power to detect
some interaction with a specified genetic factor. But it provides an easy
way to screen for environmental factors potentially implicated in G�E
interactions when genotypes are not available.

Association between T2D and obesity was significant both in H and
NHW, as previously evidenced in many cross-sectional and long-
itudinal studies.22 Concerning interaction, EURECA was significant
only in H (P¼0.045) with a particular model of interaction where the
interaction effect is in opposite direction compared to the main
exposure effect. In an earlier study of recurrence risk estimation in
T2D families, analogous results were found and elevated recurrence
risk ratios were found in siblings of nonobese as compared to obese
patients.23 This kind of interaction illustrates the situations where the
G�E interaction is a nuisance element that has to be accounted for to
better detect a main effect.5,6 Regarding low physical activity that had
no significant observed effect in any of the two populations, the
interaction test was significant in NHW (P¼0.028) but not in H. A
previous study that applied family-based association tests and general-
ized estimating equations models showed a G�E interaction between
the peroxisome proliferator-activated receptor-g gene and low physical
activity in H too.13 Ascertainment of indexes through multiplex
families as in the case of the GENI study could make it difficult to
extrapolate results to the general population of diabetic patients.
Indeed, an enrichment in disease susceptibility alleles is expected in
these families and thus sibling recurrence risk estimates are likely to be
increased as compared to those expected in the general population.23

However, it should not create an erroneous heterogeneity between
exposed and unexposed indexes strata unless there is a correlation
between sibs for the environmental factor that is not correctly
accounted for. In this example, the results are likely to encourage
further studies to select nonobese subjects in H populations, to search
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for genetic factors implicated in T2D, whereas studying NHW
populations, we would be more interested in searching for an
interaction with low physical activity. This illustrates how one can
use the ORR point estimates, their confidence intervals and corre-
sponding P-values to rank among many environmental factors those
that should be selected in priority to test for a G�E interaction in
following genetic studies.

In conclusion, this paper demonstrates that valuable amount of
familial information can be exploited toward detecting G�E interac-
tions that underpin multifactorial disease susceptibility. This method
is proposed as a strategy that can be used before genetic studies to help
plan these studies. It can help investigators identify environmental
factors liable to interact with genetic factors and that will need to be
accounted for in the analysis but could also be used in the study design
to select subcategories of the population to enhance genetic factor
detection.
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