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Preliminary evidence of a noncausal association
between the X-chromosome inactivation pattern and
thyroid autoimmunity: a twin study

Thomas Heiberg Brix*,1, Pia Skov Hansen1,3, Kirsten Ohm kyvik2,3 and Laszlo Hegedüs1

An increased frequency of skewed X-chromosome inactivation (XCI) is found in clinically overt autoimmune thyroid disease

(AITD) compared with controls. Whether skewed XCI is involved in the pathogenesis of autoantibodies to thyroid peroxidase

(TPOAb) in euthyroid subjects is unknown. To examine the impact of XCI on the serum concentration of TPOAb, we studied

whether within-cohort and within-twin-pair differences in XCI are associated with differences in serum concentrations of TPOAb.

A total of 318 euthyroid female twin individuals distributed in 159 pairs were investigated. XCI was determined by PCR analysis

of a polymorphic CAG repeat in the first exon of the androgen receptor gene. TPOAb concentrations were measured using a

solid-phase time-resolved fluoroimmunometric assay. Overall (within cohort), there was a significant association between XCI and

serum concentrations of TPOAb; regression coefficient (b)¼1.45 (95% confidence interval, 0.52–2.38), P¼0.003. The

association remained significant in the within-pair analysis; b¼1.74 (0.79–2.69), Po0.001. The relationship was nonsignificant

within the 82 monozygotic pairs (b¼0.57 (�0.78–1.92), P¼0.405), whereas the association was significant in the 77 dizygotic

pairs (b¼2.17 (0.81–3.53), P¼0.002). This preliminary finding of a significant association between TPOAb concentrations and

XCI within cohort and within dizygotic but not within monozygotic twin pairs may indicate that XCI per se does not have a major

role in the pathogenesis of TPOAb. More likely, XCI and TPOAb are influenced by shared genetic determinants.
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INTRODUCTION

Clinically overt autoimmune thyroid diseases (AITD) affect around
2% of the female population, whereas prevalence of subclinical
disease, reflected by the presence of autoantibodies against thyroid
peroxidase (TPOAb) and thyroglobulin in euthyroid individuals, is up
to 10-fold higher.1,2 Although common, the aetiology of these diseases
is still incompletely understood. However, it is generally assumed that
the development of overt as well as subclinical AITD is the net
result of environmental triggers3–5 operating in genetically predis-
posed individuals.6–9 Recently, epigenetic factors such as genetic
anticipation10 and the phenomenon of X-chromosome inactivation
(XCI)11–13 have been suggested to have a role in the aetiology of AITD.
We11 and subsequently others12,13 have reported an association
between a skewed XCI pattern and the presence of clinically overt
AITD in females. Thus, there is little doubt that an association exists
between skewed XCI and overt AITD. The key question, however, is
whether it is the skewed XCI per se or other factors such as genes,
socioeconomic or environmental conditions that cause the observed
association.

Because monozygotic (MZ) twin pairs share 100% of their genes
and dizygotic (DZ) pairs share 50% (on average), studies of twins
offer a unique opportunity to distinguish between genetic and non-
genetic influences.14,15 It follows that differences within DZ pairs are
because of a combination of genetic and nongenetic factors, whereas

differences within MZ pairs are caused by nongenetic factors.14,15

Thus, if the association between skewed XCI and AITD is because
of genetic confounding (the genotype responsible for AITD is also
involved in the XCI pattern), the association would be observed within
DZ pairs, but not within MZ pairs. In this study, we examined the
relationship between the serum concentrations of TPOAb and the
degree of skewed X-chromosome inactivation in 159 euthyroid female
twin pairs.

SUBJECTS

The twins were recruited from the The Danish Twin Registry.16

A detailed description of the ascertainment procedure has been
published elsewhere.17 In brief, in 1997, a representative sample of
self-reported healthy twin pairs born between 1931 and 1982 was
recruited from the Danish Twin Register on the basis of nationwide
questionnaire surveys regarding health and health-related behaviour
conducted in 1994 and 1996. In all, 1512 individuals (756 twin pairs)
were examined from 1997 to 2000. Blood samples were available
from 736 twin pairs. Twin pairs with self-reported thyroid disease
(32 subjects in 28 twin pairs) or overt biochemical thyroid
disease (19 subjects in 18 pairs) were excluded. Moreover, all males
(688 subjects) and females from opposite-sex pairs (120 subjects) were
also excluded, leaving 572 females (286 pairs). Of these, 318 subjects
(159 twin pairs, distributed in 82 MZ and 77 DZ pairs) were
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informative regarding both TPOAb and XCI pattern and hence
suitable for data analysis. Informed consent was obtained from all
participants, and the study was approved by all the Regional Scientific-
Ethical Committees in Denmark.

METHODS

Assays
X-chromosome-inactivation analysis. DNA was extracted from peripheral

blood cells. The X-chromosome phenotype was determined by polymerase

chain reaction (PCR) analysis of a polymorphic repeat in the first exon of the

androgen receptor gene.18 After digestion of the DNA with the methylation-

sensitive enzyme Hpall, a PCR product is obtained from the inactive X

chromosome only. The PCR products were separated on an ABI 3100

automated sequencer, and analysed by GeneScan software (Applied Biosystems,

Foster City, California, USA). Each sample was analysed in duplicate and

blinded as to the result in the corresponding co-twin and the TPOAb

phenotype. XCI was calculated as the percentage of the predominantly inactive

allele to the sum of both alleles and varies between 50 and 100, where 50 reflects

random XCI and 100 reflects a completely skewed XCI.

Serum TSH and TPOAb. Serum concentrations of TSH and TPOAb were

measured using solid-phase time-resolved fluoroimmunometric assays (Auto-

DELFIA, Perkin-Elmer/Wallac, Turku, Finland).

Zygosity determination. Zygosity was established by DNA fingerprinting

using a PE Applied Biosystems AmpFISTER Profiles Plus Kit (Foster City,

California, USA).

Statistical methods. Group frequencies were compared with the Pearson

w2-test, whereas group medians were compared with a two-sample Wilcoxon

rank-sum (Mann–Whitney) test using Brunner’s adjustment for clustering within

twin pairs.19 Because of deviation from normality, logarithmic transformation of

TSH, TPOAb and XCI was carried out. The relationship between the logged values

of XCI and TPOAb (within-cohort analysis), as well as the relationship between

the within-twin-pair differences in XCI and within-pair differences in TPOAb

(within-twin-pair analysis), was assessed by linear regression.

In the within-cohort analysis, the paired nature of twin data was taken into

account by using only one, randomly chosen twin individual from each twin

pair. Subsequently, data were analysed with the logged concentration of TPOAb

as the response variable and lnXCI, lnTSH, age, smoking and zygosity as

explanatory variables. In the within-twin-pair analysis, the regression line was

constrained to pass through the origin so that the results were independent of

the labelling of the twin as the first or second.

Significant differences were defined as a P-value less than 0.05 using two-tailed

tests. All analyses were carried out using version 7 of the STATA statistical package.

RESULTS

Descriptive characteristics and distribution of TPOAb and XCI
measurements in the twin cohort, as a whole and stratified by zygosity,
are given in Table 1. Statistically significant differences between MZ
and DZ twins were observed for age (MZ vs DZ; 35 vs 38, P¼0.022)
and serum TSH (MZ vs DZ; 1.75 vs 1.44, P¼0.017).

The results of the regression analyses are outlined in Figure 1 and
Table 2. In the within-cohort analysis, a positive association between
the serum concentration of TPOAb and XCI was found: regression
coefficient (b)¼1.45 (95% confidence interval, 0.52–2.38), P¼0.003.
As evident from Table 2, adjusting for age, TSH, smoking and zygosity
did not significantly change the association. The association between
TPOAb and XCI remained statistically significant in the overall
within-pair analysis (both MZ+DZ): b¼1.74 (0.79–2.69), Po0.001.
The relationship was nonsignificant within the 82 MZ pairs (b¼0.57
(�0.78–1.92), P¼0.405), whereas the association was significant in
the 77 DZ pairs (b¼2.17 (0.81–3.53), P¼0.002). Testing the equality
of the within-pair regression coefficients across zygosity indicated that
the associations were different between MZ and DZ twins (P¼0.07).

As evident from Figure 1, the within-pair difference in lnTPOab
and lnXCI among MZ twins is quite small. Theoretically, this small
variability could mask a genuine association. To overcome this limi-
tation, we restricted the analyses to MZ pairs with the highest degree
of within-pair variation in lnTPO and lnXCI. The regression coeffi-
cient was, however, still nonsignificant (MZ pairs with a within-pair
difference in lnTPOAb of at least 0.5: n¼17, b¼4.58 (�4.55–13.71),
P¼0.303. MZ pairs with a within-pair difference in lnXCI of at least
0.1: n¼22, b¼0.35 (�0.23–0.94), P¼0.224).

DISCUSSION

A link between a skewed XCI pattern and the development of clinically
overt AITD in females has been suggested.11–13 In accordance with
these studies, we found a statistically significant positive association
between XCI and the serum concentrations of TPOAb in euthyroid
subjects (within-cohort analysis). To evaluate whether this association
was causal or could be explained by the presence of genetic or
environmental confounders, we also analysed the association between
XCI and TPOAb within MZ and DZ pairs. Despite similar distribu-
tions of XCI and TPOAb between MZ and DZ twins, stratifica-
tion according to zygosity had a major impact on the results.
The association was significant within the DZ pairs, whereas the
relationship was nonsignificant within MZ pairs. Interaction analysis
showed that the associations tended to be significantly different
between MZ and DZ pairs (P¼0.07), indicating that genetic factors
could have a major role in the association between the variance in XCI
and that in the serum concentration of TPOAb. In other words, XCI
per se does not seem to have a role in the aetiology of early AITD.
More likely, XCI and AITD are influenced by common genetic
determinants. The XCI process is under genetic control20 and it has
been linked to loci on the X chromosome.21 The X chromosome may
also be of interest in AITD because several genes crucial for the
maintenance of immune function and tolerance are located on this
chromosome.22 Linkage as well as association between genes on the
X chromosome and AITD has been demonstrated.23–25 Thus, it is
likely that the association between XCI and AITD is not causal but just
a reflection of the inheritance of common X-linked susceptibility
genes. In other words, our preliminary data indicate that the XCI
pattern does not per se influence the serum concentration of TPOAb.

Our study has potential limitations. Approximately two-thirds of
MZ twins are monochorionic (common placenta), whereas almost all
DZ pairs are dichorionic. Therefore, it could be argued that besides
genetic factors, intrauterine factors may also differ between MZ and
DZ twins and this could theoretically be the cause of the observed
difference between MZ and DZ pairs in the within-pair associations

Table 1 Basic characteristics

Variable Study population

MZ+DZ (n¼318) MZ (n¼164) DZ (n¼154)

Smoking (%) 52 48a 56

Age (year) 36 (19–51) 35 (19–51)b 38 (21–52)

Degree of skewing 63 (51–87) 63 (51–87)a 63 (51–88)

TPOAb (kIU/l) 4.7 (2.2–93.0) 4.6 (2.3–79.6)a 4.9 (2.8–156.3)

TSH (mU/l) 1.56 (0.65–3.34) 1.75 (0.73–3.55)c 1.44 (0.61–3.22)

All values, except for smoking, are presented as medians with 5th and 95th percentiles in
parentheses. MZ, monozygotic and DZ, dizygotic.
aMZ vs DZ, P40.05.
bMZ vs DZ, P¼0.022.
cMZ vs DZ, P¼0.017.
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between XCI and TPOAb. In our study, as in most twin studies,
information on the anatomy of chorion and placenta was not
available.

All participants were twins, but there is no reason to suspect that
XCI pattern and the factors influencing TPOAb differ between twins
and singletons. Available studies have clearly shown that Danish twins
are representative of the general background population for an XCI
pattern20 and for a range of thyroid phenotypes,6,7,26 including for the
presence of TPOAb.9

Finally, because of the complete match for genetic factors, the
within-pair difference in the concentration of TPO antibodies is quite
narrow within MZ twins. Thus, our finding of a nonsignificant
regression coefficient within MZ pairs could be because of a lack of
statistical power. In fact, the R2 in the unadjusted regression model
within MZ pairs was only 0.009. This means that over 1000 MZ twin

pairs would be needed to detect a significant difference at this level
with a power of at least 90%. In our view, a difference at this level is
hardly likely to be of any clinical significance.

In conclusion, our demonstration of a significant association
between TPOAb concentrations and XCI in the overall twin popu-
lation and within DZ but not within MZ twin pairs, if confirmed in
larger studies, suggests that XCI per se does not have a major role in
the pathogenesis of TPOAb. Rather, the XCI pattern and TPOAb levels
are influenced by shared genes.
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Figure 1 Scatterplots and unadjusted regression coefficients (b) for the correlation between the concentration of TPOAb and the X-chromosome-inactivation

(XCI) pattern for the within-cohort (a) and within-twin-pair (b, c and d) comparisons. Ninety-five percent confidence intervals are given in parentheses.
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