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Linkage and candidate gene studies of autism
spectrum disorders in European populations

Richard Holt1, Gabrielle Barnby1, Elena Maestrini2, Elena Bacchelli2, Denise Brocklebank1, Inês Sousa1, Erik
J Mulder3, Katri Kantojärvi4, Irma Järvelä4, Sabine M Klauck5, Fritz Poustka6, Anthony J Bailey7 and Anthony
P Monaco*,1, the EU Autism MOLGEN Consortium8

Over the past decade, research on the genetic variants underlying susceptibility to autism and autism spectrum disorders (ASDs)

has focused on linkage and candidate gene studies. This research has implicated various chromosomal loci and genes.

Candidate gene studies have proven to be particularly intractable, with many studies failing to replicate previously reported

associations. In this paper, we investigate previously implicated genomic regions for a role in ASD susceptibility, using four

cohorts of European ancestry. Initially, a 384 SNP Illumina GoldenGate array was used to examine linkage at six previously

implicated loci. We identify linkage approaching genome-wide suggestive levels on chromosome 2 (rs2885116, MLOD¼1.89).

Association analysis showed significant associations in MKL2 with ASD (rs756472, P¼4.31�10�5) and between SND1 and

strict autism (rs1881084, P¼7.76�10�5) in the Finnish and Northern Dutch populations, respectively. Subsequently, we used

a second 384 SNP Illumina GoldenGate array to examine the association in seven candidate genes, and evidence for association

was found in RELN (rs362780, P¼0.00165). Further increasing the sample size strengthened the association with RELN

(rs362780, P¼0.001) and produced a second significant result in GRIK2 (rs2518261, P¼0.008). Our results strengthen the

case for a more detailed study of the role of RELN and GRIK2 in autism susceptibility, as well as identifying two new potential

candidate genes, MKL2 and SND1.
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INTRODUCTION

Autism, a neuropsychiatric disorder with an onset before 3 years of
age, is characterised by impaired reciprocal communication and social
interaction, as well as by restricted and stereotyped patterns of
interests and behaviour. The definition can be further broadened to
include atypical autism, Asperger’s syndrome and pervasive develop-
mental disorder not otherwise specified (PDD-NOS), to create a class
of conditions collectively referred to as autism spectrum disorders
(ASDs) (OMIM %209850).

ASDs affect approximately 0.6–1.2% of the general population,1,2

with a marked excess of boys compared with girls of B4:1.3,4 Multiple
lines of evidence have shown that autism has a large genetic compo-
nent. The prevalence of ASDs is increased to 2–8% among siblings of
affected individuals,4,5 and the concordance rates increase from 0% in
same-sex dizygotic twins to 36–60% in monozygotic pairs.6,7 Thus,
the heritability of autism is B90%, making it the most heritable of the
childhood onset neuropsychiatric disorders.7

Despite the obvious importance of genetic factors in autism
development, the search for genes underlying susceptibility has
met with limited success. A large number of linkage studies have
been conducted and have identified possible susceptibility loci on
multiple chromosomes.8 Although there is not total concordance

between the different studies, certain regions, such as those on
chromosomes 2, 3, 7, 11, 16, 17 and 19, have been implicated multiple
times. Candidate gene studies have been used as an alternative
approach for identifying variants increasing susceptibility to autism.
Between 1995 and 2008, nearly 200 genes were investigated for
association with autism, with more than 80 reported with nominally
positive results. However, even the most frequently associated genes,
such as RELN (reelin),9 have negative replications reported.10 Recently,
the first genome-wide association study for ASDs has been published,
implicating a number of genes and genomic regions, most significantly
the area between cadherin genes CDH9 (cadherin 9) and CDH10
(cadherin 10) on chromosome 5p14.1. However, in this study, only
a single SNP reached genome-wide significance after correction for
multiple testing, confirming the difficulties involved in the identifica-
tion of common variants contributing to ASD susceptibility.11

We attempted to refine our understanding of the genetics of autism
by investigating previously reported linkage and candidate gene results
in our European populations. Our collaboration includes groups from
the International Molecular Genetic Study of Autism Consortium
(IMGSAC), Paris Autism Research International Study (PARIS) and
Finland. These three groups have performed whole-genome linkage
screens for autism in their respective family collections,12–15 with the
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six highest LOD scores on chromosomes 2q, 3q, 6q, 7q, 16p and 17q.
In addition, IMGSAC and PARIS are members of the Autism Genome
Project (AGP) consortium, which recently conducted a genome-wide
linkage study using Affymetrix (Santa Clara, CA, USA) 10k arrays,
including a large number of samples from these two consortia.2 To
refine previously identified linkage peaks, we chose SNPs from the
Affymetrix 10k array that tag variation within these top six loci and
genotyped them in additional IMGSAC, PARIS and Finnish families.
These results were analysed in combination with overlapping SNPs
from the AGP study for IMGSAC and PARIS samples in a meta-
analysis of linkage. Furthermore, we genotyped these SNPs in trios
from Finnish and Northern Dutch isolated populations to identify
regions of extended linkage disequilibrium (LD) within these loci.

Second, we attempted to identify or replicate associations of autism
and ASD with seven key candidate genes. These were NOSTRIN (nitric
oxide synthase trafficker),16 GRIK2 (glutamate receptor, ionotropic,
kainite 2),17,18 RELN,9 PRKCB1 (protein kinase C, beta),19,20 SLC6A4
(solute carrier family 5 (neurotransmitter transporter, serotonin),
member 4),21,22 SHANK3 (SH3 and multiple ankyrin repeat
domains 3)2,23 and ASMT (acetylserotonin O-methyltransferase).24

METHODS

Samples
The individuals included in this study came from four European based

collections/populations: IMGSAC, PARIS, Finland and Northern Holland.

Assessment and selection criteria have been described previously for

IMGSAC,14 PARIS,25 Finnish12 and the Northern Dutch22 probands. All

affected individuals from the IMGSAC, PARIS and Northern Dutch cohorts

had ADI-R26 and/or ADOS27 assessments. The Finnish probands were identi-

fied by ICD-10 and DSMIV criteria diagnosed by experienced clinicians.

General summary phenotypic information, where available, is provided

(Supplementary Table 1). For Illumina GoldenGate (Illumina, San Diego,

CA, USA) genotyping, the samples were either genomic DNA with a concen-

tration of 60–100 ng/ml (B26.4%) or whole-genome amplified DNA

(GenomiPhi v2 (GE Healthcare, Amersham, UK)), with an estimated concen-

tration of 200 ng/ml (B73.6%). For Sequenom iPLEX (Sequenom, San Diego,

CA, USA)-based genotyping, samples were diluted to 10 ng/ml for genomic

DNA, or to 1:10 (B20 ng/ml) for whole-genome-amplified DNA.

SNP selection and genotyping
Separate Illumina GoldenGate 384 SNP arrays were designed for linkage and

candidate gene studies.

For the linkage array, a subset of SNPs from the Affymetrix 10k v2 SNP array

located within previously identified regions of linkage on chromosomes 2q, 3q,

6q, 7q, 16p and 17q were identified. Data for these SNPs were downloaded for

the HapMap Phase II (release 21) CEU samples. Those SNPs tagging variation

in these regions with a minimum allele frequency (MAF) of Z0.05 and r2
Z0.8

were selected for genotyping using the Tagger program in Haploview v4.0.28 In

addition, four SNPs on the X chromosome were included to confirm the sex of

new individuals. A total of 93 multiplex families were genotyped (44 IMGSAC,

16 PARIS and 33 Finnish). An additional 248 families (66 Finnish singletons,

182 Northern Dutch trios, the majority from singleton families) were also

genotyped to examine the extent of LD within these regions in relatively

isolated populations. In total, 1127 individuals from 341 families were

genotyped on this array (Supplementary Table 2).

For the candidate gene array, SNPs within and 5 kb 5¢ and 3¢ of NOSTRIN,

GRIK2, RELN, PRKCB1, SLC6A4, SHANK3 and ASMT (NCBI build 35) were

downloaded for the HapMap Phase II (release 21) CEU samples, and those

tagging variation in these regions with a MAF Z0.05 and r2
Z0.8 using the

Tagger program in Haploview v4.028 were chosen. For SNPs tagging more than

10 others, a second ‘safety net’ SNP was chosen to capture identical variation,

accounting for 34 SNPs on the array. Additional SNPs of interest were also

chosen from the published literature. Samples genotyped on the array consisted

of trios of one randomly chosen affected individual, and both parents, where

available, from multiplex families. In total, 1144 samples from 389 families (284

IMGSAC, 72 PARIS and 33 Finnish) were genotyped (Supplementary Table 3).

Genotyping for both arrays was performed using the standard protocols for

GoldenGate assays (Illumina).

There is an overlap of the samples genotyped in this study with those used to

replicate recent genome-wide association results.11,29 However, in the latter

studies, the SNPs chosen were to replicate individual signals, in contrast to

our haplotype-tagging approach to investigate association across specific

candidate genes.

Analysis
Genotypes were called using BeadStudio software (Illumina) with manual

editing of clusters. Mendelian inheritance errors were identified and removed

using PedCheck.30 SNPs with poor clustering or 410 Mendelian errors, and

samples with a genotyping success rate o80% or 410 Mendelian errors, were

excluded from further analysis. All SNPs were tested for Hardy–Weinberg

equilibrium using the BeadStudio software (Illumina).

Before analysing linkage data, genotypes for 262 IMGSAC and 49 PARIS

families genotyped by the AGP using the Affymetrix 10k v2 SNP array were

downloaded from the AGP database (http://davinci.tcag.ca/agp_freeze2/). Data

from the 384 SNPs used in this study were combined with those we generated

to create an extended cohort of 397 families (301 IMGSAC, 64 PARIS,

32 Finnish). Data were formatted using MEGA2 before linkage analysis

using the ASPEX package (ftp://lahmed.stanford.edu/pub/aspex). Parent-of-

origin analyses were performed using the sex_split option of the ASPEX

package. LOD scores Z1.9 and Z3.3 were considered to be evidence of

suggestive and significant linkage, respectively.31

Association analyses were performed using the transmission disequilibrium

test (TDT), which is robust against population stratification. The candidate gene

association data were analysed for each individual population genotyped and the

results were combined in a meta-analysis. We estimated odds ratios and the

respective SE from transmission frequencies.32 Meta-analysis was performed by

pooling all data using an inverse variant approach.33 For all association analyses,

we considered each gene or region examined as a separate hypothesis. Therefore,

we determined a Bonferroni-corrected significance threshold by dividing the

nominal significance threshold (P¼0.05) by the number of SNPs tested at that

locus. Reducing the LD threshold from r2¼0.8 to r2¼0.2 does not significantly

reduce the number of independent SNPs, and therefore the Bonferroni correc-

tion could be applied. For each linkage region in which we examined associa-

tion, we further divided the significance threshold by 2 because these loci were

tested for association with both ASD and strict autism.

The number and density of SNPs on either array were insufficient to

perform a comprehensive analysis for the presence of copy number variants

at the loci investigated.

Replication
The five most significant SNPs from the candidate gene array were geno-

typed in an additional 282 IMGSAC singleton families and in 188 Northern

Dutch trios, the majority of whom were also from singleton families.

Sequences flanking the SNPs were obtained (http://www.Biomart.com)

and iPLEX assays were designed (http://www.realSNP.com). Genotyping was

performed using the Sequenom iPlex platform (Sequenom), with standard

protocols. Power calculations for the replication sample were performed using

the Genetic Power Calculator for discrete trait TDT (GPC) (http://pngu.mgh.

harvard.edu/~purcell/gpc).34 Parameters used for the GPC were 0.17% for

disease prevalence, perfect LD between tested marker and disease allele, an

additive model and a type 1 error rate of 0.05.

RESULTS

Array performance
Both Illumina GoldenGate 384 SNP genotyping arrays performed
well. From the linkage array, a total of 379 SNPs and 1112 samples
survived quality control, with a mean genotyping success rate of
499% for the retained samples (Supplementary Table 2). For the
candidate gene array, after quality control, 354 SNPs and 1127 samples
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remained for analysis, resulting in a mean genotyping success rate of
499% after quality control (Supplementary Table 3).

Linkage array
Linkage analysis. The combination of our data with those from
the AGP study2 resulted in a final sample set of 397 families (301
IMGSAC, 64 PARIS and 32 Finnish). Multipoint linkage analysis
was performed on the sibpairs. The largest signal obtained was on
chromosome 3, with the peak at rs2862479 (MLOD¼1.5) (Figure 1).
The Finnish cohort is a relatively genetically isolated population,
suggesting that it may contain different susceptibility loci to either
the IMGSAC or PARIS cohorts. Therefore, we repeated the analysis
excluding the 32 Finnish families, which decreased the signal on
chromosome 3 (peak MLOD¼0.79, rs2862479). A signal approaching
suggestive levels of linkage 31 was observed on chromosome 2 in the
remaining families (peak MLOD¼1.89, rs2885116) (Figure 1).

Parent-of-origin analysis. It has previously been shown that parent-
of-origin effects may have an important role in ASD susceptibility.35

Parent-of-origin analysis for our entire data set was performed,
resulting in an increased peak signal on chromosome 3 for maternal
alleles, with the zenith shifting 5¢ from rs2862479 to rs4129157
(MLOD¼1.78). The analysis was repeated excluding the Finnish
subset of individuals, resulting in an increased signal on chromosome
2 spanning four SNPs (rs726032, rs726033, rs1374431 and rs2885116),
each with an LOD score of 1.67 for the maternal alleles.

Association analysis in published regions of linkage. Two sets of trios
(62 Finnish and 179 Northern Dutch after quality control), mainly
consisting of singleton families, were genotyped on the linkage array.
Analysis of the LD patterns of the SNPs for these populations showed
no significant difference from that of the CEU samples in the HapMap
data (data not shown). Therefore, a TDT test was carried out using
these data for both strict definition autism and ASD, including an
additional 33 Finnish multiplex families we had genotyped (Finnish
strict N¼80, ASD N¼95; Northern Dutch strict N¼99, ASD N¼179)
(Figure 2). In total, 375 SNPs in the linkage regions survived quality

control (chromosome 2 N¼142, chromosome 3 N¼22, chromo-
some 6 N¼55, chromosome 7 N¼100, chromosome 16 N¼21,
chromosome 17 N¼35). The Bonferroni-corrected significance thresh-
olds for each locus were as follows: chromosome 2 Pr0.000176,
chromosome 3 Pr0.00114, chromosome 6 Pr0.000455, chromo-
some 7 Pr0.00025, chromosome 16 Pr0.00119 and chromosome 17
Pr0.00074. Association was found on chromosome 7 with a SNP
within the gene SND1 (Staphylococcal nuclease and tudor domain
containing 1) in Northern Dutch individuals with strictly defined
autism (rs1881084, P¼7.76�10�5), and to a lesser extent in the
wider Northern Dutch ASD cohort (P¼0.001838), but this association
was not present in the Finnish population. A significant association
was observed on chromosome 16 for rs756472 in the gene MKL2
(MKL/myocardin-like 2) in the Finnish population, for both strict
autism and ASD (strict autism, P¼2.46�10�4; ASD, P¼4.31�10�5).
However, this association was not observed in the Northern Dutch
population.

After identifying these associations, analysis was performed on the
largest individual cohort of samples from IMGSAC (N¼301).
Although nominal associations were found on chromosomes 2, 6, 7,
16 and 17, none of these were with rs1880184 or rs756472.

Candidate gene array
A TDT was performed for each cohort genotyped on the candidate
gene array for both strict autism and ASD. These results were
combined for the 382 families in total by performing a pooled
meta-analysis (Figure 3). In total, excluding safety net SNPs, 328
SNPs within the candidate genes survived quality control (NOSTRIN
N¼15, GRIK2 N¼105, RELN N¼118, PRKCB1 N¼72, SLC6A4 N¼7,
SHANK3 N¼9, ASMT N¼2). The Bonferroni-corrected significance
thresholds for each locus were as follows: NOSTRIN Pr0.00333,
GRIK2 Pr0.000476, RELN Pr0.000424, PRKCB1 Pr0.000694,
SLC6A4 Pr0.00714, SHANK3 Pr0.00556 and ASMT Pr0.025. The
two strongest associations, obtained for both strict autism and ASD,
were with rs362780 in RELN (strict autism P¼0.00165, ASD
P¼0.00165) and rs2518261 in GRIK2 (strict autism P¼0.00955, ASD
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P¼0.00170). However, neither of these associations passed the
thresholds corrected for multiple testing.

The majority of trios genotyped on the candidate gene array were
from the IMGSAC population (N¼279). It was of interest that the
strongest association obtained in this cohort was for rs11074601 in
PRKCB1 (P¼0.00596). However, this SNP did not reach our corrected
significance threshold.

Replication of candidate gene association. To replicate the results for
the five SNPs showing the strongest association with ASD in the meta-
analysis, rs2518256 (P¼0.01399), rs2518261 (P¼0.00170), rs362780
(P¼0.00165), rs9925126 (P¼0.01260) and rs11074601 (P¼0.01693)
(Table 1), additional Northern Dutch (N¼188) and IMGSAC families
(N¼276) were genotyped using the Sequenom iPLEX platform. Power
calculation analysis showed that our replication sample should give
sufficient power (478%) to replicate the results of these five SNPs.
However, no significant associations were observed in the individual
replication populations (data not shown) or when combined in the
meta-analysis (Table 1).

A TDT meta-analysis of all available data from the original
candidate gene array and the replication set was performed in a
total of 853 families genotyped (IMGSAC N¼560, Northern Dutch
N¼188, Finnish N¼33, PARIS N¼72). Significant associations
were obtained for rs25185261 (GRIK2 P¼0.008) and rs362780
(RELN P¼0.001) (Table 1). However, although the association
observed for rs362780 increased, it failed to reach the corrected
significance threshold.

DISCUSSION

Although there is considerable evidence for a strong genetic compo-
nent underlying autism susceptibility, there has been slow progress
towards identifying risk loci involved with a large degree of con-
fidence. Studies have struggled to replicate positive results for linkage
regions and individual candidate genes. We have investigated a set of
the most commonly implicated linkage regions and candidate genes
for significance in autism cohorts of European descent.

The six regions of the genome we investigated had previously been
identified by members of our consortium as showing linkage with
autism or ASD. Our results failed to identify loci with LOD scores
reaching the levels required for evidence of linkage. A peak was found
on chromosome 2 fractionally below the Lander and Kruglyak31 cutoff
for suggestive evidence of linkage. This result was obtained only after
the subset of Finnish families, accounting for B8% of our total
available sample, had been removed from the analysis. The increase in
signal from chromosome 2 is encouraging and we take this to
strengthen support for an autism susceptibility locus on this chromo-

some, which has been implicated in a number of previous studies. Our
results localise the peak with LOD Z1.5 distal to the area of the region
genotyped, between SNPs rs2161994 and rs1861896. Although not
directly under the strongest point of linkage, it is interesting to note
that the gene ZNF804A lies in the proximal region of this peak. A SNP
in this gene has recently been found to be strongly associated with
schizophrenia and bipolar disorder.36 Gain-of-copy number CNVs
containing this gene have also been identified in three affected
individuals in a whole-genome study by the AGP,2 and in addition,
a case of autism with a translocation affecting chromosome 2q32.1 has
been reported.37,38 Our parent-of-origin analysis indicated that this
signal is being driven mainly by maternal inheritance. This is in
contrast to a study by Lamb et al,35 which found an approximately
equal contribution of alleles from both parents. In addition, our
results indicate that the linkage observed on chromosome 3 is also
maternal, although the top LOD score (rs4129157, LOD ¼1.78) does
not reach suggestive levels. These results hint at a role for imprinting
at these loci. Imprinting is known to be of importance in ASD, as
shown by a significant number of cases being due to inheritance
of maternal duplications of the 15q11–13 locus, which includes
imprinted genes.39

Association analysis of SNPs in regions of previously reported
linkage was performed in the Finnish and Northern Dutch popula-
tions. The SNPs had been chosen to tag variation within the regions
examined with r 240.8. Therefore, although the SNP coverage was not
dense, it should be sufficient to examine association. Our results
identified two SNPs with associations surviving Bonferroni correction.
The strongest association was with rs756472 on chromosome 16,
a SNP located in the gene MKL2, in the Finnish cohort. To our
knowledge, this SNP has only been investigated once previously
for its role in autism, with no association found.40 A SNP on
chromosome 7, rs1881084, was also found to be associated in the
Northern Dutch cohort. This SNP lies within intron 7 of SND1, a
highly conserved transcriptional coactivator encoding one of the
proteins comprising the RNA-induced silencing complex.41 Interest-
ingly, it has been found that the localisation of E-cadherin changes
from the cell membrane to the cytoplasm of mouse cells with high
levels of snd1 protein.41 CNVs in protocadherin genes PCDH9 42 and
PCDH10 43 have been implicated in autism, in addition to PCDH8 in
schizophrenia.44 Cadherins also mediate cell–cell neural interactions
and may have an important part in neural development.41 Therefore,
SND1 may be a good candidate for further study of its role in autism
development.

Moreover, the presence of the leucine-rich repeat (LRR) gene
LRRC4 (LRR containing 4) within intron 16 of SND1 must also be
noted. Suggestive association was found by Wang et al11 in two LRR

Table 1 TDT results for rs2518256, rs2518261, rs362780, rs9925126 and rs11074601

Finnish/PARIS/ IMGSAC Only

P-value

Replication

Combined data

(N¼853)

Gene Chr SNP Location Position IMGSAC (N¼389) (N¼284) (N¼464) OR LCL UCL P-value

GRIK2 6 rs2518256 Intron 1 102 085 492 0.014 0.137 0.67 1.166 0.944 1.44 0.154

rs2518261 Intron 1 102 088 471 0.002 0.015 0.702 0.779 0.648 0.936 0.008

RELN 7 rs362780 Intron 39 102 977 594 0.002 0.016 0.115 0.554 0.387 0.794 0.001

PRKCB1 16 rs9925126 Intron 3 23945 617 0.013 0.061 0.162 1.081 0.923 1.267 0.334

rs11074601 Intron 5 23961 192 0.017 0.006 0.59 0.932 0.807 1.075 0.331

Chr, chromosome; LCL, lower confidence interval; OR, odds ratio; UCL, upper confidence interval.
SNP positions are given according to dbSNP build 129 (NCBI). Numbers of families genotyped for each analysis are given (N).
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genes, LRRC1 (LRR containing 1) and LRFN5 (LRR and fibronectin
type III domain containing 5), and recent work in our own group has
found association with two further LRR genes, LRRTM3 (LRR
transmembrane neuronal 3) and LRRN3 (LRR neuronal 3), the latter
association also being found in the Northern Dutch cohort. However,
it should be noted that two SNPs located between LRRC4 and
rs1881084 failed to show any association in the Northern Dutch
cohort (rs1419970 P¼0.0506; rs178733 P¼0.713). In addition, no
association with either SND1 or MKL2 was found in the IMGSAC
families. As both Finnish and Dutch cohorts are from relatively
isolated populations, this finding may indicate the importance of
particular genes or variants for autism and ASD susceptibility in
different populations. Alternatively, it may represent differences in
assessment of the various cohorts, or the distribution of particular
phenotypes in their members (Supplementary Table 1).

In keeping with the trend of many such studies on autism, our
candidate gene analysis found no associations that survived Bonferroni
correction in the original set of samples genotyped. Similar to the linkage
analysis, this finding may be due to heterogeneity within our populations.
In addition, it may be that, although the results do not pass strict
correction for multiple testing, they may represent, along with other
studies, individual genes that are a part of the same network contributing
to ASD susceptibility. However, we did identify several interesting
nominal associations that, given the stringency of the Bonferroni method,
were of sufficient interest to warrant further investigation. TDTanalysis of
additional European samples for the five most significant SNPs geno-
typed also failed to find association. However, when a meta-analysis was
performed for the combined set of original and replication samples, two
significant associations were observed, one with rs362780 in RELN and
the other with rs2518261 in GRIK2.

RELN is located in the region of linkage for autism on chromosome
7,14 and has been repeatedly studied as a candidate gene for autism.
Evidence has been published supporting9 and rejecting10 the associa-
tion of RELN with autism (reviewed by Freitag8). Functionally, RELN
is considered as a good candidate gene because of its involvement in
neuronal migration, and mice lacking its expression share regions of
brain alteration with autistic individuals.9 The association of this gene
in our initial and extended populations adds evidence implicating
RELN in ASD.

GRIK2 is also an interesting candidate because of its location in a
region of linkage for autism on 6q21.15 Moreover, glutamatergic neurons
originate in brain regions implicated in autism, and glutamate antago-
nists can cause symptoms similar to those of autism.45 Four studies have
specifically looked for association between GRIK2 and autism, with three
finding positive evidence17,18,46 and one study failing to do so.47

In their recent genome-wide association paper, Wang et al11 report
top associations (Po0.01) for 26 candidate genes. Their reported
SNPs include 10, the closest gene to which is GRIK2, and of these, two
SNPs lie within GRIK2 itself (rs4839797, intron 1, P¼0.003978 and
rs2782908, intron 13, P¼0.005692). Although we did not tag either of
these SNPs in our array, it is of interest that our significant association
with GRIK2 also occurs in intron 1 of the gene. Our findings add to
the cumulative case for a role for this gene in autism susceptibility.

Our data further implicate the chromosome 2 linkage region, as
well as RELN and GRIK2, in autism susceptibility. Despite the
difficulties in confirming these findings, further studies of these loci
are warranted. We have also identified MKL2 and SND1 as potentially
interesting new candidates for further investigation.
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