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A screening methodology based on Random Forests
to improve the detection of gene–gene interactions

Lizzy De Lobel*,1, Pierre Geurts2, Guy Baele3,4, Francesc Castro-Giner5,6,7, Manolis Kogevinas5,6,7 and
Kristel Van Steen8,9

The search for susceptibility loci in gene–gene interactions imposes a methodological and computational challenge for

statisticians because of the large dimensionality inherent to the modelling of gene–gene interactions or epistasis. In an era in

which genome-wide scans have become relatively common, new powerful methods are required to handle the huge amount of

feasible gene–gene interactions and to weed out false positives and negatives from these results. One solution to the

dimensionality problem is to reduce data by preliminary screening of markers to select the best candidates for further analysis.

Ideally, this screening step is statistically independent of the testing phase. Initially developed for small numbers of markers,

the Multifactor Dimensionality Reduction (MDR) method is a nonparametric, model-free data reduction technique to associate

sets of markers with optimal predictive properties to disease. In this study, we examine the power of MDR in larger data sets and

compare it with other approaches that are able to identify gene–gene interactions. Under various interaction models (purely and

not purely epistatic), we use a Random Forest (RF)-based prescreening method, before executing MDR, to improve its

performance. We find that the power of MDR increases when noisy SNPs are first removed, by creating a collection of candidate

markers with RFs. We validate our technique by extensive simulation studies and by application to asthma data from the

European Committee of Respiratory Health Study II.
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INTRODUCTION

In genetic association studies, the goal is to unravel the genetic basis of
certain diseases. For a long time, the focus has been on detecting
associations between single SNPs and disease. However, it has become
clear that research in epistasis reveals information that could not be
obtained by performing single marker analyses.1

Several methods have already been developed to detect gene–gene
interactions; for example, the Multifactor Dimensionality Reduction
method (MDR).2 MDR is a nonparametric data reduction method
that builds prediction models by pooling multilocus genotype groups
into high- and low-risk groups. In this way, it tries to find the
combination of k loci that has the lowest average prediction error.
A permutation test is used to determine whether this combination is
a significant gene–gene interaction.

Detecting gene–gene interactions on data containing a large num-
ber of SNPs is a complex analysis, as one has to deal with difficulties
such as data sparseness and multiple testing. One way of coping with
the number of interactions is to find a prescreening method that
makes a first selection of good candidate markers. The software MDR3

has several measures to make a selection of SNPs. However, when
selection decisions are based on single SNP effects only, prescreening
techniques are unlikely to work well on pure epistasis models. In
contrast, machine-learning techniques may better serve the purpose of

identifying candidate clusters of SNPs for epistasis analysis.2 When
using machine-learning tools as a prescreening method, it is more
interesting to determine which markers have an important role in the
classification model than the classification of subjects itself. ‘Impor-
tance scores’ allow making a selection of informative markers. For
Random Forests (RFs), the Z-score4 of a variable is the deviation of
the prediction error of the RF on the original data from the prediction
error of the RF on the data on which this variable is permuted, divided
by its standard error. On the basis of these scores, a selection of SNPs
that have an important part in predicting the outcome can be made
(eg, disease status). However, a two-stage epistasis analysis will benefit
from a first-stage prescreening technique that exploits mutual infor-
mation provided by several markers at once. The Joint Importance
Scores capture this idea.5 These Importance Scores are constructed in
a manner similar to Z-scores in the sense that now the values of
multiple variables instead of just one variable are permuted and the
importance of several variables is measured instead of one variable. We
refer to Appendix A (Supplementary information) for detailed
information about these importance scores.

In this paper, we construct a prescreening methodology for MDR
on the basis of RF methodology so as to reduce the number of noisy or
less informative SNPs. We denote this method as RFcouple. RFcouple
is compared with other methods: alternative techniques based on RF
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and prescreening based on w2-statistics. The power and type I error
rate of MDR are compared with the power and type I error rate of the
combination of MDR and RFcouple. We study several epistasis
models: models with and without main effects and additive and
nonadditive epistasis models. We also consider data sets of different
sizes. We conclude that the combination of RFcouple and MDR
performs well in most situations and increases the power of MDR
in several of the investigated epistasis models. The method is applied
to data from the European Committee of Respiratory Health Study
(ECRHS) II initiative.

MATERIALS AND METHODS

RFcouple: prescreening based on RF
We propose an alternative to the aforementioned RF-based ways to

select candidate SNPs for further analysis. RFcouple combines information

of multiple SNPs, rather than of a single SNP at the time, and uses a

selection measure as in MDR, in particular the ratio of cases to controls for

each multilocus genotype group. This idea is illustrated for two-way

interactions in Figure 1. In the first step, we consider the full marker data set

and determine all couples of SNPs. In the second step, the ratio of cases to

controls is calculated for each multilocus genotype, for each pair of SNPs.

The third step consists of defining a new variable for each couple of

SNPs, by replacing the observed genotype groups with the corresponding ratio

of cases to controls. In this way, we obtain a transformed data set in

which each variable represents a couple of SNPs rather than a single SNP. An

RF is constructed on these data and we select k newly constructed

variables (i.e., couples of SNPs) by considering Z-scores in a classical RF

framework. After selection of the best couples, the set of SNPs that are

represented by the selected couples is retained. This reduced set of markers is

subsequently subjected to an epistasis analysis technique (MDR). As the

prescreening procedure harbours information on disease status, special

attention needs to be given to keeping the false discovery rate under control

(see further in this section).

The optimal number k of couples of SNPs to be selected in prescreening is

determined by simulations using several epistasis models. The chosen k is a

trade-off between having a large probability of detecting both susceptibility loci

in the prescreening step and reducing the number of SNPs so as to improve

the power of MDR. It is influenced by the underlying epistasis model and the

number of trees in the RF.

The performance of RFcouple is evaluated by comparing it with the

performance of other prescreening methods: (1) RFjoint is an RF-based

selection technique on the original data that selects k couples of SNPs having

the largest Joint Importance Scores. (2) RFz represents an RF-based prescreen-

ing on the original data, by which we select 2k single SNPs that have the largest

Z-Scores. Finally, we also prescreen single SNPs on the basis of w2-statistics

(denoted as w2). For the latter, the top 2k SNPs that have the largest w2-statistics

in the original data set are selected. Note that these test statistics are not

corrected for multiple testing, as we are not interested in the significance of the

associations at this stage.

Using RFcouple in conjunction with MDR (from now on referred to as

RFcouple+MDR) is bound to give rise to inflated type I error rates, as both

prescreening and testing rely on ratios of cases to controls. Related to this type

of dependence is the fact that the type I error rate is affected by the number k

of couples of SNPs that are preselected. To deal with both problems, we

incorporate the prescreening technique, Rfcouple, into the permutation testing

procedures of MDR.2

Simulation study
For every simulation setting, we generate 100 data sets. The simulations only

discuss balanced case–control data sets (data sets containing an equal number

of cases and controls) and biallelic markers. The number of SNPs is set to 10,

100 and 250. For all data sets, we simulate 200 cases and 200 controls. Sample

sizes are chosen to be able to compare the results with earlier published data.6

We maintain the same number of cases and controls for varying amounts of

SNPs to obtain honest power comparisons.

Data sets are simulated according to two types of epistasis models: additive

and nonadditive.

In particular, we consider seven nonadditive epistasis models (Figure 2), of

which the first six models contain no main effects.6 The seventh model

incorporates two loci that have main effects.5 For all these models, two

susceptibility loci are generated according to these scenarios and additional

SNPs are simulated independently according to Hardy–Weinberg equilibrium,

with minor allele frequencies (MAF) randomly generated between 0.05 and 0.5.

We consider the following additive epistasis models (Table 1): model I

represents a model without explicit main effects, model II is a model with one

strong main effect and the same interaction effect as model I, and model III has

the same main and interaction effect as model II, with an extra (weaker) main

effect. Note that for model I, the two susceptibility loci will have some marginal

effects.7 The marginal effect of this model for locus 1, defined as the

heterozygote odds ratio, has a value between 1.2 and 1.7.7

For each simulation based on an additive epistasis model (Table 1), we

construct the genotypes of all loci independently and according to Hardy–

Weinberg Equilibrium. The MAF for all SNPs are randomly generated between

0.1 and 0.33.8 The probability P of disease, conditional on the given genotype

configuration, is determined by the regression models described in Table 1, for

which b0 refers to the prevalence of the baseline population (homozygotes for

the major allele at the two susceptibility loci) and is set to 0.1. The disease status

of the subjects is then drawn from a binomial distribution based on P. For each

of the additive epistatis models, we first choose to generate a large population,

and thereafter to sample balanced case–control data sets from this population.

For the MDR data analysis, we carry out a 1- to 2-loci search with 10 cross-

validation intervals. The threshold of the ratio of cases to controls to determine

high and low risk is set to 1. Cells with a ratio of cases to controls equal to 1 are

assigned ‘low risk’. The random seed is set to 2. A thousand permutations are

run for each application of MDR.

Figure 1 Data transformation before applying RF to select the most interesting candidate SNPs to be used to detect gene–gene interactions associated

with disease.
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In each application of RF, 250 trees are constructed for the forest. As

suggested in the manual of the RF software,4 the number of variables used to

construct node splitting is set to the square root of the number of variables in

the data set.

The type I error rate and power of MDR are compared with the type I error

rate and power of the combined technique (RFcouple+MDR). One thousand

null data sets containing 100 SNPs and 400 subjects are simulated to compute

the type I error rate of RFcouple+MDR. The type I error rate of the

combination of RFcouple and MDR is defined as the percentage of the 1000

null data sets for which MDR assigns a P-value less than 5% to the model that

MDR proposes as the best two-loci model. We define power for both MDR and

RFcouple+MDR as the percentage of the simulated data sets in which MDR

identifies the two susceptibility loci as the best two-loci model and assigns this

two-loci model a P-value less than 5%.

RESULTS

Simulation study
Determining the number of couples to select (k). Figure 3 shows power
results of RFcouple+MDR for the nonadditive epistasis models 4
and 5 (see Figure 2) as a function of k, on the basis of data sets
containing 100 SNPs and 400 subjects. It illustrates that, for model 5,
the number of trees in the RF does not have much influence and that
the largest power for RFcouple+MDR is obtained for k¼1. However,
we also notice that the power decreases a lot when varying k from 1 to
5 and stabilizes for larger values of k. As we are looking for a cutoff
value that works well for different epistasis models, a good rule of
thumb may be k¼5. The power results for RFcouple+MDR for model
4 confirm this choice. On the basis of similar investigations, the
optimal value for k in data sets containing 400 subjects is 1 for data
sets with 10 SNPs; for data sets with 100 and 250 SNPs, the preferred
value for k is, respectively, 5 and 15.

Performance of prescreening techniques. First, we consider the differ-
ent prescreening methods applied to all epistasis models (Table 2). The
measure used to evaluate these techniques is the percentage of
simulated data sets in which both susceptibility loci are in the set of
selected SNPs. In data sets containing 10 SNPs, RFcouple is the best
selection technique for models 1–6 (models representing no main
effects). When main effects are present (model 7, models I–III),
prescreening based on w2-statistics and RF also gives good results. In
reality, RFjoint and screening based on w2-statistics only show good

Table 1 The additive epistatis models

b1 b2 b12

Model I 0 0 log(2)

Model II log(1.5) 0 log(2)

Model III log(1.5) log(0.7) log(2)

Coefficients in the regression model logit(P(Y¼1))Bb0+b1X1+b2X2+b12X1 X2+e with eBN(0,s2).
Y is the disease status and X1 and X2 are the genotypes at the two susceptibility loci.

Figure 3 Determination of the number of couples (k) to select and the

number of trees (ntree) in the random forest for data sets containing 100

SNPs and 400 subjects.

Figure 2 Penetrance functions and allele frequencies of the two susceptibility loci for seven epistasis models used to simulate data.
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results for model 7 and models I to III. As these models contain one
or two main effects, this is also in line with expectations. The adopted
w2-statistics conceptually target main effects, and RFjoint has been
shown to perform well in the presence of main effects.5

As the number of SNPs (k) to preselect is determined so that
RFcouple has a high selection probability, the good performance of
RFcouple in all scenarios is not surprising. In general, although no
single method has optimal performance, RFcouple performs best in
the majority of the considered simulation settings.

We observe in Table 2 that RFcouple has screening probabilities
equal to or higher than the power of MDR to select the two
interacting loci. If this were not the case, the power of MDR in

combination with the prescreening method would be worse than the
power of MDR.

Acknowledging that 10 SNPs are not very informative for the
evaluation of prescreening methods, we increase the number of
SNPs from 10 to 100 and 250. In these larger simulated data sets,
the comparative results are very similar and the conclusion of
RFcouple being an optimal screening method remains. The results
for the selection techniques of the data sets containing 10, 100 and 250
SNPs cannot be compared, because they are conditioned on the
determined cutoff value k.

Power and type I error rate of MDR and RFcouple+MDR. In Table 2,
we also compare the power of MDR with the power of RFcouple+
MDR for the three types of data sets (10, 100 and 250 SNPs). We
conclude that, for most of the models, we achieve at least comparable
power levels by first constructing a subset of interesting SNPs. There
are three models (4, 7 and I) in which we lose some power. The largest
increase in power is observed for models 5 and 6 (power increase
between 4 and 27%).

The type I error rate of RFcouple+MDR based on our simulations
is 3.9%, which is slightly higher than the type I error rate of MDR
(2.9%), but still upper bound by the targeted 5% type I error rate.

Application to the ECRHS II data
The ECRHS is a large European population-based cohort study that
intends to collect information on respiratory symptoms such as
atopy and asthma. The study wants to identify the environmental
and genetic factors that have a role in asthma. In a first phase
(ECRHS I), a short questionnaire is given to a large random sample
of people aged 20–44 years. From this sample, a random subsample is
taken, together with a symptomatic subsample. The latter contains
subjects not selected in the random subsample who reported respira-
tory symptoms in the questionnaire. The second phase (ECRHS II)
consists of the follow-up study for the two subsamples together
(5065 subjects).

In ECRHS II, 105 SNPs are genotyped (see Supplementary
information, Appendix B for a complete list of SNPs), among which
two are of particular interest: TNFA-308 (rs1800629) and LTA+252
(rs909253). These SNPs have previously been shown to be associated
with asthma, but the results are inconsistent.9 Comments on the
actual genotyping techniques used are reported elsewhere.9 A few
covariates are also measured: BMI index, region, sex, age and smoke.

The phenotype that we analyse is asthma_ever (whether the subject
ever had asthma).

To prepare data for the analysis, Hardy–Weinberg equilibrium exact
tests were performed for each SNP in the control population. One
SNP is not in Hardy–Weinberg equilibrium (rs1816702) and is
removed for further analysis. SNPs with MAF less than 0.01 are also
removed (rs1800031 and rs5030839). Continuous covariates (age,
BMI) are categorized on the basis of 33% and 66% quantiles to be
able to apply MDR. Because RF has problems with missing data, we
remove three SNPs (rs1112005, rs11536889 and rs324381) that contain
many (more than 10%) missing values. After removing the three
SNPs, we removed the incomplete subjects and ended up with 2873
subjects (524 cases and 2349 controls).

This data set is imbalanced because the number of cases and
controls differs. The classification models constructed by RF suffer
from imbalanced data. On such data, an RF focuses on the prediction
accuracy of the majority class (the class containing the most subjects)
and neglects the prediction accuracy of the minority class. To over-
come this problem, we construct a balanced data set by taking a

Table 2 Comparison of prescreening methods for all simulated

epistatis models

Model: 1 2 3 4 5 6 7 I II III

10 SNPs�k¼1:

Screening probability

w2 a 2 3 8 8 0 0 100 38 49 12

RFzb 100 100 92 94 82 84 100 25 41 18

RFjointc 0 0 0 0 0 0 95 2 4 3

RFcoupled 100 100 100 99 94 98 82 16 28 19

Power

MDRe 100 100 94 96 55 71 100 5 13 5

RFcouple+MDRf 100 100 97 98 82 89 82 7 22 12

100 SNPs–k¼5:

Screening probability

w2 a 2 4 3 2 0 0 100 35 50 19

RFzb 16 92 12 15 7 8 100 27 45 19

RFjointc 7 23 0 0 0 0 86 16 24 10

RFcoupled 100 100 100 82 48 63 95 21 31 15

Power

MDRe 100 100 84 83 7 12 100 1 6 1

RFcouple+MDRf 100 100 91 79 17 26 95 1 10 1

250 SNPs�k¼15:

Screening probability

w2 a 11 10 6 6 0 0 100 42 58 17

RFzb 7 33 2 7 3 3 100 23 46 6

RFjointc 14 13 0 0 0 0 98 12 23 8

RFcoupled 100 100 92 57 24 43 100 15 29 4

Power

MDRe 100 100 70 71 0 4 100 2 2 0

RFcouple+MDRf 100 100 76 53 7 8 100 1 4 0

Percentage of data sets (of 100) containing 400 subjects, in which both susceptibility loci are
selected when selecting k couples of SNPs or 2k single SNPs, compared with the power of
MDR and RFcouple+MDR.
aw2 : probability (in %) to select both susceptibility loci when selecting the 2k SNPs having the
highest w2-statistics.
bRFz: probability (in %) to select both susceptibility loci when selecting the 2k SNPs having the
highest RF Z-scores.
cRFjoint: probability (in %) to select both susceptibility loci when selecting the k couples of
SNPs having the highest RFjoint importance scores.
dRFcouple: probability (in %) to select both susceptibility loci when selecting the k couples of
SNPs having the highest RF Z-scores after the data transformation (Figure 1).
eMDR: power (in %) of MDR to detect the two interacting susceptibility loci.
fRFcouple+MDR: power (in %) of RFcouple combined with MDR to detect the two interacting
susceptibility loci.
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random sample of 524 controls. We select five couples of SNPs with
the RFcouple procedure and construct 250 trees for each run of the
RFcouple.

When executing MDR on the data without prescreening techniques,
the best one-locus model identified the importance of the geographi-
cal location of the subjects (region) with a reported P-value equal to 0
based on the testing balanced accuracy. The detection of region as the
main effect could be an indication of population stratification.9 When
considering nine extra random samples of 524 controls, it seems that
in all analyses the geographical location seems to be very important.
The same conclusion can be drawn from an RFcouple+MDR analysis.

As we suspect the presence of population stratification, we stratify
all analyses according to region. In the results presented in Table 3, we
notice that, for some of the analyses, different models are selected with
and without prescreening. This suggests that the SNPs in the models
selected without prescreening did not make it through the screening
and may therefore simply represent noise. The results also highlight a
significant two-way interaction model between rs714588 and
rs10496465 for Southern Europe. The SNP rs714588 is located at the
5¢UTR of the neuropeptide-S receptor 1 (NPSR1) gene and the SNP
rs10496465 is located in the dipeptidyl peptidase 10 (DPP10) gene.
The NPSR1 and DPP10 genes were identified by positional cloning as
asthma-related genes.10,11 The biological mechanism of these genes
leading to disease is poorly understood. However, functional and
expression evidence genes suggest that both could be involved in the
same biological pathways, supporting the potential interaction
between the two loci (rs714588 and rs10496465). The two genes are
expressed in immune cells suggesting a role in immunological
response. NPSR1 is upregulated in macrophages after antigen stimula-
tion,12,13 whereas DPP10 may modulate the activity of various proin-
flammatory and regulatory chemokines and cytokines.11,14 However,
both genes are also expressed in neuronal cells, suggesting a potential
effect of this gene on airway smooth muscle constriction by neuronally
mediated mechanisms.14,15 Indeed, DPP10 protein regulates a K+
channel function important for neural regulation of airway smooth
muscle tone.14,16

DISCUSSION

In this paper, we propose a data reduction technology based on RF to
improve the power of MDR. In an era in which methods need to cope
with large data sets (for instance, in terms of the number of SNPs), the
capacity of the corresponding software is of utmost importance. MDR
has been programmed to deal with data sets of 500K SNPs for 4000
subjects, but the power of MDR in this setting is not clear. The
performance of MDR in large-scale studies is evaluated by calculating
the proportion of simulated data sets in which MDR proposes the
underlying epistasis model as the best model.17 As no permutation
tests are run, these percentages overestimate the power of MDR and
cannot be compared with our results. Prescreening the data to narrow

down the number of SNPs in the data set remains an appealing
strategy in this context, as was shown in Table 2.

RFcouple as prescreening tool
Our prescreening technology is based on an RF data reduction and
includes a data transformation to improve the prescreening procedure.
An excessive simulation study to evaluate our prescreening technique
reveals that RFcouple is the only considered prescreening method in
which the selection probabilities exceed the power of MDR in nearly
all inspected models. The only exceptions are epistasis models 4 and
7 (Table 2).

Using a higher cutoff k-value for the RFcouple procedure may
possibly increase the selection probability and may therefore improve
the power of RFcouple+MDR over MDR. However, we recommend to
consider a range of different cutoff values, inspect whether the same
best model is proposed by RFcouple+MDR (if this is not the case, it is
highly unlikely that one of these models will represent a true epistasis
model) and check whether this model is significant for one of the
inspected cutoff values.

Whereas for model 7, increasing k leads to increased selection
probabilities, for model 4, increasing the cutoff value does not give rise
to increased selection probabilities (Figure 3). However, increasing the
number of trees in the RF will. Therefore, it is generally a good idea to
use a sufficiently large number of trees in the forest (depending on the
number of markers in the data). This will also assure more stable
RFcouple results.

Future work
For the purpose of showing the properties of a new screening
methodology, RFcouple (+MDR), we have used small to moderate
sample sizes in the simulation study. At this moment, the available
software cannot handle genome-wide data. Future adaptations to
extend its applicability include (1) using a better RFs algorithm
(eg, Random Jungle18), (2) constructing importance scores that are
based on entropy measures rather than permutation-based measures
and (3) parallelization to limit computation time. Finally, we can
apply methods to restrict the number of permutations.19,20

In conclusion, the take-home message is that no one method is best
for all genetic epistasis scenarios and one should select the method
that best reflects the nature of the data. In practice, the true underlying
epistasis model is generally unknown. Hence, given the overall good
performance of RFcouple+MDR, this method, which uses RFcouple as
a prescreening strategy, may be the preferred first choice when using
MDR to search for genetic interactions.

Software
A Linux version of the MDR software was used for the simulated data
analysis (compiled and benchmarked on PC with a 600 MHz
Pentium-III running Red Hat 2.2.5-15, written in C and compiled

Table 3 Results of the stratified analysis of the ECRHS data according to region: Northern Europe (UK, Norway, Sweden, Australia), Central

Europe (Belgium, Estonia, Germany, Switzerland) and Southern Europe (France, Spain)

Northern Europe Central Europe Southern Europe

One-locusa Two-locib One-locusa Two-locib One-locusa Two-locib

MDR Sex (0.25) Sex rs3756688 (0.58) rs1900758 (0.9) rs714588 rs3850751 (0.72) rs1430090 (0.99) rs714588 rs10496465 (0.45)

RFcouple+MDR Sex (0.35) rs324981 rs1554973 (0.81) rs4271002 (0.8) rs714588 rs3850751 (0.2) rs1898830 (0.86) rs714588 rs10496465 (0.02)

aThe best one-locus model suggested by MDR or RFcouple+MDR and the P-value for this model based on the testing balanced accuracy.
bThe best two-loci model suggested by MDR or RFcouple+MDR and the P-value for this model based on the testing balanced accuracy.
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with the GNU C compiler). RF analyses are performed using Java code
based on the RFs software.4 Software for the combined method
RFcouple+MDR was implemented in C++. Simulations are run on
Intel Xeon X3220 2.4 Ghz processors. Finally, we note that running
RFcouple+MDR on a data set with 100 SNPs and 400 individuals
takes approximately 3 days to finish on an Intel 2.4 Ghz processor.
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