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Co-expression of FBN1 with mesenchyme-specific
genes in mouse cell lines: implications for phenotypic
variability in Marfan syndrome

Kim M Summers*,1, Sobia Raza1, Erik van Nimwegen2, Thomas C Freeman1 and David A Hume1

Mutations in the human FBN1 gene cause Marfan syndrome, a complex disease affecting connective tissues but with a highly

variable phenotype. To identify genes that might participate in epistatic interactions with FBN1, and could therefore explain the

observed phenotypic variability, we have looked for genes that are co-expressed with Fbn1 in the mouse. Microarray expression

data derived from a range of primary mouse cells and cell lines were analysed using the network analysis tool BioLayout

Express3D. A cluster of 205 genes, including Fbn1, were selectively expressed by mouse cell lines of different mesenchymal

lineages and by mouse primary mesenchymal cells (preadipocytes, myoblasts, fibroblasts, osteoblasts). Promoter analysis of this

gene set identified several candidate transcriptional regulators. Genes within this co-expressed cluster are candidate genetic

modifiers for Marfan syndrome and for other connective tissue diseases.
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INTRODUCTION

Marfan syndrome (OMIM 154700) is an autosomal dominant con-
dition that affects connective tissue.1–4 Individuals show overgrowth
of the long bones, lack of adipose and muscle tissue, and abnormalities
of the eyes and skin. The major cause of morbidity and mortality is
dilatation and dissection of the ascending aorta. Marfan syndrome is
usually associated with mutations in the FBN1 gene (OMIM 134797),
encoding the microfibrillar protein, fibrillin-1.2,5,6 A bovine Marfan-
like syndrome (OMIA 1204) is also due to a mutation in FBN1.
Homozygous mice that lack a functional Fbn1 gene have some
manifestations similar to Marfan syndrome in humans, although the
heterozygous phenotype is mild.5 In addition, a transgenic mouse line
carrying a mutation known to cause severe disease in humans has
a dose-dependent phenotype showing aspects of Marfan syndrome.7

A homozygous lethal natural mutation involving duplication of exons
17–40 of the mouse Fbn1 gene8 causes the tight skin (Tsk) phenotype
in which heterozygotes have abnormalities of skin, viscera, lungs,
cartilage, bone, heart and tendons,9 with some characteristics of
Marfan syndrome such as overgrowth of long bones.

The tissues primarily affected by FBN1 mutation (including bone,
aorta and pulmonary artery, mitral valve, zonullar fibres of the eye,
dura mater, skin and adipose) contain cells of mesenchymal origin,
which synthesize connective tissue extracellular matrix (ECM), com-
posed of fibrous proteins and glycosaminoglycans. The ECM provides
strength and elasticity for these tissues. Fibrillin-1 is the major
structural component of the extracellular microfibrils of the ECM10

and also seems to be involved in sequestering the growth factor TGFb
in inactive form.5,11,12 In adults, mesenchymal cells derive from stem
cells residing in the bone marrow and mesenchymal tissues.13,14 These
stem cells retain the ability to differentiate into cells of connective

tissue lineages, including adipocytes, osteoblasts, chondrocytes,
smooth and skeletal muscle, endothelial cells of blood vessels and
fibroblasts (reviewed in Barry and Murphy14). Differentiation of
mesenchymal cells into specific cell types requires induction of a
range of transcription factors14 and may also involve interaction with
cells of monocyte origin.15 During organogenesis, mesenchymal cells
can also undergo transition to epithelial phenotype (mesenchymal–
epithelial transition), with concomitant inhibition of mesenchyme-
specific genes and activation of genes required to form intercellular
adhesions characteristic of epithelium. The transition between the two
states is regulated by a number of cellular factors, especially TGFb
family members.16,17 The actions of TGFb on mesenchymal cells are
mediated through transcription factors such as SNAIL and SLUG
(encoded by SNAI1 and SNAI2 genes),18 and result in expression
of mesenchymal genes and suppression of the epithelial marker
E-cadherin.

The phenotype of Marfan syndrome is extremely variable, even
among family members carrying the same mutation (see refs.4,19,20).
Potential modifier genes for Marfan syndrome are likely to be found in
the network of genes that are co-expressed in tissues affected by FBN1
mutation. Such genes would also be strong candidates for a role in
diseases with related phenotypes. In this article, we identify and
analyse genes that are stringently co-regulated with FBN1.

MATERIALS AND METHODS

Identification and annotation of an FBN1-associated cluster
of genes
The analysis was performed on publicly available gene expression data

(to which we contributed) generated from 44 mouse cell types and 2 mouse

organs15,21 (Supplementary Table S1) using the Affymetrix MOE430_2
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GeneChip and normalized using MAS5 (Affymetrix, Santa Clara, CA, USA).

The data were accessed through GEO DataSets (accession number GSE10246).

Correlation networks were constructed from the data on the basis of pairwise

Pearson’s correlation relationships. A network graph comprising 8578 nodes

(probes) and 153 418 edges was generated using BioLayout Express3D.22 The

resulting graph was then clustered using the Markov Clustering algorithm at an

MCL inflation value of 1.7.23 Clustering was also performed on expression data

from mouse tissues.24 Because the initial data did not include chondrocytes,

which are likely to be involved in the skeletal phenotype of Marfan syndrome,

the expression of cluster genes was also examined in data from a published

study of chondrocyte differentiation (cultured limb bud mesenchymal cells;

GEO Profiles accession no. GDS1865).25 In addition, we considered data sets

from developing mouse kidney (E12.5; GEO Profiles accession no. GDS1583)26

and from developing mouse gastrointestinal tract (E18.5; GEO Profiles

accession no. GDS2699).27

Location and function of cluster genes
Genes in the cluster of interest were assessed for recognized homologies, cellular

localization and function using publicly available databases (Ensembl, NCBI).

Possible or verified involvement in disease was determined by searching the

Online Mendelian Inheritance in Man (OMIM) and Online Mendelian

Inheritance in Animals (OMIA) databases on the NCBI website.

Determination of functional transcription factor binding sites in
promoter regions of Fbn1-associated cluster genes
The Affymetrix MOE430_2 probe set was mapped to mouse RefSeq genes and

the beginning of RefSeq was taken as a predicted transcription start site.

Bioinformatic analysis of motif activity and motif target predictions were

performed as described previously.28 All genes represented on the microarray,

which had been allocated a RefSeq (12752 in total), were classified as being

either among the 205 genes of the Fbn1-associated cluster or not within the set.

The proportion of genes with a z(p, m) score of greater than 1 for each

transcription factor binding motif m was calculated for the two groups and a

z-value for this difference was determined. This provides a measure of

overrepresentation of predicted targets of the transcription factor in the

mesenchymal cluster relative to other genes.

RESULTS

Identification and annotation of Fbn1-associated genes in
proliferating cells
To identify genes that were strictly co-regulated with mouse Fbn1 in a
cell-autonomous manner, we focused on a large data set derived from
primary mouse cells, including primary calvarial osteoblasts under-
going differentiation and a range of haemopoietic cell types (see
Supplementary Table S1), produced as described previously.15 BioLayout
Express3D analysis of the cell line data generated 480 clusters containing
at least five nodes on the basis of their connectivity within the
co-expression network graph. The third largest cluster contained
304 transcripts, including two probes for Fbn1 (1425896_a_at and
1460208_at) (Figure 1a and b). In total, 205 different genes were
represented by the 304 probe sets. The full list of genes represented in
this cluster is available in Supplementary Material (Supplementary
Table S2). This cluster was enriched for genes associated with the
ECM. Fbn1 was a central gene in the cluster (Figure 1b), which was
termed the Fbn1-associated cluster. The two Fbn1 probes were correlated
(at rZ0.90) with 241 and 229 probes. Figure 1c shows the averaged
expression in 23 cell types of the 304 probes of the cluster. Cells with a
high expression of genes in this cluster included mesenchymal cell types
such as preadipocytes, myoblasts, fibroblasts and osteoblasts. Fbn1 had a
high expression in mesenchymal cells and minimal expression in other
cell types (Figure 1d). Two other probes for Fbn1 (1438870_at and
1458593_at) did not cluster with this set of genes. This is probably
because the latter two probes detected sequences with a very low

expression and high variability (see expression profiles on BioGPS).
Both mapped to intronic sequences (Affymetrix website) that have a low
frequency of transcript initiation, indicating that these probes may
detect rare variant Fbn1 transcripts that do not show clustering with
the major Fbn1 probe sets. Probes for the other mouse fibrillin
gene, Fbn2, which has overlapping functions with Fbn1,29 did not
cluster with Fbn1 in this data set. Fbn2 showed expression only in
osteoblasts and C3H 10T1/2 cells, and is therefore likely to function
more specifically in bone.

Fbn1-associated cluster genes in other data sets
The cell lines assessed in the initial analysis did not include all
mesenchymal cell types that would be found within tissues, nor all
states of mesenchymal differentiation. To identify a subset of genes
that were robustly expressed in mesenchymal tissues rather than cell
lines, we clustered expression patterns across tissues in the publicly
available GNF1M data set of gene expression in mouse tissues.24 Gene
expression showed more diversity across these tissues and there was
substantially greater noise in this data set, as evidenced by smaller
clusters and overall lower correlation coefficients. Hence, a lower
correlation level (at rZ0.75) was required to detect associations.
A total of 119 genes clustered with Fbn1 in this analysis (Supple-
mentary Table S3). Of these, 24 overlapped with the cluster derived
from proliferating cells (indicated in Supplementary Table S3). Classic
ECM genes such as Eln, Fbln2, Mfap4, Mfap5 and Fbn2 also clustered
with Fbn1 in this analysis of expression in tissues.

One major mesenchyme-derived cell type excluded from the cellular
data was the chondrocyte. We therefore examined a published study of
the differentiation of primary chondrocytes derived from embryonic
footpads.25 Results for 235 of the 304 probes were available, represent-
ing 160 different genes. In all, 81% of these genes, including Fbn1,
were in the highest 25% of expression at most or all time points,
extending the view that these genes are co-expressed by proliferating
mesenchyme, regardless of lineage.

As noted above, mesenchyme–epithelial transition is a key event
in organogenesis. The transition has been analysed separately in
developing mouse kidney26 and gastrointestinal tract.27 Fbn1 expres-
sion was strongly associated with mesenchyme in these data sets.
Fbn1-associated cluster genes such as Bgn (biglycan), Cald1 (caldesmon 1),
Col1a2 (collagen type 1-a 2 subunit), Il6st (interleukin-6 signal
transducer), Ror1 (receptor tyrosine kinase-like orphan receptor 1),
Sparc (osteonectin; secreted protein, acidic, cysteine rich) and Timp 2
(tissue inhibitor of metalloproteinases 2) showed a similar pattern of
expression to Fbn1 in both the data sets, whereas others were profile
neighbours of Fbn1 in one or the other data set (not shown).

Cellular location and function of Fbn1-associated cluster genes
As summarized in Table 1, 171 members of the Fbn1-associated cluster
could be assigned a cellular location on the basis of experimental
evidence or electronic annotation. The majority were extracellular but
a substantial number were involved in secretion. For example, 10% of
the annotated genes encoded proteins of the endoplasmic reticulum
(including trafficking proteins and molecular chaperones), indicating
a surprising level of target specificity for these processing proteins.
Table 1 also shows that 181 genes could be assigned a function
(Table 1). The largest group (25%) was a broad category of proteins
involved in regulating cell size and number. A total of 10% were
involved in ECM structure. There were 17 (9.4%) genes encoding
known or putative transcription factors, including some families
(SLUG/SNAIL, TWIST, PRRX, NFAT, ID, SOX) known to regulate
mesenchyme differentiation or function. There were nine genes for
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Figure 1 Characteristics of the Fbn1-associated expression cluster. (a) A three-dimensional image of the Fbn1-associated cluster (nodes shown by black

spheres, edges by grey lines) within the network. Other clusters are shown by edges only. (b) A two-dimensional image of the Fbn1-associated cluster with

the two Fbn1 probe sets shown as black spheres. (c) Normalized expression of genes in representative cell types, averaged across all probes in the cluster.

The means of two experiments performed in triplicate are shown. (d) Expression of two Fbn1 probes, 1460208_at (black) and 1425896_a_at (grey). The

means of two experiments performed in triplicate are shown for each probe. Data are available at GEO DataSets (accession number GSE10246).
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G-protein-coupled receptors and five for receptor tyrosine kinases.
Most of the receptors had unknown ligands. Four genes had no
informative annotation, with no similarity to known genes or assign-
able function or location.

The role of genes of the Fbn1-associated cluster in disease was
examined by assessing entries in OMIM. Of 168 genes with an entry,
60 were associated with a phenotype in mouse (41) or human (29)
(Supplementary Table S4). Of these, bones, skin, eyes and blood
vessels were most frequently affected in humans, and bones, blood
vessels and lung were most frequently noted for mouse. Eight mouse
knockout models resulted in embryonic lethality. The results are
consistent with a critical role for these genes in the development of
the ECM.

Determination of common functional transcription factor binding
sites in promoter regions of Fbn1-associated cluster genes
To assess the basis for their apparent co-regulation, we subjected the
205 genes of the Fbn1-associated cluster to an analysis of transcription
factor binding sites.28 Table 2 lists the 15 transcription factors that had
the highest positive correlations with the expression pattern of cluster
genes. Comparison was also carried out between genes within the
cluster and the remaining genes of the data set. Supplementary Table
S5 shows the 65 transcription factor binding motifs that showed
significant overrepresentation in the cluster genes. Seven transcription
factor binding motifs showed a high correlation between activity and
expression of the cluster genes and were consistently overrepresented
in cluster gene promoters. The motifs were consensus sequences for
binding proteins of the TEAD, RP58, MAZ, KLF4, IK1/IK2, BLIMP1
and CIZ families (Table 2). No Fbn1-associated cluster gene was
significantly (Z42) associated with activity of all seven of these
motifs, and Fbn1 alone was associated with six. Five of the genes
were significantly associated with activity of five of these motifs and
fifteen were associated with four.

Identification of genes highly correlated with Fbn1
When the initial clustering analysis using cell line data was repeated at
a higher stringency of rZ0.95, 46 probes (31 genes) were found to be
in the same cluster as Fbn1 (Supplementary Table S6). Twelve of these
genes were annotated as being located in the ECM, extracellular region
or extracellular space. There were five recognized transcription factors
and seven receptors. Eight of these genes had no or limited
annotation, including a TGFb-induced transcript (Tgfb1i1), a steroid-
sensitive coiled-coil domain protein (Ccdc80) and a transmembrane
protein (Tmem45a).

As noted above, in this study Fbn1 expression showed strong
association (Z46.5) with the activity of six of the seven transcription
factor motifs identified as having high activity in the cluster (for TEAD,
RP58, MAZ, KLF4, BLIMP1 and CIZ family members; Table 2). Three
genes (Loxl3, Nfatc4 and Atoh8) were associated with activity of five of
the six motifs in common with Fbn1 and 11 were associated with four
of the six motifs in common with Fbn1 (Nuak1, Col1a2, Col3a1, Gas1,
Serpinh1, Cdh11, Thbs2, Tpm1, Pcdh18, Boc, Grp23). In addition, Fbn1
expression was significantly associated (Z44) with a number of other
motifs found to be overrepresented in the cluster. These included
binding motifs for AP-4, MAZR, Broad Complex and SP1-gershenzon
(Table 2). Five genes (Gas1, Capn6, Atoh8, Col1a2 and Snai2) were
associated (Z42) with 10–15 of the same factors as Fbn1.

DISCUSSION

This analysis of gene expression data revealed that the mouse Fbn1
gene was in a cluster of 205 genes representing a lineage-independent
expression signature for mesenchymal cells. Transcription factors
binding TEAD, CIZ, RP58, KLF4, MAZ, BLIMP1 and IK1/IK2 sites
are candidate regulators of this Fbn1-associated cluster. Several of
these have known roles in mesenchymal cell types. MAZ (myc-
associated zinc-finger protein) has been shown to regulate muscle-
specific gene expression.30 RP58 has an essential role in skeletal
myogenesis,31 and BLIMP1 is involved in myocyte differentiation.32

CIZ is implicated in regulation of bone mass biology.33 TEAD2 and
TEAD4, although not previously implicated in mesenchyme biology,
had a similar expression pattern to the genes of the Fbn1 cluster. KLF
family members and IK1/IK2 are associated with transcriptional
repression in haemopoietic cells, and their function may be to prevent
ectopic expression of the Fbn1-associated cluster genes in non-
mesenchymal cells. Fbn1 was associated with six of these seven
transcription factor motifs, the only gene with this level of association.
The Fbn1-associated cluster itself includes genes for a number of
transcriptional regulators that are known to be involved in epithelial–
mesenchyme transition, including the Snai1, Snai2, Prrx 1, Prrx2 and
Twist1 genes. Our recent analysis34 detected motifs for PRRX family
members in the Fbn1 proximal promoter region.

The study is limited by a number of factors. The published data
were from cells of a single mouse strain, and it would be interesting to
use a different strain, especially as there is considerable between-strain
variability in gene expression (see Wells et al35 and mouse e-QTL data
on BioGPS); we would predict that the same genes would continue to
cluster on the basis of expression pattern, even though those patterns
might vary with different strains. Many members of this Fbn1 cluster

Table 1 Cellular location and function of genes in the Fbn1-associated gene cluster

Localization Number Percent Function Number Percent

Extracellular 60 33.9 Control of cell proliferation 45 25.0

Transmembrane 46 26.0 Enzymes 29 16.1

Endoplasmic reticulum 17 9.6 ECM structure 18 10.0

Nuclear 22 12.4 Transcription factors 17 9.4

Cytoskeleton 20 11.3 Cell adherence 14 7.8

Mitochondrial 1 0.6 Cytoskeleton structure 14 7.8

Unspecified intracellular 11 6.2 G-protein receptors 9 5.0

Receptor tyrosine kinases 5 2.8

Total 177 Other receptors 3 1.7

Other assigned functions 26 14.4

Total 180
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(including BGN, key collagen genes, SERPINH1 and the transcription
factor genes SNAI2, PRRX1 and TWIST1) were also co-expressed with
FBN1 in human tumours and tissues (TC Freeman and TN Doig,
unpublished results), as were several minimally annotated genes such
as CD248, FKBP9, LRRC17 and TGFB1I1. We did not assess all cell
types that are abnormal in Marfan syndrome. For example, the main

morbidity comes from dissection of the aorta, and there were no
aortic cells in the study, nor were there cells from the anterior segment
of the eye or from dura mater. If these cell types were included, some
of the genes would drop out of the cluster and those that remained
would represent tightly co-regulated genes that are powerful candi-
dates for a role in modulating the Marfan syndrome phenotype.

Table 2 Transcription factor motifs showing the highest correlations of activity with expression of Fbn1-associated cluster genes and with Fbn1

Transcription

factor motif ID Transcription factor family a Function b

Correlation between

motif activity and

expression of cluster genes c

Correlation between

motif activity

and Fbn1 expression d

MA0090 TEA domain (TEAD)/transcription

enhancer factor (TEF)

Transcriptional activators, interact with vestigial

homologues including Vgll342,43

20.01 10.53

M00532 58 kDa repressor protein (RP58)/

zinc-finger protein 238 (ZNF238)

Neuronal transcription repressor44 18.95 14.18

MO0649 MYC-associated zinc-finger

protein (MAZ)

Regulation of inflammation-responsive and

muscle genes; regulates initiation and

termination of transcription30,45

16.96 11.57

M00483 ATF6 13.54 NS

MA0039 KLF4 Cell-cycle check-point regulator; transcriptional

repressor46

12.31 9.22

MA0083 SRF 11.24 NS

M00086

M00087
IK-1/IK-2/ZNFN1A Chromatin remodelling47,48 10.08 NS

MA0005 Agamous 9.50 NS

M00243

M00244

M00245

M00246

EGR-1/NGFI-C/EGR-3/EGR-2 9.21 NS

M00734 CIZ/ZNF384 Nucleocytoplasmic shuttling; suppresses bone

formation33,49

8.99 6.66

M00133 TST-1/POU3F 8.98 NS

MA0116 ROAZ/ZNF423 8.81 NS

M00639 HNF-6/ONECUT2 8.27 NS

M01066 BLIMP1/PRDM1 Regulation of B and T cell and myocyte

differentiation, transcriptional repressor32,50

8.16 6.77

SP1_gershenzon SP1/Gershenzon 7.92 5.37

M00033 p300 7.45 5.61

M00005 AP-4 7.01 6.40

MA0013 Broad Complex 4 6.50 4.99

M00451 NKX3A 6.12 5.80

MA0029 EVI1 6.06 4.90

Homeobox_class:

Homeo MF0010

5.77 4.30

MA0089 TCF11_MAFC/NFE211 5.55 3.87

M00706 TFII-1 5.50 4.41

M00432 TTF1 4.64 4.29

M00491 MAZR 4.57 4.38

nanog_mm8 NANOG 4.45 4.26

octsox_dimer_mm8 3.65 2.59

sox2_human SOX2 3.12 3.32

M00935

M00302
NF-AT 2.31 3.08

M00456 FAC1 2.20 2.27

M00418 TGIF NS 2.20

NS, not significant (zo2).
aTranscription factors or families known to bind to the consensus motif used in the search.
bFunction given for the seven closely associated transcription factor families.
cz-value for the correlation between the activity profile for the motif and the average expression profile for the cluster.
dz-value for the correlation between the activity profile for the motif and the expression profile of Fbn1.

i

i

3
75
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The rationale behind our analysis is that genes that are co-expressed
with Fbn1 are candidate modifiers of the effects of FBN1 mutation in
humans and may contribute to other diseases of connective tissue with
similar phenotypes. In spite of the limitations, several examples validate
this rationale. For instance, a strong association of Fbn1 with the Lox
and Bgn genes was noted. Biglycan protein (encoded by Bgn) has been
reported to stimulate synthesis of fibrillin-1 in pressure-induced renal
injury and may have a more general role in assembly of connective
tissue.36 No disease has been associated with BGN mutation in humans
but Bgn-deficient mice have a skeletal phenotype.37 Lysyl oxidase
(Lox gene) may be important in overall assembly of elastic microfibrils
(reviewed in Wagenseil and Mecham38) and may be involved in
preparing tumour cells for metastasis.39 The human homologue of
another of the cluster genes, SERPINH1, was recently implicated in a
recessive form of osteogenesis imperfecta, a bone disease.40 Others
within the cluster are not well characterized. They include novel
transcription factors, G-protein-coupled receptors, nuclear receptors
and receptor tyrosine kinases that are clearly potential drug targets and
may be important in cell signalling during differentiation of mesen-
chymal cell types. A group of novel genes encoding hypothetical
proteins was also present. The functions of these genes can now be
inferred from their co-expression in the cluster,41 and they clearly
warrant a detailed characterization in cells of mesenchymal lineage,
and also consideration as modifiers of the Marfan phenotype or as
candidate genes in human connective tissue diseases.
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