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Abstract
Propagation-based X-ray phase-contrast tomography (PCT) seeks to reconstruct information
regarding the complex-valued refractive index distribution of an object. In many applications, a
boundary-enhanced image is sought that reveals the locations of discontinuities in the real-valued
component of the refractive index distribution. We investigate two iterative algorithms for few-view
image reconstruction in boundary-enhanced PCT that exploit the fact that a boundary-enhanced PCT
image, or its gradient, is often sparse. In order to exploit object sparseness, the reconstruction
algorithms seek to minimize the ℓ1-norm or TV-norm of the image, subject to data consistency
constraints. We demonstrate that the algorithms can reconstruct accurate boundary-enhanced images
from highly incomplete few-view projection data.

1. Introduction
X-ray phase-contrast tomography (PCT) methods [1–6] seek to reconstruct three-dimensional
(3D) images that depict object features possessing little or no X-ray absorption-contrast. In
boundary-enhanced PCT [2,7–9], information regarding the locations of boundaries in the
refractive index distribution is sought, rather than an accurate estimate of the refractive index
distribution itself [10,11]. Such boundary-enhanced images can, for example, facilitate the
delineation of soft tissue structures in biomedical applications or material flaws in
nondestructive testing applications.

It has been demonstrated that image reconstruction in boundary-enhanced PCT can be achieved
by use of the parallel-beam filtered backprojection (FBP) algorithm [2,7,8] or other analytic
reconstruction algorithms [12,13]. In order to avoid image artifacts when employing these
algorithms, tomographic measurements must be typically be acquired at a large number of
view angles [14]. This is highly undesirable because it can yield long data-acquisition times
and also may damage the sample due to the large radiation exposure. For these reasons, there
remains an important need to develop reconstruction algorithms that can reconstruct accurate
boundary-enhanced images in PCT from knowledge of measurement data acquired at a reduced
number of tomographic view angles, i.e., few-view measurement data. A natural and effective
way to accomplish this is to develop iterative image reconstruction algorithms that exploit a
priori information regarding commonly possessed characteristics of boundary-enhanced
images.

In this work, we investigate two iterative algorithms for few-view image reconstruction in
boundary-enhanced PCT. The image reconstruction algorithms are inspired by the emerging
field of compressive sensing [15], and are based on the premise that a boundary-enhanced PCT
image, or the gradient of the image, is often sparse. By ‘sparse’, we mean that the discrete
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representation of the image possesses a relatively small number of non-zero voxels or other
elements that are used to mathematically represent the image. In order to exploit object
sparseness, the reconstruction algorithms seek to minimize the ℓ1-norm or TV-norm of the
image, subject to data consistency constraints. Both algorithms employ a thresholding
procedure to promote sparse solutions. We demonstrate that the algorithms can reconstruct
accurate boundary-enhanced images from highly incomplete few-view projection data. The
proposed algorithms are also demonstrated to produce significantly weaker image artifacts than
those produced by a conventional iterative image reconstruction algorithm.

2. Background: Imaging model for boundary-enhanced PCT
2.1. Imaging geometry and data function

We will utilize the parallel-beam tomographic scanning geometry depicted in Fig. 1. However,
the results that follow can readily be adapted to the case of spherical wave illumination in the
paraxial limit [16,17], i.e., a cone-beam geometry with a small cone-angle. The z-axis of the
reference coordinate system (x,y,z) defines the axis of rotation of the tomographic scanning.
The rotated coordinate system (xr, yr, z) is related to the reference system by xr = x cosφ+ y
sinφ, yr = y cosφ−x sinφ, where the tomographic view angle φ is measured from the positive
x-axis. A weak phase-amplitude object positioned at the origin is irradiated by a plane-wave
Ui(xr, z, φ) with wavelength λ, or equivalently wavenumber , which propagates in the
direction of the positive yr-axis. The intensity of the transmitted wavefield is measured in the
(xr, z) plane located at yr = d, and will be denoted by I(xr, z, φ). Unless a phase-object is
considered, an additional intensity measurement I0(xr, z, φ) on the contact plane yr = 0 will
also be acquired. A tomographic data set is obtained by measuring a collection of such intensity
measurements for φ ∈ [0,π).

Let δ(x,y,z) ≡ n(x,y,z) − 1 denote the object function, where n(x,y,z) is the object’s real-valued
refractive index distribution n(x,y,z). We will employ the notation δ(r2; z) ≡ δ(x,y,z), where
r2 = (x,y), as a convenient description of a transverse slice (of constant z) of the 3D object
function. For a sufficiently small object-to-detector distance d and a weakly absorbing object
[16], the data function

(1)

satisfies the imaging model

(2)

where R denotes the 2D Radon transform acting on a plane of constant z of and δ(r2; z) and

. We consider that both I(xr, z, φ) and I0(xr, z, φ) are measured, and therefore g
(xr, z φ) can be regarded as a known quantity. By use of the commutativity of the Radon and
Laplace transforms [18], it can be verified that

(3)
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where ∇2 is the 3D Laplacian operator. Equation (3) represents the imaging model for
boundary-enhanced PCT in its continuous form. The image reconstruction task in boundary-
enhanced PCT is to determine an estimate of ∇2δ(r2; z) from knowledge of g(xr, z, φ). When
g(xr, z, φ) is measured at a large number of view angles φ, this can readily be accomplished,
for example, by use of the 2D parallel-beam FBP algorithm [2, 7, 8]. However, in the case of
few-view measurement data, analytic reconstruction methods are known to be ineffective and
the use of iterative methods is warranted.

Note that the right-hand side of Eq. (3) corresponds to a stack of 2D Radon transforms of ∇2δ
(r2; z) along the z-axis and the coordinate z can be interpreted as a parameter that specifies a
transverse slice. This reflects that the 3D imaging model can be described by a collection of
2D ones.

2.2. Discrete form of imaging model
When a digital detector is employed, the measured intensity data correspond to an ordered
collection of numbers rather than a function of a continuous variable. We will denote the
discrete data function as

(4)

where r and s are integer-valued detector-element indices and t is the tomographic view index.
Here,  denotes the detector-element dimension in a square detector array of dimension
L × L, and N denotes the number of samples measured in each dimension. The quantity Δθ
denotes the angular sampling interval between the uniformly distributed view angles. The
reconstruction algorithms described below can be applied in the case of non-uniformly sampled
measurement data as well. Although not indicated in Eq. (4), the measured discrete data will
also be degraded by the averaging effects of the sampling aperture.

Because the reconstruction problem is inherently 2D, we will consider the problem of
reconstructing a transverse slice of the object function located at z = snΔd, which corresponds
to the position of a detector row indexed by s = sn. Let the vector g ∈ ℝM1 denote a
lexicographically ordered representation of g[r, sn, k]. The dimension M1 is defined by the
product of the number of detector row elements and the number of view angles.

Because we will be focusing on iterative reconstruction algorithms, we will also require a
discrete representation of the object. An M2-dimensional approximate representation of ∇2δ
(r2; z = snΔd) can be described as

(5)

where, without loss of generality,  is assumed to be an integer. In Eq. (5), the expansion
coefficients bz[l,m] represent the discrete image values and {Ψl,m(r2)|l = 1,··· M2/2,m =
1,···M2/2} represent a collection of expansion functions. As discussed in Section 3.1, in this
work we will adopt conventional image pixels as the choice for Ψl,m(r2) and bz[l,m] will
represent the L2 inner product of Ψl,m(r2) and ∇2δ(r2; z = snΔd). However, it should be noted
that other sets of expansion functions [19] could be employed to form a finite-dimensional
approximate object representation. The accuracy of the reconstructed tomographic image will
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generally depend, in a complicated and object-dependent manner, on the choice of expansion
functions and reconstruction algorithm [20].

Let b ∈ ℝM2 denote a lexicographically ordered representation of the discrete image bz[l,m].
The system of linear algebraic equations that represent the discrete imaging model can be
expressed as

(6)

where the M1 × M2 system matrix R̂ is a discrete representation of the 2D Radon transform
operator R [21]. In practice, R̂ can and should be modified to account for the spatial resolution
characteristics of the imaging system and/or other physical factors that are well-characterized.

3. Few-view boundary-enhanced image reconstruction in PCT
The reconstruction task we consider is to determine an estimate of the boundary-enhanced
image b from knowledge of few-view measurement data g. Because in this situation Eq. (6) is
typically underdetermined, conventional reconstruction algorithms can produce significant
image artifacts. To circumvent this, we will exploit the fact that b or its gradient can often be
sparse. The problem of determining sparse solutions to underdetermined linear systems of
equations has received much attention in recent years, in large part due to the emerging field
of compressive sensing and related signal processing applications [15,22–26]. Inspired by these
works, we have investigated the image reconstruction approaches described below.

3.1. Object sparseness in boundary-enhanced PCT
A vector b is said to be sparse if it contains a relatively small number of non-zero elements.
Sparseness has been exploited to effectively regularize the ill-conditioned or singular nature
of certain classes of discrete linear inverse problems [27,28]. In our study of boundary-
enhanced PCT, sparsity will be exploited in two different ways.

In many cases, the boundary-enhanced image ∇2δ(r2; z) will be naturally sparse; i.e., the
number of non-zero terms in Eq. (5) will be much less than M2. For example, when δ(r2; z) is
piecewise constant and pixels are employed as the expansion functions, the non-zero terms in
Eq. (5) correspond to locations of boundaries in δ(r2; z), while the expansion functions that
correspond to uniform regions will be weighted by a zero value of bz[l,m]. As demonstrated
below, by reconstructing an estimate of ∇2δ(r2; z) that is sparse, image artifacts due to data
incompleteness can be effectively mitigated. This reconstruction strategy is mathematically
formulated in Section 3.2.

It is interesting to note that, in many applications of image processing, a Laplacian operator is
explicitly applied to an image in order to establish a sparse image representation [29], which
can facilitate the solution of an inverse problem. However, in boundary-enhanced PCT, we
observe that the Laplacian operator is implicitly administered by the wave propagation physics.
Accordingly, a sparse object representation is automatically embodied by the imaging model
as described by Eqs. (3) or (6).

Alternatively, data incompleteness can be mitigated by exploiting the sparseness of the gradient
of an object rather than the object itself [15,30,31]. If an object is sparse, its gradient image
will also be sparse. However, the converse is not necessarily true. As demonstrated below, by
reconstructing an estimate of ∇2δ(r2; z) that possesses a sparse gradient, noise in the
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measurement data can be effectively mitigated. This reconstruction strategy is mathematically
formulated in Section 3.3.

3.2. Constrained, ℓ0-norm minimization
A sparse estimate of b can be obtained by solving the following optimization problem:

(7)

where bℓ0 represents the reconstructed image estimate,  denotes the
ℓ0-norm of b = (b1, b2, ···, bM), and the data error tolerance ε is a parameter of the optimization
problem that needs to be specified. The optimization problem in Eq. (7) yields the image
estimate with minimum ℓ0-norm constrained such that its projection data are within a given
ℓ2-distance ε of the measured projection data. As the ℓ0-norm presents a formidable
computational challenge, a fruitful strategy has been to relax this norm to ℓ1 minimization
[15,22], or to relax to the non-convex ℓp-norm with p < 1 [32].

For this work, we aim at solving Eq. (7) through a strategy similar to the iterative-hard-
thresholding (IHT) algorithm by Blumensath and Davies [33], where the sparsity of the image
b is fixed to s, the number of non-zero pixels. Consider the optimization problem:

(8)

which finds the s-sparse image that minimizes the data error. Clearly, the data residual ε(s) =
|R̂bs − g| will depend on s. When s is smaller than the actual number of non-zero pixels, then
ε(s) ≫ 0. As s increases ε(s) will decrease, eventually leveling off at a minimum value permitted
by inherent inconsistency in the data. The desired image bs occurs for a value of s where ε(s)
levels off.

3.3. Constrained, TV-norm minimization
Solving the optimization problem Eq. (8) for a series of s-values can effectively find sparse
solutions, but it does nothing to control the noise-level in the image. Our previous experience
with TV-minimization methods in CT [23,30] has shown that they not only find images
possessing a sparse spatial-gradient but can also effectively denoise the image. In order to
introduce some control over noise, one must first decide on a sparsity s* of the solution as
described above. Next, we consider the following TV-minimization problem:

(9)

where ε′ ≥ ε(s*). Here, ||b||TV ≡ ||∇b||1 denotes the TV-norm of b, which is defined as the ℓ1-
norm of the discrete gradient-image ∇b. The sparsity of the image is constrained to remain at
or below s*, and as ε′ increases the resulting image becomes denoised. Because boundary-
enhanced images are often sparse, the sparsity constraint is expected to help mitigate artifacts
due to data incompleteness. Unlike s*, which depends only on the sparsity of the object, the
optimal value of ε′ depends on many factors such as data quality, and object properties such
as contrast and structural complexity. As a result, ε′ is in important parameter of the
reconstruction algorithm that needs to be varied and optimized on a case-by-case basis taking
into account each particular imaging task.
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4. Description of image-reconstruction algorithms
The IHT algorithm solves Eq. (7) by alternating between a gradient descent step on the data
residual, (R̂b −g)2, and hard thresholding, keeping the s largest elements in the image. For our
implementation, the gradient descent step is replaced by projection onto convex sets (POCS).
For the problem at hand, we have found empirically that POCS is more efficient than the using
gradient descent in the IHT algorithm. On the other hand, we offer no proof of convergence
for the present variation of IHT. While standard IHT is proved to converge for certain
conditions on the isometry constants, it can be demonstrated that the isometry constants of the
operator R̂ lie well outside the range for which convergence proved. It has, however, been noted
in the literature that derived restricted isometry properties, though sufficient, are far from being
necessary conditions. For the IHT-POCS algorithm, detailed below, we have performed
extensive testing with computer simulated phantoms under difficult scanning conditions where
only 25 projection views are used. Under conditions of ideal, noiseless data we were able to
accurately recover several test phantoms of similar sparsity to the images shown in the results
section. We tested robustness of the recovery by varying the starting image, and by designing
difficult test phantoms where a component, n, with the same sparsity is adding to the test image
that has a minimum value of ||Rn||2. These simulation results give us confidence in using IHT-
POCS for reconstructing data sets with 90 views.

We refer to the present IHT implementation as IHT-POCS. An example pseudo-code of IHT-
POCS is:

1: β:= 1.0; Niter = 1000

2: b:= 0

3: for i:= 1,Niter do

4:

 for j:= 1,Nd do: 

5:  b:= Hs(b)

6:  end for

7: end for

The symbol := is used to represent replacement, i.e., the variable on the left is replaced by the
quantity on the right hand side. The parameter β is the relaxation parameter for the POCS
algorithm on line 4. It is not used here, hence it is set to one, but often implementations of
POCS use a relaxation schedule for β. For example, one might use β = 1.0 * 0.99i, where i
indicates the iteration number. The size of the data g is Nd, and in line 4 each data measurement
is indexed by j. The vector (R)j is a row of the system matrix R̂ corresponding to the single
data measurement gj. The operator Hs at line 5 is responsible for enforcing s-sparseness; the
s largest elements, in terms of absolute value, of its argument are kept, and all other elements
are set to zero. The IHT-POCS algorithm was run to convergence, meaning that there was no
longer any appreciable change in the image. This point generally occurred within 1000
iterations for the results shown below.

To perform the TV-minimization in Eq. (9) we employ our ASD-POCS algorithm described
in Ref. [30], but we alter the POCS portion of the algorithm to incorporate image sparseness.
Our previous implementation of ASD-POCS included steps for enforcing image positivity. As
this assumption does not apply here, the positivity-step is removed. Instead, we substitute, in
place of the positivity-step, the Hs operator to enforce s-sparseness of the image. Strictly
speaking, the Hs operator does not perform a projection onto a convex set and as a result it is
not likely that ASD-POCS converges mathematically to the solution of Eq. (9), but we find
empirically that the algorithm is effective and optimality conditions of the resulting image can
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be checked. Further information on constrained-TV minimization and optimality conditions
can be found in Ref. [30]. Here, we refer to this version of ASD-POCS as the IHT-POCS-TV
algorithm.

5. Guidance from simulations in designing the image reconstruction
algorithm framework

At first glance, the image-reconstruction problem posed by phase-contrast imaging seems to
be an ideal application for recent, compressive sensing (CS) algorithms, because the object
function is dominated by edges and is therefor typically sparse. The application of CS methods,
however, is complicated by two main factors: (1) the inherent ill-posedness of the few-view
image reconstruction problem, and (2) CS theory deals with object representation using a finite
expansion set. Specifically, on the second point, the underlying object function that we wish
to recover is represented in a pixel expansion set, which can only approximately represent the
object. The following set of simulations illustrate how we arrived at the algorithms described
in the previous section. As the justification of the algorithms is based on simulation, we have
performed numerous tests, the most of which cannot be presented in this article. The
simulations are performed with a phantom composed of randomly placed ellipses of high
eccentricity somewhat resembling, in terms of sparsity, the foam object scanned in the next
section. The first set of simulations are performed on an idealization, where the phantom is
first pixelized on a 512×512 grid prior to generating the projection data. The second set of
simulations generate projection data from analytical ray-ellipse intersection formulas. As will
be seen, the discretization of the image array involves a significant approximation, and its
impact can be more than that due to noise.

5.1. Discrete, ellipse phantom
The first set of simulations involve the same scanning configuration used later with actual
experimental data. The projection data were computed as a 2D discrete Radon transform
acquired on a 2048 bin detector, and few-view reconstruction is studied with 90 projection
views taken at equal intervals over 180°. The ellipse phantom shown in Fig. 2 is discretized
on a 512×512 array. The resulting test image has a sparsity of 16257 or approximately 214

pixels. We first investigate the restricted isometry property (RIP) for R̂ with the above system
parameters, then demonstrate the exact recovery of this test image using IHT-POCS.

5.1.1. The restricted isometry properties of the Radon transform—The RIP studies
presented here have two purposes: (1) to put the present image-reconstruction problem in the
context of the state-of-the-art CS algorithms, and (2) to help generate difficult test phantoms
with which to explore robustness of the image-reconstruction algorithms. It is clear that solving
Eq. (6) may admit a large number of solutions, but the the null-space of R̂ may be empty when
the set of images, which R̂ operates on, is restricted to only those with a sparsity s. In fact, the
sparsity restriction will, in general, make R̂ closer to an isometry: an operator that does not
change the size of fs, where fs represents an image of sparsity s. One of the central properties
of an operator that CS makes use of is the isometry constant δs, which is a number where the
following inequalities hold

(10)

for all images fs [34]. Smaller δs leads to better recovery, a value of δs = 1 means that there is
an s-sparse image in the null space and exact recovery is impossible. For proving convergence
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of algorithms, it is often important to consider isometry constants of multiples of s, such as
δ2s. This is because the difference of two s-sparse images will in general be 2s-sparse.

Two problems associated with practical use of the RIP are that isometry constants are not
invariant to scalings of the system matrix R̂ and that finding isometry constants for all but
certain classes of random matrices can be computationally prohibitive; one essentially has to
search all s-sparse images. The search issue for the present problem can be simplified, using
the fact that the Radon transform has the greatest difficulty in distinguishing neighboring pixels.
To assess isometry constants for the Radon transform, we design a search using only
neighboring pixels. The scaling issue can be handled by obtaining a distribution of σs ≡ ||R̂fs||/||
fs|| and multiplying R̂ by the a constant that yields the minimum δs, where the largest and
smallest values straddle 1.0.

To find an estimate of δs, we start by assessing δ1 which can be done simply by projecting all
images with one non-zero pixel (the one-pixel images are normalized to unity so that the
denominator in the definition of σ1 is not needed), finding the image that shrinks the most under
R̂

(11)

and the one that expands the most under R̂

(12)

Correspondingly, we have

and

With the constant scaling, the isometry constant for s = 1 becomes:

The result for δ1 is accurate because it is feasible to search all one-pixel images. The following
iterative procedure, however, is yields approximate estimates of δs that are less than or equal

to the true values. Given  we find  by solving:
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(13)

where α varies in [0,2π) and p represents all unit, one-pixel images where the non-zero pixel

is both, located at a zero-valued pixel and adjacent to a non-zero pixel, in . Note that the
search combination with the trigonometric functions automatically preserves normalization.
The image  can be searched for in a similar manner and the δs estimate is found from the
corresponding values of  and . The above procedure gives a lower bound on δs, as
the search space is restricted and the one parameter optimization in Eq. (13) is also limited;
lower norms of R̂fs can likely be found by allowing variation of the coefficients of all non-zero
pixels in the test image.

For the present configuration with the 512×512 image, we carried out the δs estimation to s =
100. This is well short of the sparsity of the ellipse phantom, but far enough to make an
important point. In Fig. 3, the estimated isometry constant is plotted as a function of sparsity.
The obvious feature of this graph is that the isometry constants are large. An article presenting
the CS algorithm GraDeS [35], similar to IHT, has a concise summary table of CS algorithms
and isometry constant values where these algorithms are proven to converge to the exact
solution, under noiseless conditions. The largest of these constraints, for algorithms that can
be applied to the present tomographic system, is δ2s < 1/3. This value is exceeded already at
very low sparsity. On the other hand it is known that the RIP is a sufficient condition, not a
necessary one. And it appears that the gap between the two is quite large. Thus, at this point
of the development of CS algorithm applications to tomography, the only course of action is
to perform exhaustive simulation. A side benefit of performing the RIP analysis above is that

we can use the images  and  as test phantoms, shown in Fig. 4, to increase difficulty
of reconstruction.

5.1.2. Accurate image-reconstruction with IHT-POCS, and algorithm stress tests
—One of the basic tests of any CS algorithm involve exact image recovery from ideal data.
We have performed multiple tests of this sort under many conditions and with many different
phantoms. We show here some of these results. For the first set of tests the ellipse phantom is
discretized on the 512×512 image array, and from this image the projection data are generated
with exactly the same discrete projection operator as used in the reconstruction algorithms.
The results of the IHT algorithm with μ= 2.0 and the IHT-POCS algorithm are shown in Fig.
5. For both algorithms the hard-thresholding employed the exact sparsity of the phantom,
because this test attempts to demonstrate recoverability of the exact image. Although the plots
show convergence numbers up to 1000 iterations, the IHT-POCS and IHT algorithms were run
to 1000 and 5000 iterations, respectively, to the point where the change in error went to zero.
The plots in Fig. 5 show faster convergence for IHT-POCS than that of IHT for this example.
For the present POCS implementation, we employed sequential access of the data, but it may
be possible to accelerate convergence further by adopting other data access strategies [36–
38].

From Fig. 5 it is clear that image recovery by IHT-POCS is highly accurate even though, as
was demonstrated above, the isometry constant for the present phantom’s sparsity is quite close
to unity. As we are operating IHT well outside of its proven range of isometry constant values,
we do not expect it to yield an accurate reconstruction. The IHT results show recovery of the
ellipse boundaries, but there is significant speckle noise overlaying these structures. The
performance of IHT-POCS is surprisingly good, and we conjecture that it may be possible to
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prove exact convergence for a large range of isometry constants or based on some other CS
principle.

To test robustness of the IHT-POCS algorithm we varied the starting image, using uniform
zero values and random values. In each case the image recovery was highly accurate, to
numerical precision. We also performed reconstructions with IHT and IHT-POCS on the

ellipse phantom in Fig. 4 with  and  added. The results in Fig. 6 again show a
surprisingly good recovery with the IHT-POCS algorithm. Note that the blown-up region of

the image, showing reconstructions of  at the lower left of each panel, shows remarkable
recovery by IHT-POCS while the same component of the phantom is practically invisible to
IHT.

Again, we stress here that these simulations are just that. We cannot generalize such conclusions
to arbitrary system matrices, but we are confident from multiple simulations that for the discrete
Radon transform data on discrete sparse objects, IHT-POCS is a useful and robust algorithm.
The results of this section also points to a few interesting theoretical problems: is it possible
to find exact isometry constants of the discrete Radon transform?, and is it possible to prove
exact recovery with IHT-POCS and for what conditions?

5.2. Continuous, ellipse phantom
This section describes some important issues in the application of CS to Radon transform
inversion. The above example points out one of these issues. The highly accurate image
reconstruction, above, was performed on data generated from the discretized ellipse phantom.
When the ellipse phantom data are generated by applying the continuous operator R, even when
no noise is introduced, the projection data are not consistent with the 512×512 image matrix.
The magnitude of the resulting inconsistency can be larger than that due to signal noise. In this
section, we discuss the impact of this type of inconsistency, the motivation of going to IHT-
POCS-TV, and how we view the role of the image-reconstruction algorithm.

5.2.1. Image reconstruction on the 512×512 grid—The results of applying IHT and
IHT-POCS to data generated by the continuous Radon transform are shown in Fig. 7. Both
algorithms are able to recover the basic structure of the phantom, but it is clear that there are
artifacts in both images. The comparison between IHT and IHT-POCS is also interesting to
illustrate an example of how each algorithm handles data corruption. The fact that the main
structures are clearly visible is evidence of robustness of each algorithm. And the lack of streak
artifacts is noteworthy. The absence of streak artifacts clearly depends on the fact that we input
the correct sparsity into each algorithm, so a good estimate of image sparsity is important for
streak artifact reduction and is part of the proposed algorithm.

The speckle noise present in the images, however, can obscure small structures. That each of
the algorithms has speckle noise is not surprising, because there is no element in either IHT or
IHT-POCS that controls variations amongst neighboring pixels. An obvious way to reduce this
type of data inconsistency would be to decrease the pixel size in order to better approximate
continuous objects. Another motivation of increasing the number of pixels is to fully utilize
the resolution of the 2048-bin projections. But implementing this modification leads to
fundamental difficulties requiring us to change the sparsification principle.

5.2.2. Going to larger grid sizes—In order to be able to reconstruct images of dimension
2048×2048 pixels, we employ the above mentioned IHT-POCS-TV algorithm. Using a pixel
basis, the problem with exploiting pixel-sparsity is that the number of non-zero pixels scales
inversely with the square of the pixel-width for 2D images. Sure enough, embedding the ellipse
phantom into a 2048×2048 array yields 260,513 non-zero pixels, roughly a factor of 16 increase
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over the 512×512 embedding. This number of non-zero pixels already exceeds the number of
measurement rays, 90×2048=184,320. Thus exact recovery is impossible using pixel sparsity.
This issue projection data from continuous objects complicates the oft-made claim in the CS
literature about sub-Nyquist sampling [39].

Exploiting, instead, sparsity in the image gradient has three advantages: (1) the sparsity at each
level of embedding is lower, at least for this type of piece-wise constant phantom, (2) the
sparsity scaling with image dimension is linear in the pixel width instead of quadratic, and (3)
algorithms for TV-minimization do penalize large variations between neighboring pixels, so
when scanning conditions do not meet the conditions of exact recovery, images with reduced
speckle noise can still be obtained.

Direct application of our previous algorithm on constrained, TV-minimization in Ref. [30] has
to be modified. The previous application to CT image reconstruction included a positivity
constraint. That constraint cannot be used here because the object function is the Laplacian of
the refractive index distribution, which can take on negative values. If we are able to determine
a ball-park estimate of object sparsity, we can use effectively a sparsity constraint with the TV-
minimization to control steak artifacts in the image. Although we cannot expect IHT or IHT-
POCS to recover an accurate 2048×2048 image, we may be able to use these algorithms to
estimate image sparsity. Shown in Fig. 8, is the data error as a function of the sparsity parameter
for IHT-POCS. For this image resolution, we know that the sparsity is slightly less than 218

and in the plot we see that it is around such a value that there is a clear change in slope of the
data-error as a function of image sparsity. Not only does this plot suggest a range of sparsities
s to explore, but it also yields lower bounds on ε for IHT-POCS-TV as seen by the optimization
problem, Eq. (9), which it is designed to solve approximately.

The way we view the application of IHT-POCS-TV is that s and ε are parameters of the
algorithm that need to be explored to find optimal settings for a particular application. The
sparsity parameter s is used to control streak artifacts, while ε controls image roughness (larger
ε allows greater data error to achieve lower image TV). The plot in Fig. 8 is used as a guide to
help choose appropriate values of ε and s.

6. Investigation of algorithm performance using experimental data
6.1. Experimental data

An experimental investigation of boundary-enhanced PCT was conducted at the 2-BM
microtomography beamline at the Advanced Photon Source (Argonne National Laboratory).
A detailed description of this imaging system has been published elsewhere [14]. A piece of
foam was imaged with λ = 1.0 ×10−10 m, and untruncated PCT projection data were acquired
at 1440 view angles. A few-view data set was obtained by keeping only 90 measurements that
were evenly-spaced over the interval [0,180°). The detector contained 2048 ×2048 pixels with
an effective pixel dimension of 6.5 microns.

6.2. Implementation of reconstruction algorithms
We numerically implemented the POCS, IHT-POCS, and IHT-POCS-TV reconstruction
algorithms described above and employed them to reconstruct boundary-enhanced images
from few-view measurement data. As a benchmark, we also reconstructed images from the
complete data set containing 1440 view angles by use of the FBP algorithm. All images were
reconstructed on a 2048 × 2048 Cartesian grid with pixel dimension of 6.5 microns.

The performances of the IHT-POCS and IHT-POCS-TV algorithms are strongly influenced
by the choice of the threshold parameter s. We adopted a systematic method for determining
an effective value for this parameter, as described in Section 5.2.2. Estimates of the image b
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were reconstructed assuming different values of s. From knowledge of the reconstructed b, the
data residual was computed as εb = |R̂b − g| and plotted as a function of s as shown in Fig. 9.
A relatively small value of s is sought, due to our knowledge that b is generally sparse.
However, if the chosen value is too small, the data residual will sharply increase indicating
that b could not be accurately represented by the number of pixels that were permitted to take
on non-zero values. For the object we considered in our experimental studies, Fig. 9 suggested
that s = 218 specified a reasonable compromise between object sparsity and representation
error.

6.3. Reconstructed images
Reconstructed boundary-enhanced images corresponding to a transverse slice through the
object are displayed in Fig. 10. The image reconstructed from the complete data by use of the
FBP algorithm is shown in Fig. 10-(a). The images reconstructed from the few-view data by
use of the POCS, IHT-POCS, and IHT-POCS-TV algorithms are show in Figs. 10-(b)-(d),
respectively. In order to more easily visualize some image features and artifacts, 550× 900
pixel regions positioned near the center of the images in Fig. 10-(a)-(d) are re-displayed in
Figs. 11(a)-(d). As expected [2,7], the image reconstructed by use of the FBP algorithm [Fig.
10-(a)] clearly reveals the locations of the boundaries in the foam sample. Due to the sharp
boundaries in the object, certain streak-like artifacts can be observed in the zoomed-in image
[Fig. 11-(a)]. Similarly, the image reconstructed by use of the standard POCS algorithm [Figs.
10-(b) and 11-(b)] contains streak-like artifacts whose magnitidues are enhanced due to the
use of few-view measurement data. The images reconstructed by use of the IHT-POCS
algorithm [Figs. 10-(c) and 11-(c)] and the IHT-POCS-TV algorithm [Figs. 10-(d) and 11-(d)]
do not contain the conspicuous artifacts produced by the POCS algorithm and contain most of
the object features that are visible in the image reconstructed from the complete data by use of
the FBP algorithm [Fig. 10-(a)]. The images show some variation in the grey-level scalings,
which is due to differences in how the discretization error is propagated through each algorithm.
Although the image produced by the IHT-POCS algorithm clearly depicts the image
boundaries, it does contain some perceptible numerical errors such as isolated bright spots in
the background. Such artifacts are not present in the image produced by the IHT-POCS-TV
algorithm because they would increase the value of the image TV, which is sought to be
minimized by the algorithm.

Regions-of-interest within the reconstructed images corresponding to two additional transverse
slices are shown in Figs. 12 and 13. The size of the displayed regions are 500×900 and 600×350
pixels, respectively. In each figure, the image in subfigure (a) was reconstructed by use of the
FBP algorithm from the complete data and the images in subfigures (b), and (c) were
reconstructed by use of the IHT-POCS and IHT-POCS-TV algorithms from the few-view data.
The boundary-enhanced images reconstructed by use of the IHT-POCS and IHT-POCS-TV
algorithms from few-few data contain almost all of the object features that are visible in the
image reconstructed by use of the FBP data from complete data. Moreover, as observed and
explained above, streak-like and other image artifacts are very effectively mitigated by the
IHT-POCS-TV algorithm.

7. Summary
We have proposed and investigated two iterative algorithms for few-view image reconstruction
in boundary-enhanced PCT. The image-reconstruction algorithms are based on the premise
that a boundary-enhanced PCT image is typically sparse or possesses a sparse gradient image.
In order to exploit object sparseness, the reconstruction algorithms seek to minimize the ℓ1-
norm or TV-norm of the image, subject to data consistency constraints. Both algorithms employ
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a thresholding procedure to promote sparse solutions. To our knowledge, this is the first attempt
to mitigate data incompleteness in PCT by use of object sparsity constraints.

By use of experimental data, we demonstrated that the algorithms can reconstruct accurate
boundary-enhanced images from highly incomplete few-view projection data. The proposed
algorithms were also demonstrated to produce significantly weaker image artifacts than those
produced by a conventional iterative image reconstruction algorithm. The proposed
reconstruction algorithms will benefit applications of boundary-enhanced PCT by permitting
a significant reduction in data-acquisition times and minimizing the exposure of the sample to
damaging radiation. In future studies, the reconstruction algorithms can be investigated for use
in boundary-enhanced PCT employing polychromatic sources [9] and in applications that
involve other types of data incompleteness.
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Fig. 1.
The imaging geometry of in-line phase-contrast tomography.
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Fig. 2.
Phantom composed of ellipses of high eccentricity that roughly resembles, in terms of sparsity,
the object in the experimental results.
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Fig. 3.
Estimated values of the isometry constants δs for the Radon transform with 90, equally-spaced
views and 2048 detector bins per projection using 512×512 pixels to represent the scanned
object. As only a restricted search is performed these values are interpreted as a lower bound
on the true isometry constants.
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Fig. 4.

Ellipse phantom made more challenging by adding  (bottom, left) and  (top, left).
These images are added with a similar total energy as that of the original ellipse phantom.
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Fig. 5.
Reconstructions of the ellipse phantom by IHT-POCS (left) and IHT (middle) algorithms and
semi-log plots of the data and image error of both algorithms.
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Fig. 6.

Reconstructions of the ellipse phantom, with  and  added, by IHT-POCS (left) and
IHT (right) algorithms.
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Fig. 7.
Image reconstructions of the ellipse phantom by IHT-POCS (left) and IHT (right) algorithms.
For these results the data are generated from the continuous Radon transform of the ellipse
phantom.
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Fig. 8.
A plot of data residual vs. image sparsity for reconstruction of the ellipse phantom on a
2048×2048 grid using the IHT-POCS algorithm.
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Fig. 9.
A plot of data residual vs. threshold parameter employed in the IHT-POCS and IHT-POCS-
TV algorithms.
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Fig. 10.
Boundary enhanced images corresponding to a slice of constant z. The image reconstructed
from 1440 tomographic views by use of the FBP algorithm is contained in subfigure (a). Images
reconstructed from 90 tomographic views by use of the POCS, IHT-POCS, and IHT-POCS-
TV algorithms are displayed in subfigures (b)-(d), respectively.
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Fig. 11.
550×900 pixel region-of-interest positioned near the center of the images in Fig. 1-(a)-(d) are
displayed in subfigures (a)-(d).
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Fig. 12.
500×900 pixel region-of-interest in reconstructed images corresponding to a slice of constant
z. The image reconstructed from 1440 tomographic views by use of the FBP algorithm is
contained in subfigure (a). Images reconstructed from 90 tomographic views by use of the IHT-
POCS, and IHT-POCS-TV algorithms are displayed in subfigures (b) and (c).
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Fig. 13.
600×350 pixel region-of-interest in reconstructed images corresponding to a slice of constant
z. The image reconstructed from 1440 tomographic views by use of the FBP algorithm is
contained in subfigure (a). Images reconstructed from 90 tomographic views by use of the IHT-
POCS, and IHT-POCS-TV algorithms are displayed in subfigures (b) and (c).
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