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Abstract
Mutations in the genes encoding the surfactant proteins B and C (SP-B and SP-C) and the
phospholipid transporter, ABCA3, are associated with respiratory distress and interstitial lung disease
in the pediatric population. Expression of these proteins is regulated developmentally, increasing
with gestational age, and is critical for pulmonary surfactant function at birth. Pulmonary surfactant
is a unique mixture of lipids and proteins that reduces surface tension at the air-liquid interface,
preventing collapse of the lung at the end of expiration. SP-B and ABCA3 are required for the normal
organization and packaging of surfactant phospholipids into specialized secretory organelles, known
as lamellar bodies, while both SP-B and SP-C are important for adsorption of secreted surfactant
phospholipids to the alveolar surface. In general, mutations in the SP-B gene SFTPB are associated
with fatal respiratory distress in the neonatal period, and mutations in the SP-C gene SFTPC are more
commonly associated with interstitial lung disease in older infants, children, and adults. Mutations
in the ABCA3 gene are associated with both phenotypes. Despite this general classification, there is
considerable overlap in the clinical and histologic characteristics of these genetic disorders. In this
review, similarities and differences in the presentation of these disorders with an emphasis on their
histochemical and ultrastructural features will be described, along with a brief discussion of surfactant
metabolism. Mechanisms involved in the pathogenesis of lung disease caused by mutations in these
genes will also be discussed.
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INTRODUCTION
Genetic disorders disrupting normal surfactant metabolism (also known as pulmonary
surfactant metabolism dysfunctions or surfactant dysfunction disorders) have been recognized
recently as underlying causes of respiratory disease in the neonatal and pediatric populations.
Although rare, these disorders cause significant mortality and morbidity, including acute
respiratory distress and failure in full-term neonates, and interstitial lung disease (ILD) in older
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infants, children, and adults [1-13]. The genes involved in these disorders are critical for
surfactant production and function in the lung, and include the surfactant protein B gene
(SFTPB; Online Mendelian Inheritance in Man [OMIM] number 178640), the surfactant
protein C gene (SFTPC; OMIM number 178620), and the ABCA3 gene (ABCA3; OMIM
number 601615). The surfactant proteins B and C (SP-B and SP-C) are small hydrophobic
proteins that are synthesized in pulmonary alveolar type II cells, packaged into lamellar bodies,
and secreted into the alveolar lumen, where they function to stabilize and enhance spreading
of surfactant phospholipids along the alveolar surface [13-22]. Lamellar bodies are specialized,
intracellular, lysosomally derived storage organelles for surfactant lipids and proteins, which
are composed of multiple, tightly packed, concentrically arranged phospholipid membranes.
Once secreted, this mixture of proteins and lipids spreads rapidly along the alveolar surface,
reducing surface tension at the air-liquid interface and preventing collapse of the lung at the
end of expiration. ABCA3 is a large, integral membrane protein that is highly expressed in the
lung and has been localized primarily to the outer, or limiting, membrane of the lamellar body
[23,24]. ABCA3 is a member of a large family of adenosine triphosphate (ATP)-binding
cassette proteins that actively transport a variety of substances across biological membranes,
including lipids [25-29]. ABCA3 most likely functions to import surfactant phospholipids,
such as phosphatidylcholine (PC) and phosphatidylglycerol (PG), from the cytosol into the
lamellar body [24,30-33] and is thought, therefore, to be important for lamellar body
biogenesis.

The lung disorders caused by mutations in these genes exhibit considerable overlap in their
clinical and histologic presentation, primarily due to impaired surfactant function and gas
exchange in the lung. Although genetic analysis for specific mutations in these genes is the
definitive diagnostic test for these disorders, differences in genetic transmission, family and
clinical histories, expression of the surfactant proteins, and lamellar body ultrastructure may
be helpful in distinguishing these genetic disorders.

SURFACTANT METABOLISM
Pulmonary surfactant is a complex mixture of lipid (90% by weight) and protein (10% by
weight) that lines the alveolar surface of the lungs and prevents atelectasis at the end of
expiration [15,18,21,22]. Surfactant lipids are composed primarily of PC (or lecithin) and
disaturated or dipalmitoyl PC with lesser amounts of PG, phosphatidylinositol,
phosphatidylethanolamine, phosphatidylserine, sphingomyelin, and cholesterol. PC/
dipalmitoyl PC is the most abundant surfactant phospholipid in the lung and is responsible for
the surface tension-reducing properties of pulmonary surfactant. SP-B is a 79-amino-acid
protein that is encoded by a single gene on chromosome 2 (2p12-p11.2). SP-B binds to
phospholipid bilayers and has both membranolytic and fusogenic properties that may
contribute to the organization and packaging of surfactant phospholipid membranes in the
lamellar body [19-22,34-36]. SP-C is a small, 35-amino-acid, integral membrane protein that
is encoded by a single gene located on chromosome 8 (8p21). Although SP-C is not involved
in the packaging of phospholipids into the lamellar body, it is embedded in the phospholipid
bilayer and plays an important role in the formation and maintenance of the surfactant
monolayer at the external alveolar surface [17,19-21,37,38]. SP-C also enhances the uptake of
surfactant phospholipids into isolated alveolar type II cells and, as such, may be involved in
surfactant catabolism [39].

SP-B and SP-C are synthesized in alveolar type II cells as large precursor proteins (proSP-B
and proSP-C) that are cleaved by proteolytic enzymes at both their amino and carboxyl termini
to yield smaller, extremely hydrophobic peptides [40-42] (Fig. 1A,B). SP-B and SP-C are
synthesized in the endoplasmic reticulum (ER) and transported through the Golgi apparatus to
multivesicular bodies, during which proteolytic processing of their precursor proteins is
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initiated [43-53]. The multivesicular body then fuses with the lamellar body, where final
processing and packaging of the mature proteins into surfactant phospholipid membranes
occurs (Fig. 1C). Secretion into the alveolar lumen takes place by exocytosis, after fusion of
the limiting membrane of the lamellar body with the plasma membrane at the cell surface
[54-56]. Once secreted, the lamellar body unwinds to produce tubular myelin, a lattice-like
structure that is converted into a lipid-rich film that spreads along the alveolar surface at the
air-liquid interface [21,22]. Both SP-B and SP-C facilitate the adsorption of the surfactant
phospholipid film to the air-liquid interface, where they contribute to the maintenance of the
surfactant surface tension-reducing properties, while SP-B also participates in the formation
of tubular myelin [21,22,35]. Secreted surfactant phospholipids and proteins are then taken up
by endocytosis and recycled by the alveolar type II cell or catabolized by alveolar macrophages
[57].

ABCA3 is a 1704-amino-acid protein that contains 12 membrane-spanning regions with 2
ATP-binding domains located in the cytoplasm [58,59]. ABCA3 is most likely synthesized
and glycosylated in the ER and then transported through the Golgi apparatus to the
multivesicular body and the outer membrane of the lamellar body [30-33,60]. Although
ABCA3 is incorporated into the plasma membrane during fusion and exocytosis of the lamellar
body, it is internalized and recycled back through the Golgi apparatus and multivesicular body
to the lamellar body [61,62].

Surfactant phospholipid and protein expression is regulated developmentally, increasing with
advancing gestational age, and is critical for normal respiratory function at birth. The
expression of SP-B and SP-C [63,64], as well as of ABCA3 [24,65] and other proteins involved
in surfactant lipid production and lamellar body biogenesis, increases in late gestation in
association with other aspects of lung maturation. During the last third of gestation, immature,
glycogen-rich, alveolar type II cells begin to mature. Glycogen disappears as surfactant
production increases, and lamellar bodies form in the cytoplasm and are secreted into the
alveolar lumen [66]. The composition of surfactant phospholipids also changes during late
gestation, with increasing amounts of PG and PC (lecithin) and decreasing amounts of
sphingomyelin, resulting in an increase in the lecithin-to-sphingomyelin ratio, a well-known
indicator of lung maturity [67-69]. Respiratory distress syndrome (RDS) associated with
prematurity (gestational age <37 weeks) is caused by a deficit in surfactant production and
results in diffuse atelectasis, destruction of the alveolar epithelium, formation of hyaline
membranes lining the small airways, inflammation, and death, if left untreated. Severe RDS
in infants born at >36 weeks of gestation, at a time when the surfactant system should be
functional, suggests other reasons for lung disease, including infectious, genetic, and/or
developmental mechanisms that impair normal lung morphogenesis or surfactant production
and metabolism.

In addition to SP-B and SP-C, 2 larger, hydrophilic proteins, SP-A and SP-D, are highly
expressed in the fetal and postnatal lung, as well as in other tissues [70-74]. SP-A (SFTPA;
OMIM number 178630; and SFTPA1; OMIM number 178642) and SP-D (SFTPD; OMIM
number 178635) are collectins that play an important role in host-defense of the lung through
their ability to opsonize and enhance killing of various microorganisms, including bacterial,
viral, and fungal pathogens [75-78]. Although no mutations in these genes have been identified
to date, polymorphisms in both SFTPA and SFTPD have been associated with susceptibility
to RDS and bronchopulmonary dysplasia in premature infants [79,80], as well as with
susceptibility to respiratory syncytial virus infections in young infants [81-83]. In mice,
deletion of SP-A caused increased susceptibility to bacterial and viral infections with little
effect on surfactant function or homeostasis, although tubular myelin was lacking [84-87]. On
the other hand, SP-D–deficient mice exhibited defects in the uptake and recycling of secreted
surfactant phospholipids by alveolar type II cells, resulting in increased phospholipid pool
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sizes; the development of large, foamy, lipid-laden macrophages; and progressive emphysema
[88-94], as well as increased susceptibility to viral and bacterial pathogens [95].

GENETIC SP-B DISORDERS (SURFACTANT METABOLISM DYSFUNCTION,
PULMONARY, 1, SMDP1, OMIM NO. 265120)
Index case

Hereditary SP-B deficiency was first described in 1993 in a full-term infant with diffuse lung
disease and radiographs suggesting surfactant deficiency [96]. This infant died at 5 months of
age from progressive respiratory failure that developed shortly after birth and did not respond
to mechanical ventilation, corticosteroids, surfactant replacement, or extracorporeal membrane
oxygenation. Lung biopsy showed changes consistent with congenital alveolar proteinosis.
The family history was notable in that a previous child also died from neonatal lung disease.
A frameshift mutation, caused by a net 2-base pair insertion (121ins2) in exon 4 of the
SFTPB gene was subsequently detected on both alleles in this child and in another sibling
[97]. This mutation caused a premature stop codon in exon 6, which was associated with an
unstable transcript that precluded expression of mature SFTPB (encoded in exons 6 and 7),
resulting in the complete absence of SP-B messenger RNA and protein in the lung of this patient
(Fig. 2A). Incomplete processing of proSP-C was also observed, with formation of a 6- to 9-
kd intermediate form of proSP-C containing part of the amino terminus [97,98].

Genetics and clinical presentation
Hereditary SP-B deficiency is inherited as an autosomal recessive disorder with mutations
required on both alleles in order to cause disease. Parents and siblings who are heterozygous
for mutations in SFTPB are usually asymptomatic [99]. More than 40 distinct mutations in the
SP-B gene have been identified to date [100-110]. Two thirds of the mutant alleles have been
accounted for by the 121ins2 mutation in exon 4, while the remaining one third include
nonsense, missense, frameshift, and splice-site mutations, as well as insertions and deletions
throughout the gene (Fig. 2B). A large deletion spanning exons 7 and 8 has also been reported
[111,112]. In general, these mutations result in the complete absence, or loss of function, of
SP-B, causing acute respiratory distress in full-term infants at birth, which is progressive and
usually fatal by 3 to 6 months of age [3,107]. Clinical and radiographic findings are consistent
with those seen in immature preterm infants with RDS resulting from insufficient surfactant
stores [113]. Phospholipid content is also abnormal with decreased phospholipid-to-protein
ratios, elevated phosphatidylinositol and decreased PG in tissue, and bronchoalveolar lavage
fluid (BALF) when compared with controls [114-116]. Accordingly, surfactant isolated from
the lungs of SP-B–deficient infants is less effective in lowering surface tension [115,116].
Although transient or modest improvement may be seen with surfactant replacement and/or
corticosteroid therapy, lung transplantation is currently the only effective treatment option
[117-120]. Several children with partial defects in SP-B production have been seen with severe
chronic lung disease in infancy and have survived beyond the neonatal period, but these cases
are rare [101,106,121]. Although the population frequency of genetic SP-B deficiency is
currently unknown, clinical estimates suggest an incidence of 1 in 1 million live births in the
United States [122]. The allele frequency of the 121ins2 mutation is approximately 1 per 1000
to 3000 individuals [122-124].

Histopathology and ultrastructural features
SP-B deficiency is associated primarily with histopathology diagnoses of congenital alveolar
proteinosis and, less frequently, with infantile desquamative interstitial pneumonitis (DIP).
Accordingly, the most characteristic, histologic feature of genetic SP-B deficiency is the
accumulation of granular, eosinophilic, periodic acid-Schiff–positive, lipoproteinaceous
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material in the alveolar spaces, which often contains desquamated alveolar type II cells and
foamy alveolar macrophages (Fig. 3A). These findings are similar, but not identical, to those
observed in adult patients with acquired pulmonary alveolar proteinosis (PAP), an autoimmune
disorder caused by endogenous production of antibodies directed against granulocyte-
macrophage colony-stimulating factor (GM-CSF) ([125-127], and in children with PAP caused
by mutations in the common beta or alpha subunit of the GM-CSF receptor [128-130] (Fig.
3B). Both disorders disrupt GM-CSF signaling in the macrophage, which impairs macrophage
function and interferes with catabolism or degradation of secreted surfactant. In contrast to the
large amounts of alveolar proteinosis material found in association with impaired GM-CSF
signaling, the amount of alveolar proteinosis observed in SP-B deficiency may be quite variable
from one patient to the next, and may even be absent in some patients who exhibit histologic
features consistent with infantile DIP (Fig. 3C). Additional histopathologic findings in SP-B
deficiency include hyperplastic alveolar epithelia with prominent type II cells and thickening
of the alveolar walls, which is characterized by fibroblast proliferation with little to no
inflammatory cell infiltrates (Fig. 3D). These features also tend to distinguish SP-B deficiency
from GM-CSF abnormalities in which there is generally good preservation of the alveolar
architecture (Fig. 3B). Although hyperplastic alveolar epithelium interspersed with thickened
interstitial septa are features consistent with impaired alveolar formation, these findings may
reflect nonspecific changes in the tissue, which may be caused by injury from prolonged
mechanical ventilation and oxygen therapy rather than by abnormal lung development. In
support of this interpretation, the lungs of SP-B–deficient mice show normal lung development
at birth [131]. Ultrastructural findings in both human and mouse genetic SP-B deficiency
demonstrate that lamellar body formation is also perturbed. No normal, mature, well-organized
lamellar bodies or secreted tubular myelin are found in either case. Instead, many large,
disorganized, or irregular multivesicular structures are detected by electron microscopy in the
alveolar type II cells of both species [111,131-135] (Fig. 3E,F).

Immunohistochemistry and pathogenesis
Immunohistochemical features include (1) markedly reduced or absent immunostaining for
proSP-B and the mature SP-B peptide and (2) accumulation of SP-A and proSP-C
immunopositive material in the alveolar lumen [97,107] (Fig. 4). Although pathogenesis of
this disorder is caused by impaired surfactant function from the loss of SP-B, accumulation of
partially processed proSP-C in the alveolar lumen may also contribute to lung disease, as this
peptide has reduced surface activity [136]. Normally, processing of the 21-kd proSP-C peptide
to the smaller, hydrophobic, 4-kd mature SP-C peptide occurs by successive proteolytic
cleavage of the carboxyl terminus and then the amino terminus to yield intermediate forms of
18- to 16-kd and 6- to 7-kd peptides (Fig. 1B). In SP-B deficiency, a 6-kd form of proSP-C,
containing 12 amino acids of the amino terminus and the active hydrophobic domain, is found
in the alveolar lumen by immunoblot and by immunohistochemistry examination [96,97,
107] (Fig. 4D). The presence of increased amounts of this partially processed intermediate
peptide suggests that SP-B is required for normal processing and/or trafficking of proSP-C.
Alternately, disruption of lamellar body formation may account for the incomplete processing
of proSP-C to the mature SP-C peptide, which normally occurs during transport from the
multivesicular body to the lamellar body. In some cases, full-length or partially processed
proSP-B may also be detected by immunoblot and immunohistochemistry examination [107].
Both proSP-B and mature SP-B are absent in patients with nonsense and frameshift mutations,
while detectable proSP-B expression is associated with missense mutations and mutations
causing in-frame deletions or insertions [107]. However, in these latter cases, the mutation
usually prevents efficient processing of proSP-B to the mature SP-B peptide, resulting in a
reduction or absence of SP-B.
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To date, there is no explanation for the increased amounts of SP-A that accumulate in the
alveolar lumen, although SP-A synthesis and secretion may be influenced differentially by the
therapies used to support infants with these conditions [137-141]. Likewise, little is known
about alveolar macrophage function in this disorder, so that abnormalities in surfactant
composition or function (i.e., surface tension-lowering ability) may impair the catabolic and/
or recycling mechanisms that normally operate in the lung to maintain surfactant homeostasis.
For example, macrophage phagocytosis was shown to be impaired in the SP-B–deficient mouse
[142], which might affect the uptake of surfactant lipids and proteins into the cell for
degradation.

GENETIC SP-C DISORDERS (SURFACTANT METABOLISM DYSFUNCTION,
PULMONARY, 2, SMDP2, OMIM NO. 610913)
Index cases

Lung disease due to mutation in the SFTPC gene was first described in 2001 in a full-term
infant and mother with respiratory insufficiency [143]. The infant developed respiratory
symptoms at 6 weeks of age, consisting of tachypnea and cyanosis while breathing room air.
Radiography of the chest showed hyperinflation with increased interstitial markings. The
infant’s lung biopsy showed changes consistent with nonspecific interstitial pneumonitis
(NSIP), exhibiting well-preserved but thickened alveolar septa, hyperplastic alveolar type II
cells, an interstitial infiltrate composed of mature lymphocytes, and scattered myofibroblasts
in the alveolar wall. Some noninflated alveoli were filled with desquamated cells, the majority
of which were alveolar macrophages. Lung tissue from the patient’s mother had areas of diffuse
fibrosis and honeycombing, with patchy areas of mild interstitial lymphocytic infiltration,
accumulation of alveolar macrophages, and regions of superimposed alveolar damage
consistent with idiopathic pulmonary fibrosis. A heterozygous mutation involving a
substitution of adenine for guanine at the first base of intron 4 (IVS4+1G>A, also known as c.
460+1G>A) was subsequently identified on one allele of the SFTPC gene in both the infant
and mother, which is consistent with an autosomal dominant form of inheritance. This mutation
abolished the normal donor splice site, which caused skipping of exon 4 (designated as the
Δexon 4 mutation) and resulted in deletion of 37 amino acids in the carboxyl terminus of the
precursor protein [143] (Fig. 5A). Immunohistochemistry revealed that the full-length, 21-kd
proSP-C was present in reduced amounts in the lung tissue of both the infant and the mother,
while immunoblotting demonstrated the presence of a smaller, less abundant form of proSP-
C (18 kd), as well as the absence of mature SP-C in both tissue and BALF. SP-B, on the other
hand, was present at normal levels. The family history was of interest in that the child’s mother
was examined at 1 year of age and found to have DIP, and the maternal grandfather died of
chronic lung disease of unknown etiology.

Genetics and clinical presentation
More than 40 distinct mutations in the SFTPC gene have been identified, with the majority of
these mapping to the carboxyl terminus of proSP-C [4,143-155]. These mutations consist
primarily of missense mutations, although frameshift and splice-site mutations, as well as small
insertions and deletions, have been identified [4,11,144] (Fig. 5B). Most of these mutations
are found in the carboxyl terminus (exons 3, 4, and 5) of the precursor protein and are thought
to cause misfolding of proSP-C and to preclude processing of the precursor protein to the
mature peptide [156-159]. A substitution of threonine for isoleucine in codon 73 (I73T) is the
most common SFTPC mutation [145,149-151] and is found in >25% of patients with genetic
SP-C disorders. In contrast to genetic SP-B deficiency, lung disease caused by SFTPC
mutations is inherited as an autosomal dominant trait with variable penetrance and severity
(45%), or as sporadic disease caused by a de novo mutation on one allele (55%) [4,144,153].
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Although SFTPC mutations are associated primarily with chronic ILD in infants and older
children, onset of respiratory symptoms in patients with SFTPC mutations can be highly
variable [146,147,151]. Approximately 10% to 15% of patients with a SFTPC mutation
develop respiratory symptoms within the 1st month of life, while another 40% develop
symptoms as infants between 1 and 6 months of life, with the average age of onset being 2 to
3 months [4,8,13,153,160]. Presentation in full-term infants in the newborn period is associated
with signs and symptoms typical of RDS and may be fatal in the neonatal period [153,155].
Presentation in older infants is associated with symptoms of diffuse lung disease, including
tachypnea, retractions, hypoxemia, digital clubbing, and failure to thrive. In a multicenter study
of children ≤2 years old with diffuse lung disease, the mean age at biopsy for those with
SFTPC mutations was 8.9 ± 3 months (range, 2 to 22 months) [160]. Although all of the children
were alive at follow-up (10 to 61 months), significant ongoing pulmonary morbidity was found
in this group. In another report from the St. Louis Children’s/Washington University transplant
program, the median age of onset for children with SFTPC mutations was 1 month, ranging
from birth to 14 months [11,120]. Status at follow-up (2to15 years) in this study included 5
patients who had improved and were free of oxygen support, 1 receiving supplemental oxygen,
1 receiving mechanical ventilation, 2 who had received transplants, and 1 who died awaiting
transplant [11,120].

Onset of respiratory symptoms has also been reported in adults, in whom it is associated with
histopathologic diagnoses of NSIP and usual interstitial pneumonitis (UIP). In a large family
with a heterozygous mutation in exon 5 of the SP-C gene (L188Q), onset of lung disease was
variable and included children with NSIP and adults with UIP [146,147]. Age at diagnosis
ranged from 4 months to 57 years. Lung disease in a family with the common I73T mutation
was also associated with both early (1 year old) and late (71 years old) onset of lung disease
[151]. Asymptomatic individuals with SFTPC mutations have also been identified [146,147].
Several instances of respiratory infection, including pneumonia caused by respiratory syncytial
virus (RSV), influenza A, and influenza B, have been reported in patients with SFTPC
mutations prior to the onset of pulmonary disease [146,147], which suggests that viral infection
may precipitate the onset of respiratory symptoms in this disorder. This hypothesis is supported
by in vitro studies in which respiratory syncytial virus infection of cells that were transfected
with the Δexon 4 mutation resulted in accumulation of the mutant proSP-C peptide and
extensive cell death [161]. Progression of the disease can also be quite variable. Some patients
require transplantation, while others survive with persistent respiratory insufficiency requiring
supplemental oxygen, or improve and graduate to room air [11,120]. This variability suggests
that there are additional genetic and/or environmental factors that modify the onset and
progression of lung disease in these patients. This is supported by studies in SP-C–deficient
mice, which show a variable phenotype depending on genetic background, age, and exposure
to pathogens or environmental toxins [162-165]. Although SFTPC mutations have been found
in diverse racial and ethnic groups, the incidence and prevalence of lung disease caused by
these mutations, as well as the population frequency of disease-causing SFTPC variants, is
currently unknown. Recent studies indicate that SFTPC mutations are a rare cause of adult
ILD, with the majority of patients presenting in the pediatric age group [4,8,153,160]. In 2
recent studies of adults with idiopathic pulmonary fibrosis or NSIP, only 1 patient was
identified with a SFTPC mutation (I73T mutation) [166,167].

Histopathology and ultrastructural features
In general, histopathologic evaluation of lung disease associated with SFTPC mutations reveals
diffuse alveolar damage of varying severity, interstitial thickening with mild lymphocytic
inflammation and muscularization of the alveolar septa, foamy alveolar macrophages, variable
amounts of granular alveolar proteinosis material with a few cholesterol clefts, and
regenerating alveolar epithelium lined by hyperplastic type II cells (Fig. 6). These features are
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associated with histopathologic diagnoses indicative of interstitial pneumonitis, including
neonatal PAP [145,148-150,152], infantile DIP [148], chronic pneumonitis of infancy (CPI)
[148,151,160], and NSIP [143,145,149,152], although the most common histopathologic
diagnosis in infants is CPI [151,153,160]. In adults with SFTPC mutations and chronic ILD,
the most common histopathologic diagnosis is pulmonary fibrosis [146,147,151].

Ultrastructural analysis of lamellar body formation in this disorder is limited, although mixtures
of normal lamellar bodies with electron-dense vesicles, intracellular membranous aggregates,
or disorganized lamellar bodies have been reported in association with several of the SFTPC
mutations [145,146,148,150]. Ultrastructural analysis of tissue from the index patient with the
Δexon 4 mutation [143], however, revealed large, well-organized lamellar bodies in the
alveolar type II cells (Fig. 6). Occasionally, larger composite bodies containing 2 or more
smaller lamellar bodies were also found (Fig. 6). These findings are supported by analysis of
the SP-C–deficient mice, which exhibited large, intact lamellar bodies, as well as tubular
myelin [162,163].

Immunohistochemistry and pathogenesis
In general, immunohistochemical analysis reveals robust staining for all of the surfactant
proteins (SP-A, proSP-B, SP-B, and SP-D), including proSP-C, which is restricted to alveolar
type II cells [145,146,148,151]. Two different patterns of proSP-C staining have been
observed: (1) diffuse staining of the cytoplasm and (2) accumulation of immunoreactive
material in a perinuclear compartment, a pattern typically observed with misfolded proteins
(Fig. 7). Diffuse staining of the cytoplasm may be associated with abnormalities in trafficking
of the mutant propeptide with accumulation in the ER (P30L mutation) or in the early
endosomal compartment (I73T and E66K mutations) [145,149-152,159], while perinuclear
staining may be associated with impaired degradation, accumulation, and/or aggregation of
incompletely processed proSP-C (Δexon 4, L188Q, and 91-93del9 mutations) [143,146,148,
157-159,168-170]. These observations have led to the hypothesis that accumulation of mutant
proSP-C peptide is toxic to the cell, resulting in chronic cell injury, ER stress, and cell death
[161,168-172], which then leads to chronic interstitial inflammation and fibrosis in the lung.

Decreased or absent levels of mature SP-C are found in patients with the Δexon 4 and 91-93del9
mutations, suggesting that routing and processing of the nonmutated protein from the normal
allele is perturbed in these mutations [143,148]. Because proSP-C is normally routed through
the ER as a homodimer, association between mutant and wild type proSP-C in the ER may
lead to subsequent misrouting, accumulation, and/or degradation of both propeptides [20,
156,157,159,170]. SP-C is also involved in reuptake and catabolism of secreted surfactant, as
well as in the activated alveolar macrophage response to infection [42,165]. Therefore, loss of
mature SP-C might also contribute to the onset of lung disease in patients with SFTPC
mutations who are exposed to airborne pathogens. In other mutations (E66K and I73T), both
mature SP-C and proSP-C were detected in the patient’s BALF [145,152], suggesting that these
peptides are secreted. In these cases, however, phospholipid composition, content, and function
were altered in association with histologic observations of alveolar proteinosis and increased
SP-A and SP-B content in the BALF [145,152]. Abnormalities in surfactant composition and
function, along with alveolar proteinosis and increased levels of SP-A, were also observed in
association with the 91-93del9 mutation [148], although no mature SP-B or SP-C was detected
in the BALF. These observations suggest that surfactant composition and function may also
play a role in the pathogenesis of lung disease in these patients.
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GENETIC ABCA3 DISORDERS (SURFACTANT METABOLISM
DYSFUNCTION, PULMONARY, 3, SMDP3, OMIM NO. 610921)
Index cases

Lung disease caused by mutations in the ABCA3 gene was first described in 2004 in a group
of racially and ethnically diverse full-term infants with severe respiratory distress, resulting in
death in early infancy [173]. All had family histories of lung disease, clinical or radiographic
findings consistent with surfactant deficiency, and histologic findings consistent with infantile
DIP and/or neonatal PAP. A variety of mutations consisting of homozygous, missense,
nonsense, and frameshift mutations, as well as heterozygous insertion and splice-site
mutations, were identified in the ABCA3 genes of these patients. Small, markedly abnormal
lamellar bodies with densely packed membranes and eccentrically placed, dense inclusion
bodies were observed by electron microscopy in the alveolar type II cells of lung tissue from
4 patients with nonsense, splice-site, and missense mutations in the ABCA3 gene [173,174].

Genetics and clinical presentation
More than 150 distinct mutations have been identified in the ABCA3 gene [7,8,13,116,
173-184], making this the largest class of mutations that cause genetic abnormalities in
surfactant metabolism. ABCA3 is a large gene located on chromosome 16 (16p13.3) and
contains 30 coding exons [58,59]. Mutations in the ABCA3 gene are distributed throughout its
length and consist of missense, nonsense, frameshift, and splice-site mutations, as well as
insertions and deletions (Fig. 8A). Lung disease caused by ABCA3 mutations is inherited as
an autosomal recessive disorder, requiring mutations on both alleles. The majority of cases
reported to date have been associated with surfactant deficiency, respiratory distress, and
failure in the neonatal period or in infancy [160,173,175,178,180-182]. In a multicenter study
of children ≤2 years old with diffuse lung disease, the mean age at biopsy for children with
ABCA3 mutations was 1.3 ± 0.5 months (range, 0.2 to 3 months) [160]. The histopathologic
findings in this group of children were associated predominantly with neonatal PAP. In contrast
to the children in this study with SFTPC mutations, the children with ABCA3 mutations had a
100% mortality rate with an average age at death of 1.9 ± 0.7 months (range, 4 to 4.5 months)
[160]. Surfactant isolated from the lungs of children with fatal ABCA3 mutations was
ineffective in lowering surface tension [116], suggesting that surfactant deficiency was the
cause of lung disease in these patients. Phospholipid analyses revealed abnormal phospholipid
profiles with decreased PC and PG [116]. Because clinical presentation, mortality rate, and
histopathology for the ABCA3 mutations are often similar to those for genetic SP-B deficiency,
lung transplantation has been offered as a treatment for those infants with severe, early-onset
lung disease [11,116,120,177].

A common mutation involving a substitution of valine for glutamic acid in codon 292 (E292V),
located in the first cytosolic loop of the ABCA3 protein, has been identified in older children
with chronic ILD who have survived into their teens without lung transplant [176,177]. Onset
of symptoms in the majority of these patients was at birth, in the neonatal period, or in infancy
(<1 year), with histopathologic diagnoses of PAP or DIP [176], and was associated with
compound heterozygous inheritance of the E292V mutation on at least 1 allele. Milder neonatal
disease with presentation of nonspecific symptoms and findings, including cough, tachypnea,
hypoxemia in room air, clubbing, and failure to thrive, were reported in some of these children,
while other children did not have respiratory symptoms or findings until later in childhood
[176,177]. Recently, the E292V carrier frequency was reported to be 3- to 5-fold higher than
those for the common mutations in SFTPB (121ins2) or SFTPC (I73T), which were rare
(<0.4%) [185]. In this study, the E292V mutation was overrepresented in newborns with RDS,
suggesting that the E292V mutation might be associated with a greater genetic risk for RDS.
Mutations in ABCA3 have also been identified in adults with chronic ILD, as well as in an
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adolescent patient who presented at age 15 with a 6-month history of exercise intolerance, chest
discomfort, and histologic features of UIP [184]. ABCA3 may also act as a disease-modifying
gene in lung disease caused by the SFTPC mutations, as patients who were heterozygous for
both an ABCA3 mutation and the SFTPC I73T mutation had more severe lung disease than
family members with only the I73T mutation [186].

Histopathology and ultrastructural features
In general, ABCA3 disorders are associated with histopathology diagnoses of infantile DIP and
neonatal PAP (Fig. 9), with onset of symptoms in infancy. In lung biopsies from older infants
and children, however, UIP and NSIP with superimposed lipoid pneumonia have also been
reported [177,184]. Multiple, small lamellar bodies with densely packed phospholipid
membranes and eccentrically placed electron-dense cores have been detected in the type II
cells of the majority of these patients [173-176,179-182,187] (Fig. 9), although more normal-
appearing lamellar bodies have been reported in several patients [116,175,177].

Immunohistochemistry and pathogenesis
In general, immunostaining for the surfactant proteins, SP-A, SP-B, proSP-B, proSP-C, and
SP-D is readily detected [180-182], although a subset of cases exhibits poor immunostaining
for the mature SP-B peptide [175,186] (Fig. 10). Unlike SP-B deficiency, proSP-C staining is
restricted to the cytoplasm of alveolar type II cells and is not found in the airspaces. Absence
of immunostaining for mature SP-B, reduced amounts of SP-B, and/or impaired processing of
proSP-B to the mature SP-B peptide have been observed in some patients with ABCA3
mutations [175,186], suggesting that normal lamellar body formation is required for processing
of SP-B. Although immunostaining for proSP-C is generally robust, little information is
available for the status of mature SP-C in patients with ABCA3 mutations except for one series
of patients with fatal respiratory distress in whom mature SP-C could not be detected [175].
Both ABCA3 and mature SP-B were also reduced or absent in this group of patients. This
observation suggests that processing of proSP-C to the mature SP-C peptide might also be
impaired by disruption of lamellar body formation. This hypothesis is supported by recent
findings in transgenic mouse models of ABCA3 deficiency, wherein processing of both proSP-
B and proSP-C was defective [188-190]. These observations suggest that mutations in the
ABCA3 gene cause severe surfactant deficiency as a result of secondary effects on SP-B and
SP-C processing, as well as on surfactant phospholipid packaging and secretion.

Depending on location of the mutation in the gene, lung disease in genetic ABCA3 disorders
may be caused by a number of different mechanisms, including loss of expression, decreased
expression, abnormal intracellular trafficking of the protein to the lamellar body, abnormal
packing of phospholipids, and/or defects in functional activity (i.e., ATP hydrolysis).
Accordingly, immunolocalization of ABCA3 in HEK293 (kidney) cells or A549 (lung) cells
vary with the type of mutant ABCA3 gene that is transfected into these cells. Mutations that
interfere with trafficking of ABCA3 to the lysosomal compartment of these cells in vitro
exhibited robust staining for ABCA3 in the ER, while mutations that interfered with ATP-
dependent phosphocholine transport were associated with immunolabeling of a lysosomal-like,
post-ER/Golgi compartment [191,192]. Interestingly, ABCA3 mutations associated with fatal
ABCA3 disease were correlated with trafficking defects, while mutations associated with less
severe pulmonary disease, such as the E292V mutation, were correlated with defects in
phosphocholine transport [191,192] (Fig. 8B).

DIAGNOSTIC CONSIDERATIONS
Because there is considerable overlap in the clinical and histologic presentation of these
disorders, genetic analysis is essential for establishing a specific diagnosis in patients with
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suspected surfactant disorders. Full sequence-based analysis of all three genes is now available
through Clinical Laboratory Improvement Amendments-certified laboratories. (Laboratories
offering clinical testing in the United States include Ambry Genetics Corp., Aliso Viejo, CA,
and Johns Hopkins Hospital, Baltimore, MD.) If tissue is available for patients whose lungs
were biopsied for clinical indications, or who died prior to the availability of genetic studies,
additional immunohistochemical and/or ultrastructural evaluation may be useful in
determining a probable genetic basis for their lung disease. In these cases,
immunohistochemical and ultrastructural examination of lung tissue may provide valuable
clues to the diagnosis, as well as insights into the pathophysiology of these disorders.

Immunohistochemistry
As can be appreciated from the previous descriptions, there is considerable overlap in the
clinical presentation and histopathology of these patients, especially for lung disease due to
the SFTPB and ABCA3 mutations, which often present in the neonatal period and can be fatal.
In these cases, immunohistochemistry can be of benefit in distinguishing SFTPB mutations
from ABCA3 or SFTPC mutations. Fortunately, antibodies to the surfactant proteins have been
generated in the research laboratory and are now available commercially. Several polyclonal
and monoclonal antibodies have been generated to mature SP-B, as well as to specific epitopes
of the proSP-B and proSP-C peptides, including their amino and carboxyl termini. Use of these
monospecific antibodies allows immunodetection of the partially processed and/or misfolded
forms of these propeptides. Immunohistochemistry is especially useful in determining a
diagnosis of genetic SP-B deficiency, because distinct immunohistochemical patterns for
mature SP-B and proSP-C expression have been described for the SFTPB mutations. In these
cases, there is often complete loss, or absence, of immunostaining for mature SP-B, which
cannot be recovered with epitope or heat-induced antigen retrieval (HIER) techniques. In
addition, immunolocalization of the secreted, partially processed proSP-C peptide in the
alveolar lumen (using a monospecific polyclonal antibody to the amino terminus of proSP-C)
has been detected in all cases of genetic SP-B deficiency examined in the research laboratory
by immunohistochemistry [107].

Absent or weak staining for mature SP-B has been observed in some ABCA3 mutations. This
pattern differs from SP-B deficiency in that immunostaining for the mature SP-B peptide can
be recovered by use of HIER, while immunostaining for proSP-B is robust and can be readily
detected in the absence of HIER in ABCA3-related disease. The genetic, clinical, and/or
pathologic significance of these differences in immunodetection of mature SP-B is currently
unknown, and further studies are needed to see whether this observation has diagnostic value
or can be correlated with genotype. In contrast to SP-B deficiency, immunolocalization of
proSP-C in patients with ABCA3 mutations is restricted to the cytosol of the alveolar type II
cell, where it is normally detected, and is not found in the alveolar lumen. Likewise,
immunolocalization of proSP-C is restricted to the alveolar type II cell in patients with PAP
caused by impaired GM-CSF signaling [129,175]. Therefore, immunodetection of
incompletely processed proSP-C in the alveolar lumen may be considered as a useful diagnostic
marker for genetic SP-B deficiency.

No consistent immunohistochemical patterns for the detection of proSP-C or mature SP-C have
been established for patients with SFTPC mutations, although perinuclear staining for proSP-
C suggests an SFTPC mutation. In general, immunostaining for proSP-C, using a monospecific
polyclonal antibody generated to the amino terminus of proSP-C, is robust and restricted to
the alveolar type II cell. Markedly reduced proSP-C was observed, however, in patients with
the Δexon 4 mutation [143], as well as in familial lung disease in which no SFTPC mutations
could be identified [193]. Although Brasch and colleagues [145] reported immunodetection of
proSP-C in the alveolar lumen of a patient with the I73T mutation using a monospecific
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polyclonal antibody to the carboxyl terminus of proSP-C, this antibody has not been used
widely to investigate secretion of the misfolded protein in other SFTPC mutations. Likewise,
little information is available for the status of mature SP-C in patients with SFTPC mutations,
although some mature SP-C may be secreted in the I73T mutation [145].

In general, immunohistochemistry for SP-A and SP-D is robust in all of these disorders and
tends to reflect the amount of proteinosis material in the sample. This material is often
immunopositive for proSP-B when detected with a monospecific antibody to the carboxyl
terminus of the propeptide. Normally the first cleavage steps in processing of proSP-B involve
removal of the amino terminus to yield a 23-kDA intermediate form of the peptide. Subsequent
cleavage steps occur in the multivesicular body to yield the 8-kd, mature SP-B peptide. In lung
samples from patients with SFTPC and ABCA3 mutations, immunodetection of a partially
processed proSP-B peptide (23 kd) containing part of the carboxyl terminus can be found in
the alveolar lumen [145,175]. The detection of partially processed intermediate forms of proSP-
B in the lung and/or in the BALF, however, is more likely to be a general indicator of lung
injury and is not specific for these genetic disorders [194,195]. Finally, because
glucocorticoids, hyperoxia, and ventilation can impact synthesis, secretion, and activity of the
surfactant phospholipids and proteins, quantitative interpretations of staining intensity should
be avoided. In this regard, it is important to note that the effects of these therapeutic
interventions are complex, affecting synthesis, secretion, and function of the surfactant proteins
differentially, depending on the animal species or model, ventilation technique, oxygen level,
and duration of exposure, as well as causing cell injury, cell death, and induction of proliferative
responses in the tissue.

Ultrastructural features
The ultrastructural findings associated with lamellar body formation in the SFTPB and
ABCA3 mutations are very distinctive. Therefore, ultrastructural studies may be helpful in
distinguishing these 2 disorders from each other, and the preparation of tissue for electron
microscopy should be considered in full-term infants with fatal respiratory distress or in
children with diffuse lung disease (196). As previously described, loss of SP-B disrupts
formation of the well-organized concentric rings of phospholipid membranes that normally are
observed in the lamellar body by electron microscopy. Instead, large, disorganized
multivesicular bodies are observed in the cytosol of alveolar type II cells, as well as in the
alveolar lumen. In contrast, small, markedly abnormal lamellar bodies with densely packed
phospholipids membranes and electron-dense inclusions have been observed by electron
microscopy in the alveolar type II cells from patients with a variety of ABCA3 mutations.
Currently, no distinctive ultrastructural abnormalities have been described in association with
the SFTPC mutations, although irregular or disorganized lamellar bodies have been reported.
On the other hand, normal lamellar bodies have been observed in human tissue samples from
patients with the Δexon 4 and P30L mutations in the SFTPC gene. Abnormal lamellar bodies
are also found in certain lysosomal storage diseases, such as Chediak-Higashi and Hermansky-
Pudlak syndromes (197–200). Although these lamellar bodies tend to have normally arranged,
concentric, phospholipid membranes, they are abnormally large. This “giant” lamellar body
phenotype reflects abnormal accumulation of phospholipid in the cell, which is caused by a
variety of defects in vesicle formation, trafficking, secretion, and/or catabolism of pulmonary
surfactant, and is quite distinctive from the abnormal lamellar bodies found in the SFTPB and
ABCA3 mutations.

CONCLUSIONS
Although rare, genetic disorders in surfactant production and function in the lung have now
been shown to cause significant primary lung disease in full-term infants and older children.
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Given their critical roles in surfactant function and metabolism, common variants in these genes
(polymorphisms) may also be important in the risk for developing or modifying the course of
other common lung diseases. In evaluating patients who present with symptoms of surfactant
deficiency or dysfunction, it is important to consider multiple factors, including family history,
age of onset, clinical presentation, and disease progression, as well as the histopathologic
findings (Table 1). If lung biopsy is available, then immunohistochemical detection of partially
processed proSP-C in the alveolar lumen, along with the absence of immunostaining for mature
SP-B, may be pathognomonic for genetic SP-B deficiency, while ultrastructural detection of
aberrant lamellar body formation may be diagnostic for mutations in the SP-B and/or
ABCA3 genes. Therefore, both immunohistochemistry and ultrastructural analysis may be
useful in making a preliminary diagnosis in these patients when the clinical presentation and
histopathology overlap.
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Figure 1.
Proposed structure, posttranslational processing, and trafficking of surfactant proteins B and
C (SP-B and SP-C) in alveolar type II cells. A. Normal processing of SP-B. Human SP-B is
encoded by a single gene, SFTPB, on chromosome 2, spanning about 10 kilobases (kb), and
contains 10 introns (straight lines) and 11 exons (boxes), of which the last is untranslated. The
mature SP-B peptide is encoded in exons 6 and 7 (shaded boxes). SFTPB is transcribed into a
2-kb mRNA that is translated in the endoplasmic reticulum (ER) to yield a 40-kd, 381-amino
acid preproprotein. After cotranslational cleavage of its signal peptide, proSP-B undergoes
glycosylation to yield a 42-kd intermediate form of the proprotein. Proteolytic cleavage of the
NH2 and COOH termini of proSP-B occurs during trafficking of the proprotein through the
Golgi apparatus and the multivesicular body (MVB), generating 23- to 26-kd and then 9-kd
intermediate forms of the proprotein, before yielding the 8-kd, 79-amino acid, mature peptide
that forms homodimers of ~18 kd in the mature lamellar body (LB). The shaded region of the
proprotein represents the mature SP-B peptide. (Adapted from data in references 34–37, 43–
45, and 48–53.) B. Normal processing of SP-C. Human SP-C is encoded by a single gene,
SFTPC, on chromosome 8, spanning about 3.5 kb, and contains 5 introns (straight lines) and
6 exons (boxes), of which the last is untranslated. The mature SP-C peptide is encoded in exon
2 (shaded box). SFTPC is transcribed into a 0.9-kb messenger RNA that is translated in the
ER to yield a 21-kd, 191- to 197-amino acid proprotein (proSP-C). ProSP-C then undergoes
palmitoylation (PP) of cysteine residues within the mature peptide domain to yield a 24-kd
intermediate. Proteolytic cleavage of the COOH and NH2 termini of proSP-C occurs during
trafficking of the proprotein through the Golgi apparatus and the MVB, generating 16-kd and
then 7- to 6-kd intermediate forms of the proprotein, before yielding the 4-kd, 35-amino acid,
mature peptide that is found in the mature LB. The shaded region of the proprotein represents
the mature SP-C peptide. (Adapted from data in references 38–42, 46, and 47.) C. Cellular
components required for biosynthesis and processing of SP-B and SP-C. a. SP-B and SP-C are
transcribed on ribosomes associated with the ER (arrows) and transported to the Golgi
apparatus (arrowheads) for proteolytic processing of the larger precursor proteins to smaller,
intermediate forms of the proproteins. b. Endosomal vesicles containing proSP-B and proSP-
C bud off the Golgi apparatus and accumulate in MVBs (arrowheads). An LB with prominent
phospholipid lamellae is seen nearby (arrow). c. The partially processed proproteins are
delivered to LBs via fusion of the MVB (arrowhead) with the LB (arrow) to form a composite
body, wherein final processing of the proproteins to mature SP-B and SP-C is thought to occur.
d. The mature LB is composed of both surfactant phospholipids and the fully processed, mature
SP-B and SP-C peptides that are now tightly associated with the phospholipid bilayers. Images
were acquired by electron microscopy of newly forming LBs in immature alveolar type II cells
found in fetal mouse lung tissue. gly, glycogen. Scale bar = 500 nm.
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Figure 2.
Structural models of the human surfactant protein B (SP-B) gene and protein illustrating
abnormal processing of SP-B and the location of mutations found throughout the gene. A.
Comparison of normal and abnormal transcription, synthesis, and processing of SP-B caused
by the 121ins2 mutation. Aberrant transcription of SFTPB caused by the 121ins2 mutation
results in formation of an unstable messenger RNA (mRNA) that is rapidly degraded and barely
detected by polymerase chain reaction (PCR) analysis (faint white band on black at *, upper
right panel) compared with the presence of normal mRNA observed in a control patient (white
band on black at arrow, upper left panel). This results in the complete absence of both proprotein
SP-B (proSP-B) and the mature SP-B peptide, as assessed by immunoblot of protein isolated
from lung tissue of an affected patient (no black bands, lower right panel). In contrast, the
presence of 42-kd and 23-kd forms of proSP-B, as well as the 8-kd mature SP-B peptide (black
bands on white at arrows, lower left panel) can be detected in protein isolated from lung tissue
of a control patient. B. Structural model of SFTPB illustrating the location of mutations found
throughout the gene. The mature peptide is encoded in exons 6 and 7 (black boxes); exon 11
(white box) is not translated. Mutations in SFTPB include a variety of nonsense, missense,
frameshift, and splice-site mutations, as well as insertions and deletions. The common
mutation, 121ins2, is located in exon 4 (arrow). A large deletion, encompassing exons 7 and
8, has been reported recently. TGA, translational stop sequence located in exon 10.
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Figure 3.
Histopathology and ultrastructural features of disorders caused by mutations in the human
surfactant protein B (SP-B) gene. A. Autopsy tissue from a 23-day-old child who was
homozygous for the 121ins2 mutation. Alveolar proteinosis with foamy, eosinophilic,
lipoproteinaceous material filling the alveoli (arrow) is typically found in the lung of patients
with SP-B mutations. Thickened alveolar septa (arrowheads) are also a prominent feature of
this disorder. B. Biopsy tissue from a 6-year-old child with a granulocyte-macrophage colony-
stimulating factor receptor alpha chain mutation [129]. In contrast to SP-B deficiency, the large
amount of alveolar proteinosis material found in this genetic disorder is denser and contains
larger globules of eosinophilic material (arrows), which fills and expands the alveoli. There is
also good preservation of the alveolar septa (arrowhead). C. Explant tissue from a 13-month-
old child who was a compound heterozygote for the 121ins2 and C100G mutations [107],
demonstrating infantile desquamative interstitial pneumonitis (DIP) with accumulation of
foamy alveolar macrophages in the alveoli (arrow) and little to no alveolar proteinosis. The
alveolar epithelia are hyperplastic, and the thickened alveolar septa (arrowhead) contain
lymphocytic infiltrates in this sample. D. Autopsy tissue from a 2-month-old child who was a
compound heterozygote for the 121ins2 and c.282-2delA mutations [107]. Higher
magnification of hyperplastic alveolar epithelia with prominent type II cells (arrows) and
accumulation of foamy macrophages in the alveolar lumen is shown. Note the prominent
interstitial widening composed of loose connective tissue and disruption of the normal alveolar
capillary architecture, which precludes normal gas exchange and lends an immature appearance
to the lung. (Hematoxylin and eosin-stained paraffin sections.) E. In lieu of normal lamellar
bodies, electron microscopic analysis demonstrates the presence of many large, membrane-
bound structures containing smaller membranous vesicles (arrows) and, occasionally, several
concentric layers of phospholipid lamellae in the type II cells of a child with the 121ins2
mutation. F. Higher magnification of these aberrant structures (arrows), which are similar in
appearance to the multivesicular and composite bodies found during lamellar body biogenesis.
m, disrupted mitochondria.

Wert et al. Page 25

Pediatr Dev Pathol. Author manuscript; available in PMC 2010 November 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Immunohistochemical staining for the surfactant proteins in lung tissue from subjects with
mutations in the human surfactant protein B (SP-B) gene. Autopsy tissue from a child who
was homozygous for the 121ins2 mutation is shown in panels A through D; biopsy tissue from
a control sample is shown in panels E and F. No immunostaining for mature SP-B (A) or
proprotein SP-B (proSP-B; B) is found in the 121ins2 mutation. On the other hand, the alveolar
proteinosis material (arrow) found in this mutation stains intensely for SP-A (C) and for proSP-
C (D), which are detected in both alveolar type II cells (black reaction product at arrowhead)
and in the alveolar lumen (black reaction product at arrow). In contrast, immunostaining for
mature SP-B (E) and proSP-C (F) is restricted to alveolar type II cells (arrows) and is not
detected in the alveolar lumen in biopsy tissue from a control lung. Immunohistochemistry
was performed using polyclonal antibodies to (1) full-length SP-A, (2) the mature SP-B
peptide, (3) the carboxyl terminus of proSP-B, and (4) the amino terminus of proSP-C. A color
version of this figure is available online.
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Figure 5.
Structural models of the human surfactant protein C (SP-C) gene and protein illustrating
abnormal processing of SP-C and the location of mutations found throughout the gene. A.
Abnormal processing of SP-C caused by the IVS4+1G>A mutation. The mutation, IVS4
+1G>A (also known as c.460+1G>A or Δexon 4), is located at the junction of exon 4 and its
adjacent intron (arrow), and is found on only one allele of the affected patient. This causes
exon 4 to be skipped, resulting in a truncated form of the messenger RNA for this allele, which
contains sequences for exons 1 through 3 and exon 5. This can be observed by reverse
transcriptase polymerase chain reaction analysis of the patient’s RNA (lower band at *, lane
2, upper panel). A normal-sized band (upper band at arrow, lane 2, upper panel) indicating that
the nonmutated allele is found in the affected patient, as well as in a control (Ctrl) patient (upper
band at arrowhead, lane 1, upper panel). This results in translation of an aberrant 18-kd form
of the proprotein (lower band at *, lane 2, middle panel depicting an immunoblot of the protein)
compared with the 21-kd proprotein observed in the control patient (upper band at arrowhead,
lane 1, middle panel). No mature peptide is found by immunoblot in the affected patient (lane
2, right lower panel of protein blot) when compared with the control patient (band at arrowhead,
lane 1, left lower panel). B. Structural model of SFTPC illustrating the location of mutations
found throughout the gene. Mutations in SFTPC include a variety of nonsense, missense,
frameshift, and splice-site mutations, as well as insertions and deletions. The IVS4+1G>A
mutation (also known as c.460+1G>A or the Δexon 4 mutation) is located at the junction of
exon 4 and its adjacent intron (arrow). The mature peptide is encoded in exon 2 (black boxes);
exon 6 (white box) is not translated. TAG, translational stop sequence located in exon 10.
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Figure 6.
Histopathology and ultrastructural features of genetic disorders caused by mutations in the
human surfactant protein C (SP-C) gene. A. Nonspecific interstitial pneumonitis (NSIP), with
thickened alveolar septa (arrowhead) and a few alveolar macrophages, is seen in a biopsy from
a 6-week–old child, heterozygous for the Δexon 4 mutation (also known as IVS4+1 G>A or
c.460+1G>A) [143]. B. Chronic pneumonitis of infancy (CPI) with alveolar septal thickening
(arrowheads) and accumulation of large, foamy macrophages and granular, eosinophilic,
alveolar proteinosis material in the alveoli (arrow) is seen in a biopsy from a 9-month–old
child, heterozygous for the P115L mutation [144]. C. Another example of CPI, with diffuse
alveolar septal thickening, alveolar type II cell hyperplasia, and accumulation of macrophages
(arrow) in the alveolar lumen, is seen in a biopsy from a 1-year–old child, heterozygous for
the common I73T mutation [151]. Muscularization of the alveolar septa and ducts (arrowhead)
and inflammatory cell infiltrates are found in the adjacent thickened interstitial structures. D.
Accumulation of larger amounts of foamy alveolar proteinosis material with cholesterol clefts
(arrow) is found in explanted tissue from a 9-month-old child, heterozygous for the 91-93del9
mutation [148]. (Hematoxylin and eosin-stained paraffin sections.) E. Electron microscopic
analysis demonstrates the presence of large, well-organized lamellar bodies (arrows) found in
the type II cells of a 6-week-old child heterozygous for the Δexon 4 mutation. F. Large
composite bodies containing multiple lamellar body–like structures and membrane-bound
vesicles were also found in this sample (arrows).
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Figure 7.
Immunohistochemical staining for the surfactant proteins in lung tissue from subjects with
mutations in the human surfactant protein C (SP-C) gene. Immunohistochemistry for the
common I73T mutation [151] is shown in column one (A, C, E, G, and I) and for the 91-93del9
mutation [148] in column two (B, D, F, H, and J). Immunostaining for SP-A (A, B), SP-D,
(C, D), mature SP-B (E, F), and proprotein SP-C (proSP-C; G through J) is robust in both
mutations (black reaction product). The alveolar proteinosis material and macrophages found
in the 91-93del9 mutation are immunopositive for SP-A (B), SP-D (D), and mature SP-B
(F), but not for proSP-C (H), which is restricted to the alveolar type II cells. Two different
immunostaining patterns are detected for proSP-C. Diffuse staining of the alveolar type II cell
cytoplasm is seen in the I73T mutation (I), while a more perinuclear staining pattern is seen
in the 91-93del9 mutation (J). Immunohistochemistry was performed using polyclonal
antibodies to (1) full-length SP-A, (2) full-length SP-D, (3) the mature SP-B peptide, (4) the
carboxyl terminus of proSP-B, and (5) the amino terminus of proSP-C. A color version of this
figure is available online.
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Figure 8.
Structural models of the human ABCA3 gene and protein illustrating the location of mutations
found throughout the gene and protein. A. Structural model of the ABCA3 gene. ABCA3 is
encoded by a single gene, ABCA3, on chromosome 16 (16p13.3), and contains 33 exons
(boxes). The adenosine triphosphate (ATP)-binding domain or nucleotide-binding domain
(NBD) is encoded in exons 14–17 (NBD1) and exons 27–30 (NBD2) (black boxes). Mutations
in ABCA3 include a variety of nonsense, missense, frameshift, and splice-site mutations, as
well as insertions and deletions. The common mutation, E292V, is located in exon 9 (arrow).
TGA, translational stop sequence located in exon 33. B. Structural model of the ABCA3
protein. ABCA3 is a 1704-amino acid, integral membrane protein located at the limiting
membrane of the lamellar body (LB). It contains 2 homologous repeats, each consisting of 6
putative transmembrane helices and an ATP-binding domain. ABCA3 is thought to be oriented
in the lipid bilayer such that its ATP-binding domains (NBD1, NBD2) are located in the
cytoplasm. Phospholipids are then actively transported from the cytosol to the interior of the
LB through the membrane channel (black cylinders) that is formed in the phospholipid bilayer.
The location of mutations that have been shown to impair ABCA3 function [191,192], either
by interfering with ATP hydrolysis (N568D, E690K, T1114M, G1221S) or with trafficking of
the protein from the endoplasmic reticulum (ER) to the LB (L101P, L982P, L1553P, Q1591P),
are illustrated. *, location of the E292V mutation. (Adapted from Matsumura and colleagues
[191,192].)
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Figure 9.
Histopathology and ultrastructural features of disorders caused by mutations in the human
ABCA3 gene. A. Alveolar proteinosis, admixed with alveolar macrophages, and thickened
alveolar septa (arrowhead) are seen in a biopsy from a neonate with fatal lung disease who was
homozygous for the c.4909+1G>A splicing mutation [173]. B. Infantile desquamative
interstitial pneumonitis (DIP) with accumulation of foamy macrophages in the alveoli is seen
in an autopsy from 33-day-old child who was a compound heterozygote for the c.1474insT-
D953N and c.5012insA mutations. The alveolar epithelium is hyperplastic, and
muscularization of the alveolar septa is found in the adjacent thickened interstitial structures
(arrowhead). C. Thickened alveolar septa (arrowhead) and accumulation of alveolar
macrophages (arrow) are seen in explanted tissue from a 21-year-old adult with a diagnosis of
DIP and who is a compound heterozygote for the E292V and N1076K mutations [176]. D.
Lung remodeling with thickened alveolar septa and macrophage accumulation are seen in a
biopsy from a 2-year-old child with prolonged survival (>12 years old) who is a compound
heterozygote for the E292V and c.1742-9G>A mutations [176]. (Hematoxylin and eosin-
stained paraffin sections.) E. Electron microscopic analysis demonstrates the presence of small,
abnormal, lamellarlike bodies (arrows) with eccentrically placed electron-dense inclusions in
a biopsy from a neonate who was homozygous for the c.4909+1G>A mutation (see panel A).
F. Higher magnification of small, lamellarlike bodies (arrow) with tightly packed phospholipid
membranes (inset) found in the type II cells of this sample.
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Figure 10.
Immunohistochemical staining for the surfactant proteins in lung tissue from subjects with
mutations in the human ABCA3 gene. Immunohistochemistry from a neonate, homozygous for
the c.4909+1G>A mutation [173], is shown in column one (A, D, I, and L); from a 33-day-
old, compound heterozygote for the c.1474insT-D953N and c.5012insA mutations, is shown
in column two (B, E, G, J, and M); and from a 21-year-old adult, compound heterozygote for
the E292V and N1076K mutations [176], is shown in column 3 (C, F, H, K, and N).
Immunostaining for surfactant protein A (SP-A; A, B, and C), proprotein SP-B (proSP-B; I,
J, and K), and proSP-C (L, M, and N) is robust in all three mutations (black reaction product).
Immunostaining for mature SP-B is readily detected in the c.4909+1G>A mutation (D), but is
weak or not detected in the other two mutations (E, F). Immunostaining for mature surfactant
protein B (SP-B) is recovered after use of heat-induced epitope retrieval (G, H). The alveolar
proteinosis material and macrophages found in the first 2 mutations are immunopositive for
SP-A (A, B), SP-B (D, G), and proSP-B (I, J). Immunostaining for proSP-C, however, is
restricted to alveolar type II cells (arrows) in all three mutations (L, M, and N). Immunostaining
for the surfactant proteins is detected primarily in the alveolar type II cells (arrows) in the
E292V/N1076K mutation (C, F, H, K, and N). There is little to no secreted, immunopositive,
proteinosis material found in this sample, and no immunostaining is detected in the alveolar
macrophages (arrowheads). Immunohistochemistry was performed using polyclonal
antibodies to (1) full-length SP-A, (2) the mature SP-B peptide, (3) the carboxyl terminus of
proSP-B, and (4) the amino terminus of proSP-C. A color version of this figure is available
online.
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