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Abstract
Objective—Diabetes mellitus (DM) is associated with reduced progression of abdominal aortic
aneurysm (AAA) disease. Mechanisms responsible for this negative association remain unknown.
We created AAAs in hyperglycemic mice to examine the influence of serum glucose concentration
on experimental aneurysm progression.

Methods—Aortic aneurysms were induced in hyperglycemic (DM) and normoglycemic models by
using intra-aortic porcine pancreatic elastase (PPE) infusion in C57BL/6 mice or by systemic infusion
of angiotensin II (ANG) in apolipoprotein E-deficient (ApoE−/−) mice, respectively. In an additional
DM cohort, insulin therapy was initiated after aneurysm induction. Aneurysmal aortic enlargement
progression was monitored with serial transabdominal ultrasound measurements. At sacrifice, AAA
cellularity and proteolytic activity were evaluated by immunohistochemistry and substrate
zymography, respectively. Influences of serum glucose levels on macrophage migration were
examined in separate models of thioglycollate-induced murine peritonitis.

Results—At 14 days after PPE infusion, AAA enlargement in hyperglycemic mice (serum glucose
≥ 300 mg/dL) was less than that in euglycemic mice (PPE-DM: 54% ± 19% vs PPE: 84% ± 24%,
P < .0001). PPE-DM mice also demonstrated reduced aortic mural macrophage infiltration (145 ±
87 vs 253 ±119 cells/cross-sectional area, P = .0325), elastolysis (% residual elastin: 20% ± 7% vs
12% ± 6%, P = .0209), and neovascularization (12 ± 8 vs 20 ± 6 vessels/high powered field, P = .
0229) compared with PPE mice. Hyperglycemia limited AAA enlargement after ANG infusion in
ApoE−/− mice (ANG-DM: 38% ± 12% vs ANG: 61% ± 37% at day 28). Peritoneal macrophage
production was reduced in response to thioglycollate stimulation in hyperglycemic mice, with limited
augmentation noted in response to vascular endothelial growth factor administration. Insulin therapy
reduced serum glucose levels and was associated with AAA enlargement rates intermediate between
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euglycemic and hyperglycemic mice (PPE: 1.21 ± 0.14 mm vs PPE-DM: 1.00 ± 0.04 mm vs PPE-
DM + insulin: 1.14 ± 0.05 mm).

Conclusions—Hyperglycemia reduces progression of experimental AAA disease; lowering of
serum glucose levels with insulin treatment diminishes this protective effect. Identifying mechanisms
of hyperglycemic aneurysm inhibition may accelerate development of novel clinical therapies for
AAA disease.

Clinical Relevance—This report provides mechanistic insight into prior population-based clinical
studies identifying a negative association between diabetes mellitus and abdominal aortic aneurysm
(AAA). The inhibitory effects of hyperglycemia on aneurysm development are examined
independent of other AAA risk factors. Further investigations into these or related mechanisms may
accelerate the development of effective medical strategies to suppress progression of AAA disease.

Diabetes mellitus (DM) is an important contributor to the pathophysiology of many
cardiovascular disorders, including abdominal aortic aneurysm (AAA) disease. Unlike other
common demographic and environmental cardiovascular risk factors (eg, advanced age, male
gender, and cigarette smoking), however, diabetes appears to reduce the risk for and
progression of AAA disease.1-7 Many features of DM may influence the pathophysiology of
AAA disease; to date, however, the mechanism(s) responsible for the negative association have
yet to be investigated in an in vivo experimental system. We superimposed hyperglycemia on
experimental aortic aneurysm induction to identify potential mechanisms responsible for
diabetic suppression of AAA disease.

Methods
Murine modeling

All proposed modeling experiments were reviewed and approved in advance by the
Administrative Panel on Laboratory Animal Care Committee at Stanford University. Animal
care and experimental procedures were conducted in compliance with Stanford Laboratory
Animal Care Guidelines (http://labanimals.stanford.edu/). Male mice (aged 10 to 12 weeks),
either C57BL/6, or apolipoprotein E-deficient (ApoE−/−) on a C57BL/6 background, were used
for all experiments (Jackson Laboratories, Bar Harbor, Me). Adequate inhaled isoflurane
anesthesia was maintained for all invasive procedures. After survival procedures, mice were
recovered in individual cages with unrestricted access to chow and water. All mice were
maintained on normal chow diets.

Induction of DM
Hyperglycemia was induced by intraperitoneal (IP) injection of streptozotocin (STZ: 50 mg/
kg; Sigma Aldrich, St. Louis, Mo) dissolved in citrate buffer for 5 consecutive days as specified
by the Animal Models of Diabetic Complications Consortium protocol
(http://www.amdcc.org). STZ induces necrosis and inflammation of the pancreatic islet beta
cells; multiple injections of low-dose STZ produce a delayed but progressive increase in serum
glucose levels in mice, resulting in insulin-dependent DM.8 Control mice received a citrate
buffer injection without STZ. Mice were monitored for at least 3 weeks after STZ injection,
and blood glucose levels and body weights were measured weekly. Hyperglycemia was defined
by casual blood glucose levels of ≥300 mg/dL before AAA creation and at sacrifice.

Induction of AAA
Experimental AAAs9 were created in hyperglycemic and euglycemic mice by using one-time
intra-aortic porcine pancreatic elastase (PPE) infusion in C57BL/6 (14-day model) or by
continuous subcutaneous angiotensin II (ANG) infusion in ApoE−/− cohorts (28-day model),
as previously described by our laboratory.10-12 In hyperglycemic mice, aneurysm induction
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began 3 weeks after completion of STZ injections and confirmation of hyperglycemia as
defined above.

Two distinct but complementary murine AAA modeling systems were used to ensure, to the
greatest extent possible, that experimental results were not model-specific.13 Briefly, in the
PPE model, elastase (E-1250, Lot 102K7685; Sigma Aldrich) was infused directly into the
aorta (0.03 mL of 15 U/mL of PPE over 5 minutes), producing either hyperglycemic (PPE-
DM, n = 22) or normoglycemic AAA (PPE, n = 21) mice. In the ANG model, AAA was created
by subcutaneous infusion of angiotensin II (Lot 37K5102; Sigma Aldrich) at 1000 ng/kg/min
continuously over 28 days by a Alzet mini-osmotic pump (DURECT Corp, Cupertino, Calif)
in ApoE−/− mice, producing either hyperglycemic (ANG-DM, n = 6) or normoglycemic AAA
(ANG, n = 8) mice. In summary, four experimental AAA groups were created, distinguished
by the method of aneurysm induction (PPE or ANG) and the presence or absence of diabetes
(STZ injection or vehicle alone).

Sacrifice was performed by intentional sodium pentothal overdose. The two distinct
experimental AAAs used (PPE and ANG) in this study have different model-specific end
points; therefore, sacrifice was performed respectively at that time.9 PPE-DM and PPE mice
were euthanized at post-PPE infusion day (POD) 14; select aortae were harvested for histologic
analysis (n = 10 and 9, respectively) and substrate zymography (n = 12 in both groups). ANG-
DM and ANG mice were euthanized at post-pump placement day (POD) 28 for histologic
analysis only (n = 6 and n = 8, respectively). Before the study group-specific end point, mice
losing weight rapidly or appearing lethargic or immobile were euthanized immediately,
regardless of experimental progress or group assignment.

Exogenous insulin administration
To evaluate the consequences of reducing serum glucose levels, insulin therapy was instituted
in a separate cohort of PPE-DM mice. Subcutaneous insulin pellets (LinShin, Toronto, Ontario,
Canada) were implanted in each mouse before AAA induction according to manufacturer's
protocol, releasing 0.1 U insulin/d (PPE-DM + Insulin, n = 6), to examine the influence of
reduced glucose levels on aneurysm progression. After implantation, blood glucose levels were
monitored weekly and compared with those in PPE (n = 6) and PPE-DM (n = 6) mice. A
significant response to insulin was confirmed when serial blood glucose levels consistently
measured below 200 mg/dL. All mice of this cohort were sacrificed at POD 14 for histologic
analysis.

Serial in vivo aortic diameter measurement
Aortic diameter was measured in all mice by transabdominal ultrasound imaging at 40 MHz
(Vevo770; Visualsonics, Toronto, Ontario, Canada), by examiners blinded to study group
assignment at baseline and after AAA induction, on PODs 7 and 14 (all models) and PODs 21
and 28 for ANG only. Percent change in AAA growth rate was calculated as [100 × (current
aortic diameter – baseline aortic diameter/baseline aortic diameter]. The sensitivity, accuracy,
and reproducibility of similar murine AAA high-frequency ultrasound measurement protocols
has been demonstrated previously.12,14,15

Thioglycollate-induced peritonitis
Intra-aortic infusion of thioglycollate induces mural inflammation and aneurysmal degradation
when administrated with plasmin16; mechanisms responsible for thioglycollate-induced
macrophage stimulation are likely similar to those initiated by porcine pancreatic elastase.17

We used IP thioglycollate injection (1 mL of 4% solution, Becton Dickinson, Sparks, Md)17

to induce chemical peritonitis in hyperglycemic and normoglycemic C57BL/6 mice to evaluate
the effect of hyperglycemia and vascular endothelial growth factor (VEGF) on macrophage
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migration. Since VEGF signaling plays an integral role in aneurysm pathogenesis,12 and VEGF
may promote macrophage chemotaxis and activation18,19 in addition to stimulating neovessel
production, exogenous VEGF was administered to determine its influence on macrophage
production in the setting of hyperglycemia. Selected mice from each group (thioglycollate with
or without hyperglycemia) were simultaneously treated with recombinant mouse VEGF
(VEGF164; R&D Systems, Minneapolis, Minn) every other day to evaluate hyperglycemic
influences on macrophage chemotaxis in response to VEGF stimulation.

Four days after thioglycollate injection, peritoneal lavage was performed with phosphate-
buffered saline (PBS), and 2.5 mL of lavage solution was collected and centrifuged to remove
erythrocytes. After resuspension in 1 mL of PBS, cells were counted using a Fuchs-Rosenthal
Chamber (Hausser Scientific, Horsham, Pa).

Histopathology and immunohistochemistry
At sacrifice, aortae were harvested for histologic analysis after left ventricular injection of 4%
paraformaldehyde (PFA) solution in PBS. Further fixation was achieved by overnight
immersion in 4% PFA at 4°C. After paraffin embedding, blocks were sectioned at 4 μm for
Elastica-Masson (EM) and immunohistochemical (IHC) staining. Primary antibodies for IHC
staining were either rat antimouse MAC-2 for macrophages (Cedarlane Laboratories,
Burlington, Ontario, Canada) or rabbit antimouse CD31 for endothelial cells (Lab Vision,
Fremont, Calif).

After primary incubation, sections were incubated with a biotinylated secondary antibody
(Biocare Medical, Concord, Calif) and avidin-biotin complex (Vectastain ABC kits; Vector
Laboratories, Burlingame, Calif) according to the manufacturers' protocols. Color
development was performed using the DAB color development system (Dako Corporation,
Carpinteria, Calif). Tissue sections were counterstained with hematoxylin. Negative control
experiments were performed by replacing the primary antibody with nonspecific
immunoglobulin G.

Medial elastin density was defined by the ratio of elastin/total medial-area.20,21 For mural
neovascularization, cross-sections were divided into four quadrants (original magnification
×400), and CD31-positive stained neovessels, rather than individual cells, in each quadrant
were counted. Mean numbers of neovessels per high-powered field (HPF) with standard
deviations are reported. To quantify macrophage number, MAC-2-positive stained individual
cells were counted (original magnification ×200) per cross-sectional area (CSA).

Gelatin zymography
Snap-frozen AAA samples were pooled in each cohort for gelatin zymography. After extraction
from harvested aortae, total protein concentration was determined using the BCA protein assay
kit (Pierce-Thermo Scientific, Rockford, Ill). A uniform amount of protein was applied to the
10% gelatin zymogram gel (Bio-Rad, Hercules, Calif), and electrophoresis was performed
according to the manufacturer's protocol. Densitometric analysis of lytic bands indicative of
MMP activity was performed with National Institutes of Health Image-J software.

Statistical analysis
Data are represented as mean ± standard deviation (SD). Determination of significance between
two groups of continuous variables was performed using the t-test; adjustments for multiple
comparisons were performed using one-way analysis of variance (ANOVA), followed by the
Scheffe post hoc test. Significance was determined at the level of P < .05. All calculations were
performed using StatView J 5.0 software (SAS Institute Inc, Cary, NC).
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Results
STZ injection increases serum glucose levels, reduces body weight

Murine blood glucose levels and body weights were monitored weekly after STZ injection.
Serum glucose concentration increased significantly within 2 weeks of the initial injection (370
± 67 mg/dL STZ-treated vs 152 ± 29 mg/dL vehicle, P < .0001) and persisted until sacrifice
(459 ±53 vs 148 ± 22 mg/dL, P < .0001). Body weight was lower in hyperglycemic compared
with glycemic mice (23.6 ± 2.4 vs 26.7 ± 2.4 g, P < .0001) immediately before AAA induction.

Hyperglycemia reduces experimental AAA diameter
Although mean aortic diameters increased in both PPE-DM and PPE groups after elastase
infusion, absolute growth was significantly less in PPE-DM mice (POD 7: 40% ± 15% vs 54%
± 15%, P= .0091; POD 14: 54% ± 19% vs 84% ± 24%, P < .0001). By POD 7, PPE-DM
aneurysms were significantly smaller than PPE (P = .0016); this difference became more
pronounced by POD 14 (P < .0001, Fig 1, A). AAA growth and diameter were also significantly
reduced by hyperglycemia in the angiotensin II/ApoE −/− model (growth through POD 21:
ANG-DM 29% ± 12% vs ANG 58% ± 30%, P = .0474; growth through POD 28: 38% ± 12%
vs 61% ± 37%, P = .1705; and diameter at POD 14, P = .0474, and POD 21, P= .0472; Fig 1,
B).

Hyperglycemia attenuates AAA mural neovascularity and macrophage infiltration
Mural neovascularity was significantly reduced in PPE-DM compared with PPE mice (12 ± 8
vs 20 ± 6 vessels/HPF, P = .0229, Figs 2, A, B, C). In both the PPE-DM and PPE groups, mural
neovessel density was positively correlated with aneurysm diameter (Fig 2, D). MAC-2
immunostaining demonstrated reduced medial macrophage infiltration in PPE-DM mice (145
± 87 vs 253 ± 119 cells/cross-sectional area, P= .0325; Fig 3, A, B, C). Medial macrophage
density was also positively correlated with aortic diameter and neovascularity in both groups
(Fig 3, D, E).

Hyperglycemia attenuates AAA MMP-9 activity, preserves medial elastin
Pro-MMP-9 activity was significantly reduced in PPE-DM compared with PPE mice (relative
density: 0.63 ± 0.31 vs 1.00 ± 0.13, P = .0259, Figs 4, A and B). No significant differences in
pro- or active MMP-2 activity were noted (Fig 4, C and D). EM staining revealed relative aortic
medial elastin preservation in PPE-DM mice (Fig 4, E and F), quantified by an increased elastin/
total medial-area ratio vs that present in PPE mice (20% ± 7% vs 12% ± 6%, P = .0209; Fig
4, G). Similar evidence of elastin preservation was present in ANG-DM vs ANG mice (data
not shown).

Insulin therapy increases AAA diameter
Serum glucose levels declined from 465 ± 26 mg/dL preinsulin to 120 ± 69 mg/dL 2 weeks
after insulin treatment (P < .0001). Despite lower serum glucose levels, body weight did not
change significantly between institution of insulin therapy and sacrifice. AAA diameter in all
three groups (PPE, n = 6; PPE-DM, n = 6; PPE-DM + insulin, n = 6) was inversely related to
serum glucose levels in a dose-response fashion (Fig 5), with larger aneurysm enlargement in
PPE-DM + insulin compared with PPE-DM mice (POD 14: 1.14 ± 0.05 vs 1.00 ± 0.04 mm,
respectively; P = .0002). PPE-DM mice demonstrated reduced aortic mural neovascularization,
macrophage infiltration, and elastolysis compared with the other two groups (Table).

VEGF does not augment macrophage production in hyperglycemic mice
Significantly fewer macrophages were present in dialysate obtained from hyperglycemic mice
(n = 9) after IP thioglycollate (1.4 ± 0.3 vs 2.2 ± 0.3 × 107 cells/mL in euglycemic mice; n =
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9; P< .0001; Fig 6). VEGF164 administration augmented recovery of thiogly-collate-induced
peritoneal macrophages in euglycemic mice (P = .0171) but did not alter dialysate macrophage
density in DM mice (Fig 6).

Discussion
Hyperglycemia impairs aneurysm progression in two complementary, but mechanistically
distinct, murine models of AAA disease. To our knowledge, these are the first experiments to
identify candidate mechanisms of hyperglycemic AAA suppression in vivo. Reduced AAA
diameter in hyperglycemic mice is accompanied by reduced aortic mural neovascularization,
macrophage infiltration, and medial elastolysis. Insulin-mediated reductions in serum glucose
levels partially negate the protective effects of hyperglycemia on aneurysm progression.

Many metabolic consequences of diabetes increase risk for adverse cardiovascular events.22,
23 In the particular case of AAA disease, however, several of these consequences may
paradoxically serve to limit proteolysis and aneurysm expansion. Aortic mural neovascularity
plays a prominent role in aneurysm pathogenesis,24,25 and hyperglycemia reduces
neoangiogenesis in wound healing26,27 and aortic tissue.28 In murine models of wound healing,
hyperglycemia inhibits neovessel formation by interfering with hypoxia-inducible factor 1
(HIF-1) and HIF-related activation of the nuclear hypoxia response element (HRE), down-
regulating activation of VEGF expression and the angiogenic response.26 Although circulating
VEGF levels are frequently increased in diabetic individuals and mice,29 and diabetes promotes
neovascularization in proliferative retinopathy,30 VEGF levels in select target organs may be
depressed by diabetes secondary to impaired HIF signaling.27

VEGF-induced macrophage recruitment is a critical feature of the angiogenic response, and
macrophages themselves produce VEGF as well as MMP-9.18,31 As was apparent from the
results of our chemical peritonitis experiments, and consistent with prior observation,32,33

hyperglycemia impairs monocyte/macrophage production in response to exogenous VEGF
administration. These results, combined with evidence that angiogenesis inhibitors attenuate
experimental AAA progression,12 suggest that aortic neovessel formation and macrophage
infiltration are interdependent and essential stimuli for aneurysm progression, and that both
appear to be significantly inhibited in the setting of hyperglycemia.

MMP activity is essential to the progression of AAA disease.34-36 In this study, reduced aortic
mural macrophage density was associated with diminished MMP-9 activity and relative elastin
preservation. In addition to limiting macrophage infiltration, hyperglycemia may inhibit MMP
production by activated monocytes. Glycation may modify monocyte/extracellular matrix
interactions by collagen crosslinking; exposure to glutaraldehyde and high glucose
concentrations produces similar reductions in MMP and interleukin-6 expression from
activated monocytes in collage lattices.37 Because MMP activity is essential for endothelial
cell migration and neovascularization, as well as mural macrophage infiltration,17 these
candidate mechanisms may act synergistically to reduce aortic aneurysm inflammation and
disease progression in diabetes.

Although effective in increasing serum glucose levels, streptozotocin-induced hyperglycemia
is more analogous to type 1 (insulin-deficient) than type 2 (insulin-resistant) diabetes.
Consistent with their age and risk factor status, most AAA patients have insulin-resistant
diabetes as a feature of the metabolic syndrome, which may, in its aggregate effects, promote
cardiovascular inflammation and AAA progression. Streptozotocin exposure also induces
significant weight loss and thus may reduce systemic inflammatory responses through immune
suppression (anergy). To control for these limitations, future experiments are planned to use
alternative methods and models, including aneurysm induction in the db/db leptin receptor-
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deficient mouse38 to characterize the influence of insulin resistance on AAA disease
progression. Homozygous db/db mice with genetic mutation of the leptin receptor develop
hyper-glycemia associated with obesity and hyperinsulinemia, more closely approximating
type 2 diabetes.

Beyond influences on mural neovascularization and macrophage infiltration and activation,
additional mechanisms of diabetic AAA suppression almost certainly exist. On the basis of
current evidence, alternative or complimentary mechanisms include hyperglycemic influences
on the fibrinolytic system,39 receptors of advanced glycation end-products,40 and progenitor
cell function.26 Examination of patterns of gene expression throughout the time course of
experimental AAA progression, particularly by application of transcriptome-wide message and
protein profiling techniques, will provide additional insights into alternative mechanisms of
aneurysm suppression in the setting of hyperglycemia.

Conclusions
Hyperglycemia in experimental aneurysm models is associated with attenuated mural
neovascularization, macrophage infiltration, and medial elastolysis, all essential features of
human AAA disease. Understanding of inhibitory mechanisms associated with hyperglycemia
may translate into effective new therapeutic strategies to reduce the morbidity and mortality
associated with AAA disease.
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Fig 1.
Aortic diameters in (A) PPE vs PPE-DM mice (†P = .0016, POD 7; ‡ P < .0001, POD 14) and
(B) ANG vs ANG-DM mice (*P= .0474, POD 14; *P= .0472, POD 21). The range bars show
the standard deviation. ANG, angiotensin II; DM, diabetes mellitus; POD, postoperative day;
PPE, porcine pancreatic elastase.
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Fig 2.
Representative images of CD31 staining in (A) PPE and (B) PPE-DM (original magnification
×400). AD, adventitia; Ao, aorta; M, media. C, Number of medial and adventitial CD31+
vessels (A and B, black arrows) per high power field (HPF). The range bars show the standard
deviation. *P < .0229 vs PPE; small circles represent individual data points, large circle
represents mean of cohort. D, Correlation between neovessel density and aortic diameter, γ =
29.68X – 17.86; correlation coefficient, R = 0.794; P < .0001; PPE (n = 9), PPE-DM (n = 10).
DM, Diabetes mellitus; PPE, porcine pancreatic elastase.
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Fig 3.
Representative images of MAC-2 staining in (A) PPE and (B) PPE-DM (original magnification
×200). M, Media. C, Number of mural MAC-2+ cells per cross-section are shown. The range
bars show the standard deviation. *P = .0325 vs PPE. D, Correlation between macrophage
density and aortic diameter, γ = 418.04X – 284.35; correlation coefficient, R = 0 .777, P< .
0001. E, Correlation between macrophage and neovessel density, γ = 9.53X + 41.51; correlation
coefficient R = .662; P< .01. Data for D and E are from PPE (n = 9) and PPE-DM (n = 10)
mice. DM, Diabetes mellitus; PPE, porcine pancreatic elastase.
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Fig 4.
A representative image of (A) zymographic and densitometric analysis of (B) pro-MMP-9,
(C) pro-MMP-2, and (D) active MMP-2. *P = .0259 vs PPE. Representative images of Elastica-
Masson-stained aortic cross-sections in (E) PPE (F) and PPE-DM (original magnification
×200), and (G) the ratio of stained-elastin-area to media-area. *P = .0209 vs PPE. DM, Diabetes
mellitus; MMP, matrix metalloproteinase; PPE, porcine pancreatic elastase. The range bars
show the standard deviation.

Miyama et al. Page 13

J Vasc Surg. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 5.
Comparison of aortic diameter at baseline and after porcine pancreatic elastase (PPE) infusion
in PPE (n = 6; white bar), PPE-DM (n = 6; grey bar) and PPE-DM + insulin (n = 6; black
bar) mice (POD 7 *P = .0014, #P< .0001; POD 14 *P= .0036, #P = .0002). The range bars
show the standard deviation. DM, Diabetes mellitus; POD, postoperative day.
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Fig 6.
Comparison of peritoneal macrophages in lavage solution from diabetes mellitus (DM) mice
and control mice with thioglycollate-induced peritonitis. *P = .0171, #P < .0001. The range
bars show the standard deviation. NS, No significance; thio, thioglycollate; VEGF, vascular
endothelial growth factor; WT, wild type.

Miyama et al. Page 15

J Vasc Surg. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Miyama et al. Page 16

Table
Cellular and elastin density as a function of diabetes status and insulin therapy in the porcine
pancreatic elastase (PPE) abdominal aortic aneurysm model

Group CD31 + neovessels (per HPF) Mural macrophages (per CSA) Elastin preservation ratio (%)

PPE 18.4 ± 2.9 268 ± 59 14.1 ± 4.7

PPE-DM 11.9 ± 1.7 172 ± 14 23.1 ± 1.6

PPE-DM + insulin 18.4 ± 3.9 263 ± 87 15.6 ± 8.6

CSA, Cross-sectional area; DM, diabetes mellitus; HPF, high-power field (original magnification ×400); PPE, porcine pancreatic elastase.
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