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Abstract
OBJECTIVES—The development of oral squamous cell carcinoma (OSCC) is a complex,
multistep process. To date, numerous oncogenes and tumor-suppressor genes have been
implicated in oral carcinogenesis. Of particular interest in this regard are genes involved in cell
cycling and apoptosis, such BRAF, KRAS, and PIK3CA genes.

STUDY DESIGN—Mutations of BRAF, KRAS, and PIK3CA were evaluated by direct genomic
sequencing of exons 1 of KRAS, 11 and 15 of BRAF, and 9 and 20 of PIK3CA in OSCC
specimens.

RESULTS—Both BRAF and KRAS mutations were detected with a mutation frequency of 2%
(1/42). PIK3CA mutations were detected at 3% (1/35).

CONCLUSIONS—This is the first report implicating BRAF mutation in OSCC. Our study
supports that mutations in the BRAF, KRAS, and PIK3CA genes make at least a minor contribution
to OSCC tumorigenesis, and pathway-specific therapies targeting these two pathways should be
considered for OSCC in a subset of patients with these mutations.
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BACKGROUND
Oral squamous cell carcinoma (OSCC), a subset of head and neck squamous cell carcinoma
(HNSCC), is one of the most common human malignancies worldwide, ranking sixth
amongst all human cancers 1. The 5-year survival rate for OSCC is a mere 50%, a figure
that has remained relatively unchanged for decades 2. Consequently, there has been an
increasing focus on identifying key genetic players that may contribute to OSCC
pathogenesis, with the overall goal of preventing onset and progression of disease.
Furthermore, such knowledge may aid in refining early detection techniques and in
developing novel therapeutic approaches. To date, numerous oncogenes and tumor
suppressor genes have been implicated in the development of OSCC. Of interest in this
regard are mutations in the oncogenes BRAF, KRAS, and PIK3CA.

BRAF is a serine/threonine kinase of the RAF family, which is an integral part of the RAS-
RAF-MEK-ERK-MAP kinase pathway. This pathway plays a role in mediating cellular
response to cell growth. Somatic point mutations of BRAF, such as those that occur at hot-
spot V599E of its kinase domain, can result in elevated kinase function in BRAF 3.
Constitutive ERK activation ensues, which then influences the cell cycle at the G1/S
transition via cyclins D and E, and also p21 4. KRAS, a protein within the RAS family,
functions in the same pathway as BRAF and is located just upstream to it. KRAS appears to
be involved in signal transduction and cell cycle regulation 5–8. To date, there has been only
limited investigation of both BRAF and KRAS mutations in HNSCCs. Of note, mutations in
the RAS gene family (including H-, K-, and N-RAS) have been implicated in upwards of 30%
of all human cancers; however, mutation frequencies within OSCCs are varied (5–50%) and
appear to be dependent on the specific RAS gene and interestingly, geographic location of
the study population 9–15.

Phosphatidylinositide-3-kinases (PI3K) are a family of enzymes that form inositol lipid
products; inositol lipid products play key roles in mediating several intracellular pathways
16. PIK3CA—a heterodimeric, Class 1A enzyme—encodes the p110α catalytic subunit of
PI3K, which is located at the human chromosomal site 3q26.3 17. “Hot spot” mutations of
this enzyme have been shown to be located at E542K, E545K, and H1047R 18, 19, and
result in increased cell survival by inhibiting apoptosis 20. Somatic mutations in PIK3CA
have been documented in a number of human cancers, including hepatocellular, breast,
gastric, lung, esophageal, ovarian, pancreatic, and head and neck cancers 21–25. Three
previous studies have shown the presence of PIK3CA amplification or overexpression in
OSCCs 26–28.

There appears to be limited literature documenting BRAF, KRAS, and PIK3CA mutations in
both HNSCCs and OSCCs. In this paper, we aimed to examine mutational frequencies of all
three genes by polymerase chain reaction (PCR) amplification and direct genomic
sequencing in a cohort of OSCC specimens.

PATIENTS AND METHODS
Patients and Tissue Samples

Forty-five formalin-fixed, paraffin-embedded OSCC specimens were retrieved from
Columbia University’s Oral Diagnostic Biopsy Service. This is a non-overlapping set of
specimens from our previous HNSCC studies 29, 30. The histologic diagnosis and grading
of each tumor was verified on hematoxylin-eosin stained slides using the criteria established
by the World Health Organization 31. A board-certified Oral Pathologist (Dr. Woo), who
was blinded from all clinical data, performed this verification of the specimens.
Demographic data, tumor location, and tumor differentiation for all samples analyzed are
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provided in Table 1. Detailed clinicopathologic information (e.g. TNM staging) was often
difficult or impossible to analyze owing to the absence of such data in biopsy-obtained
specimens. All procedures were performed with approval from the Institutional Review
Board (IRB) of Columbia University Medical Center and in accordance with Health
Insurance Portability and Accountability Act (HIPAA) regulations.

DNA Samples and Mutation Analysis
Each specimen was microdissected and the genomic DNA was extracted using the QIAmp
DNA Mini Kit (California, USA), following the manufacturer’s tissue protocol. All DNA
concentrations were subsequently measured by spectrophotometer to ensure the presence of
adequate amounts of DNA. PCR amplification of genomic DNA was performed and
analyzed for mutations in the following genes: BRAF (exons 11 and 15), KRAS (exon 1), and
PIK3CA (exons 9 and 20). These regions included the most common KRAS, BRAF, and
PIK3CA mutations previously observed in human cancers 18, 32–34. Direct sequencing of
each individual PCR product was then carried out. Each sample, consisting of 40ng of
genomic DNA, was amplified with primers that covered the entire coding region and the
exon/intron boundaries of the exon to be analyzed (E11F/ E11R and E15F/E15R of BRAF;
E1F/E1R of KRAS; E9F/E9R and E20F/E20R of PIK3CA) as per previous studies 29, 35,
36. The genomic sequencing was performed with ABI’s 3100 capillary automated
sequencers at the DNA Core Facility of Columbia University Medical Center. Upon analysis
of the sequencing results, all mutations were verified by independent PCR analysis and
successive reverse-sequencing of the PCR product. PCR primers were also utilized as the
sequencing primers. Corresponding normal tissues derived from surrounding nontumorous
tissue or from a tumor-free block (as determined by Dr. Woo) served as the normal control
for each patient.

RESULTS
A total of three mutations were found within the 45 cases of OSCC. Due to varying
concentrations of DNA in the specimens and varying sensitivities of the primers, each gene
that was analyzed had a different sample size. One of the 42 samples analyzed demonstrated
a BRAF mutation (2.4%, exon 11, G412A). The specimen containing the mutation was a
moderate-to-poorly differentiated OSCC obtained from the maxillary alveolar mucosa
(Figure 1). One of the 42 samples analyzed demonstrated a KRAS mutation (2.4%, exon 1,
G12D). This specimen was a moderately differentiated OSCC obtained from lateral tongue
(Figure 2). Lastly, one of the 35 samples analyzed demonstrated a PIK3CA mutation (3%,
exon 9, E545K). This specimen was a moderateto-poorly differentiated OSCC obtained
from the ventral tongue (Figure 3).

Normal tissue from the specimens containing the PIK3CA, BRAF and KRAS mutations were
examined by sequencing analysis. No mutations were detected in the corresponding normal
tissues, suggesting that these mutations were somatic in nature.

DISCUSSION
The results of our study show a mutation frequency of 2.4% in BRAF; 2.4% in KRAS; and
2.9% in PIK3CA, respectively. It should be noted that the sample size was variable between
the three genes (see Table 1). We believe that this was due to either the variability in tumor
cellularity of each specimen or the sensitivity of the primers. Although all three of these
genes have been previously implicated in HNSCCs, there is little data regarding their
involvement in OSCCs. Shelly et al examined BRAF mutations occurring in exon region 15
in canine oral cancer specimens and found no mutations in their cohort of samples 37.
Weber et al investigated both BRAF and KRAS mutations via PCR analysis of genomic
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DNA in HNSCC of various sites 14. This group demonstrated a 3% mutation frequency of
BRAF, also in the exon 15 region, in their pharynx and hypopharynx specimens but none in
oral specimens. They also identified a 6% mutation frequency of KRAS, which were found
in specimens deriving from the pharynx and floor of mouth. Hoa et al noted overexpression
of the KRAS protein by reverse transcriptase-PCR (RT-PCR) in their HNSCC cell lines 38.
Also, oncogenic activation of KRAS was previously shown to have a causal role in the
development of oral cancer in mice and humans; this was demonstrated via mouse modeling
and subsequent RT-PCR 39 and cell transfection assays 40. It is interesting to note that
variability in the frequency of KRAS mutations has been linked to ethnicity and certain
environmental factors, such as use of chewing tobacco 11, 13, 41–43.

The missense mutation detected in PIK3CA exon 9 in our study was a previously reported
“hot spot” mutation for squamous cell carcinoma 44, 45. Our results are in agreement with
Samuels et al who confirmed that an increasing number of mutations (>75%) were found to
be located in the helical and kinase domains of PIK3CA, which includes exons 9 and 20 18.
PIK3CA mutants were noted to have increased lipid kinase activity, seemingly due to
alterations in the p110α catalytic subunit, with a subsequent downstream constitutive
activation of Akt signaling 18, 19. Mutations—such the E545K mutation—were shown to
promote aberrant cell growth in vitro and induce tumorigenesis at a rate of 50% in newly
hatched chicks 19. The mutation frequency for PIK3CA for our study is slightly lower than
those reported in other SCC studies: namely, 11% in a HNSCC series, and 7.4 and 21.4% in
OSCC clinical specimens and cell lines, respectively 29, 44. The reason for this disparity
remains unclear to us; although we propose that sample size and geographic differences in
the study populations (Asian vs. North American) may play roles.

We do recognize that there are several limitations to this study, including the restricted
sample size and lack of clincopathologic data. Investigating the mutational frequencies of
these three genes in OSCC resection specimens will be desirable in the near future, where
factors of prognostic significance, such as patient-related factors (e.g. ethnicity, tobacco
history, etc.) and tumor-related factors (e.g. tumor thickness, perineural invasion, etc.), are
more easily accessible. Of particular interest is exploring a possible correlation with
histologic differentiation, as the three mutations identified in this study occurred in
moderately and poorly differentiated tumors.

Although somatic mutations of KRAS, BRAF, and PIK3CA are not frequent events in OSCC,
as suggested by our study, the detection of these mutations is important to support the notion
that the RAS-RAF-MEK-ERK-MAP kinase and PIK3CA-PTEN-AKT pathways are involved
in OSCC tumorigenesis. The oncogenic activations of these pathways may include
additional mechanisms other than small mutations, such as amplification and
overexpression. For example, it has been shown previously that PIK3CA is frequently
amplified in OSCC 26–28, 44. Although PIK3CA amplification has not been shown to be a
useful prognosis marker in OSCC, PIK3CA mutation and amplification have been associated
with advanced stages of OSCC and metastasis 28, 44. Future studies should investigate
possible roles of PIK3CA in metastasis. Our findings advocate that pathway-specific
therapies targeting these two pathways should be pursued in OSCC.
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Figure 1.
BRAF mutation in a maxillary alveolus OSCC. A. Direct genomic sequencing result. All
mutations within the nucleotide sequences are indicated by the black arrows. All mutations
were verified by a second independent sequencing analysis and anti-sense sequencing.
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Figure 2.
KRAS mutation in a lateral tongue OSCC. A. Direct genomic sequencing result. All
mutations were verified by a second independent sequencing analysis and anti-sense
sequencing.
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Figure 3.
PIK3CA mutation in a ventral tongue OSCC. A. Direct genomic sequencing result. All
mutations were verified by a second independent sequencing analysis and anti-sense
sequencing.
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