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Abstract
Increasing evidence indicates neuroinflammation is instrumental in the pathogenesis of
Parkinson's disease (PD). In PD, there is selective degeneration of neuromelanin (NM)-containing
dopamine neurons. Neuromelanin is predominantly cytoprotective within dopaminergic neurons,
whereas, NM released from damaged neurons activates microglia. However, the effects of NM on
astroglial cells remain largely unknown. Astroglia are essential to neuronal homeostasis and
responsive to injury, in part, through secretion of chemokines, including interferon γ inducible
protein-10 (CXCL10). Thus, we used an in vitro approach to identify the effects of NM on TNFα-
induced CXCL10 expression in human astroglial cells. TNFα-induced CXCL10 expression was
inhibited in NM exposed cells. Additionally, TNFα-induced NF-κB activation was inhibited by
NM. Given that CXCL10 expression is NF-κB-dependent in human astroglial cells, these findings
suggest that NM may inhibit CXCL10 expression, in part, through an NF-κB-dependent
mechanism. While the in vivo consequences of NM mediated effects on astroglial CXCL10
expression remain to be fully elucidated, insights obtained in this study further our understanding
of the effects of NM on inflammatory signaling in human astroglial cells.
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Parkinson's disease (PD) affects the pigmented nigrostriatal dopaminergic neurons and
results in a progressive neurodegeneration of these neurons. Parkinson's disease is
distinguished as the second most common neurodegenerative disorder with a prevalence of
0.1% of the global population [39]. Clinical manifestations of PD include akinesia,
bradykinesia, a rhythmic involuntary tremor at rest (‘pill rolling movement’), postural
instability, and extrapyramidal rigidity in which major muscle groups become stiff,
collectively referred to as parkinsonism. The appearance of parkinsonism develops when
loss of at least 50% of the dopaminergic neurons in the substantia nigra (SN) pars compacta
(SNpc) occurs, leading to a reduction of over 80% in dopamine levels in the striatum [39].
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Impairment of dopaminergic neurotransmission and parkinsonism are also observed in HIV
infected subjects with HIV dementia [24]. Similarly, significant neuronal degeneration is
observed in the substantia nigra of HIV infected individuals [21].

The exact mechanism responsible for the neuronal loss in PD and HIV dementia is not
completely understood; however, oxidative stress [1,29], mitochondrial dysfunction [29] and
neuroinflammation [16,20] are involved. In terms of neuroinflammation, levels of the
proinflammatory cytokine TNFα are markedly elevated in the SN and cerebral spinal fluid
(CSF) of individuals with PD [6,28] and HIV-1 infection [37,38]. Likewise, certain
chemokines are up-regulated in the CNS of those with neuropathologies associated
dopamine neurons, including PD [31], animal models of PD [22] and HIV-1 infection [23].
Importantly, increasing evidence points to activated astrocytes as contributors to the loss of
dopaminergic neurons [19,27,43]. Elevated TNFα is likely one of several factors which
activate astroglia during states of neuroinflammation, resulting in release of
proinflammatory and neurotoxic molecules [36,40]. Chemokines are among the astroglial
derived products thought to contribute to neuropathogenesis [20,31,43]. We are particularly
interested in CXCL10, a chemokine which is known to be neurotoxic [33] and in a murine
PD model has been reported to be elevated in the striatum and the ventral midbrain [22].
CXCL10 is also chemoattractant for activated T cells [35], monocytes/macrophages [35],
and microglia [17], has antimicrobial activity [11], and induces astrocyte proliferation [17].
Thus, depending on the temporal, regional and magnitude of expression in the brain,
CXCL10 may be neuroprotective or neurotoxic. Likewise, while dopamine neurons
containing the pigment neuromelanin (NM) selectively degenerate in PD, the extent to
which NM contributes to neurodegeneration versus neuroprotection remains unclear. Indeed,
there is increasing interest in understanding the role of extracellular NM in
neuropathogenesis [5,42,49]. Based on these collective insights, the objective of this study
was to identify the effects of NM on TNFα-induced CXCL10 expression in human astroglial
cells. These findings are expected to further our understanding of the role of astroglia and
chemokines in the neuropathology involving dopaminergic neurons.

The human A172 astroglial cell line (ATCC #CRL-1620; American Type Culture
Collection, Manassas, VA) is well documented as a useful model in pharmacology- and
neurochemistry-based studies [14]. A172 cells were maintained in Dulbecco's modified
Eagle's medium containing 2 mM L-glutamine, 10% fetal bovine serum, 1% nonessential
amino acids, 50 U/ml penicillin, 0.05 mg/ml streptomycin and 2 μg/ml amphotericin B. Cell
cultures were maintained in a humidified incubator at 37°C, 5% CO2 and 95% air with the
medium changed every 48–72 h. Experimental cultures were seeded at a cell density to
provide 80–90% confluence at the time of treatment.

Neuromelanin was isolated as previously described [47] from SN samples obtained during
autopsies of subjects who died without any known neurological or psychiatric disorders. The
purity of the NM was assessed by elemental analysis, amino acid analysis and electron
paramagnetic resonance spectroscopy as previously described [44,45]. Shortly before the
experiments were initiated a stock suspension of NM was prepared in sterile water (0.5 mg/
ml) and stored at 4°C. Just prior to initiating the experiment, the NM suspension was diluted
to desired concentrations (0.02-15 μg/ml) in serum-free culture medium and incubated at
room temperature for 2 h before adding to cell cultures. The biological relevance of this
concentration range of NM was based on the in situ concentrations found in the SN of
normal subjects [46].

A172 cells were cultured in serum free medium for 48 h in the presence or absence of NM
(0.02-15 μg/ml). Cells were then co-exposed to human recombinant TNFα (5 ng/ml;
Peprotech, Rocky Hill, NJ) for an additional 24 h. While TNFα concentrations in human
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brain tissue are not well established, 5 ng/ml is within the range typically used for in vitro
stimulation of glia and immune cells [41,50]. Following the treatment period, levels of
secreted CXCL10 protein in the culture media were quantitated using a standard dual-
antibody solid phase immunoassay (Human CXCL10/IP-10 ELISA Development Kit,
Peprotech, cat# 900-K39), according to the manufacturer's instructions as previously
described [12]. Absorbance was read at 450 nm (with wavelength correction set at 650 nm)
on a BIOTEK HT spectrophotometer.

To assess mitochondrial integrity/cell viability, parallel experiments were performed
followed by performance of the MTT assay according to a modified version of the
procedure described by [8]. Following, the 72 h treatment period, culture media was
replaced with fresh serum free medium containing 0.55 mg/ml 3-[4,5-dimethylthiazol-2-
yl]-2,5,-diphenyltetrazolium bromide (MTT) and cultures returned to the humidified
incubator (37°C, 5% CO2 and 95% air) for 45 min. Media was removed from the cultures,
cells dissolved in 1 ml dimethyl sulfoxide and absorbance measured at 492 nm using a BIO-
TEK HT spectrophotometer.

To assess NM effects on NF-κB activation, cells were treated as described above, except the
cells were only exposed to TNFα for the final 0.5 h of the 72 h NM exposure period.
Nuclear protein fractions were obtained as described in our previous report [15]. NF-κB
p65- and NF-κB p50-DNA binding activity was determined using a Transcription Factor kit
(Thermo Scientific) according to manufacturer's instructions. Luminescence of the labeled
NF-κB-DNA product was measured using a BIO-TEK HT spectrophotometer. Additionally,
total cell protein/well was determined using the bicinchoninic acid (BCA) protein assay as
previously described [13] in order to normalize data when appropriate.

Prism™ version 4.0 software (GraphPad Inc.) was used for figure presentation, percent
transformations and statistical analysis. Analyses included one-way analysis of variance
(ANOVA) with Dunnett's comparison post hoc test. Data from 2-5 independent experiments
are presented as mean + S.E.M. A probability (p) of < 0.05 was accepted as demonstrating
statistically significant differences between groups. The number of replicate measures and
independent experiments from which the data were obtained are provided in the individual
figure legends.

Based on the MTT assay, cell viability was not significantly affected by TNFα or TNFα +
NM (Fig. 1). Similarly, NM alone did not alter cell viability (data not shown). Constitutive
expression of CXCL10 protein was relatively low, whereas, TNFα significantly induced
CXCL10 expression (Fig. 2). NM alone had no effect on CXCL10 expression at any
concentration tested (data not shown). However, NM exposure (≥ 5 μg/ml) significantly
inhibited TNFα-induced CXCL10 expression in human astroglial cells (Fig. 2).

NF-κB activation, as determined by nuclear levels of NF-κB p65 and p50 protein, was
relatively low in untreated controls and cells exposed to NM alone (Fig. 3). Conversely,
TNFα significantly enhanced nuclear levels of both NF-κB p65 and p50 protein (Fig. 3).
TNFα-induced NF-κB p65 activation was inhibited by ≥ 0.6 μg/ml NM, whereas, NF-κB
p50 activation was not significantly altered by NM (Fig.3).

Inhibition of astroglial CXCL10 expression by NM may be particularly important in our
efforts to elucidate the role of NM in certain neuropathologies, including PD. It is known
that in the SN of patients affected by PD a significant amount of extracellular NM is present
and around these NM granules was observed an accumulation of activated microglia
[4,25,26]. While there is increasing evidence that NM is involved in PD neuropathogenesis,
it remains unclear exactly to what extent NM contributes to neurodegeneration versus
neuroprotection. NM synthesis prevents accumulation of cytosolic catecholamines, thereby
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providing protection to dopaminergic neurons [34]. Furthermore, NM can be cytoprotective
in dopaminergic neurons through chelation of redox active metals, and a variety of other
toxic metals and compounds [48]. In contrast to intracellular NM, NM released from
damaged dopaminergic neurons results in microglial activation and production of neurotoxic
molecules which further damage dopaminergic neurons [42,47,49].

Chemokines, including CXCL10, appear to be associated with dopaminergic
neurodegeneration. For instance, in the 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine
(MPTP) model of murine PD, CXCL10 mRNA expression was up regulated in the striatum
and the ventral midbrain; however, the cellular source of CXCL10 was not determined [22].
Similarly, evidence points to the involvement of CXCL10 in HIV-1 associated
neuropathology [10,32].

The consequences of altered chemokine (i.e, CXCL10) expression in dopaminergic
associated neuropathology have not been fully elucidated. Modulation of astroglial CXCL10
expression by NM, could potentially have important implications in neuropathologies
associated with dopaminergic neurons. Astroglial chemokine expression is of particular
interest given these cells are the most prevalent cell type in the human CNS and are essential
for neuronal homeostasis, response to injury, maintenance of the blood-brain barrier and a
major source of chemokines in the brain [3,9,30].

In terms of direct NM mediated effects, we did not observe NM induced cytotoxicity in
A172 cells, but did in human SK-N-SH neuronal cells (data not shown). Together, these
findings are consistent with the concept that glial cells in the brain can survive under
conditions where neuronal cells degenerate. Also, we provided in vitro evidence that
extracellular NM may also exert anti-inflammatory actions. That is, TNF-induced CXCL10
expression in human astroglial cells was inhibited in NM exposed cells. The specific in vivo
consequences of NM mediated inhibition of astroglial CXCL10 expression remain to be
determined. However, under conditions where CXCL10 is inducing neurotoxicity, NM
would potentially be neuroprotective. Conversely, in a microenvironment where CXCL10 is
providing neuroprotection (i.e., immune responsiveness or neurotrophic support) inhibition
of CXCL10 by NM may be detrimental to neurons in the region. It is also important to note
that while this report is focused on a single chemokine, CXCL10, preliminary studies
indicate CCL2 expression is also inhibited by NM (data not shown).

Activation of the transcription factor, NF-κB, is associated with dopaminergic associated
neuropathology. For instance, within the ventral midbrain of PD patients, NF-κB p65 levels
are elevated in microglia and astrocytes as compared to age-matched controls [18].
Similarly, in a mouse model of PD, MPTP significantly induced NF-κB activation in
astrocytes of the SN [2]. Numerous inflammatory responses in astrocytes, including
chemokine expression, are transcriptionally regulated by NF-κB [7,36]. In particular, we
previously utilized functionally distinct inhibitors of NF-κB activation to demonstrate that
TNFα-induced CXCL10 expression in human A172 astroglial cells is NF-κB-dependent
[12]. Interestingly, the data presented in this manuscript suggest that NM may inhibit TNF-
induced CXCL10 expression in human astroglial cells, in part, through an NF-κB p65
dependent mechanism. The importance of NM mediated inhibition of NF-κB activation
likely extends beyond just inhibition of CXCL10 expression. That is, the expression of many
inflammatory molecules in astrocytes is transcriptionally regulated by NF-κB, thus, NM
may inhibit transcription of multiple inflammatory molecules in astroglia. Seemingly in
contrast, in rat microglia, NM induces inflammatory signaling including NF-κB activation,
and expression of inducible nitric oxide synthase and TNFα [42,49]. In previous work [49],
NM injected into the rat SN induced microgliosis and astrogliosis. It was speculated that
astrocytosis was a protective response consequent to the neurodegeneration induced by
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activated microglia. However, based on the present data we can suggest also a direct effect
of NM on astrocytes which would counteract the neurodegenerative effect caused by
microglia. Together, these findings suggest that NM modulation of inflammatory signaling
may differ among glial cell types. However, to our knowledge, this is the first report of NM
effects on NF-κB activation and CXCL10 expression in human astroglial cells.

Therefore, this study provides novel insights into the effects of NM on inflammatory
signaling in human astroglial cells. Further investigation is needed to fully elucidate the
mechanism by which NM inhibits inflammatory signaling in astroglial cells and determine
the in vivo consequences of these NM mediated effects in astroglia.
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Figure 1. Neuromelanin is not cytotoxic to TNFα-stimulated human A172 astroglial cells
A172 cells were cultured in serum free medium for 48 h in the presence or absence of NM
(0.02-15 μg/ml), then co-exposed to human recombinant TNFα (5ng/ml) for an additional 24
h. To assess mitochondrial integrity/cell viability, the MTT assay was performed. Data were
normalized as percent control (TNFα alone) within each experiment and presented as the
mean + S.E.M. of triplicate measures from 2-3 independent experiments. No significant
differences (P < 0.05) among treatments were detected by one-way ANOVA.
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Figure 2. Neuromelanin inhibits TNFα-induced CXCL10 protein expression in human A172
astroglial cells
A172 cells were cultured in serum free medium for 48 h in the presence or absence of NM
(0.02-15 μg/ml), then co-exposed to human recombinant TNFα (5ng/ml) for an additional 24
h. Secreted CXCL10 protein in the culture media was then quantitated using a standard dual-
antibody solid phase immunoassay, according to the manufacturer's instructions as
previously described [12]. Absorbance was read at 450 nm (with wavelength correction set
at 650 nm) on a BIOTEK HT spectrophotometer. Data were normalized as percent control
(TNFα alone) within each experiment and presented as the mean + S.E.M. of triplicate
measures from 3-4 independent experiments. Statistical differences determined by one-way
ANOVA with Dunnett's post-hoc comparisons. *P < 0.05 vs TNFα; **P < 0.01 vs TNFα.
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Figure 3. Neuromelanin inhibits TNFα-induced NF-κB activation in human A172 astroglial cells
A172 cells were cultured in serum free medium for 72 h in the presence or absence of NM
(0.6 or 15 μg/ml). Cells were co-exposed to human recombinant TNFα (5ng/ml) for the final
0.5 h of the 72 h NM exposure period. Nuclear protein fractions were obtained and NF-κB
p65- and NF-κB p50-DNA binding activity was determined using a Transcription Factor kit,
according to manufacturer's instructions. Binding activity was determined by luminescence
of the labeled NF-κB-DNA product as measured using a BIO-TEK HT spectrophotometer.
Binding activity was normalized to total nuclear protein and presented as arbitrary units.
Data represent the mean + S.E.M. of duplicate measures from 2 independent experiments.
Significant differences were determined by one-way ANOVA with Dunnett's post-hoc
comparisons. **P < 0.01 vs TNFα.
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