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Abstract

Glycogen storage disease type II (GSD-II; Pompe disease; MIM 232300) stems from the inherited 

deficiency of acid-α-glucosidase (GAA; acid maltase; EC 3.2.1.20), which primarily involves 

cardiac and skeletal muscles. We hypothesized that hydrostatic isolated limb perfusion (ILP) 

administration of an adeno-associated virus (AAV) vector containing a muscle specific promoter 

could achieve relatively higher transgene expression in the hindlimb muscles of GAA-knockout 

(GAA-KO) mice, in comparison with intravenous (IV) administration. ILP adminstration of 

AAV2/8 vectors encoding alkaline phosphatase or human GAA transduced skeletal muscles of the 

hindlimb widely, despite the relatively low number of vector particles administered (1×1011), and 

IV administration of an equivalent vector dose failed to transduce skeletal muscle detectably. 

Similarly, ILP administration of fewer vector particles of the AAV2/9 vector encoding human 

GAA (3×1010) transduced skeletal muscles of the hindlimb widely and significantly reduced 

glycogen content to, in comparison with IV administration. The only advantage for IV 

administration was moderately high level transduction of cardiac muscle, which demonstrated 

compellingly that ILP administration sequestered vector particles within the perfused limb. 

Reduction of glycogen storage in the extensor digitorum longus demonstrated the potential 

advantage of ILP-mediated delivery of AAV vectors in Pompe disease, because type II myofibers 

are resistant to enzyme replacement therapy. Thus, ILP will enhance AAV transduction of 

multiple skeletal muscles while reducing the required dosages in terms of vector particle numbers.

Keywords

Glycogen storage disease type II; gene therapy; hydrostatic delivery; isolated limb perfusion; 
adeno-associated virus; acid alpha-glucosidase; acid maltase; Pompe disease

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*To whom correspondence should be addressed at: DUMC Box 103856, Duke University Medical Center, Durham, NC 27710. 

CONFLICT OF INTEREST
The authors have no competing interests as defined by Nature Publishing Group, or other interests that might be perceived to influence 
the results and discussion reported in this paper.

HHS Public Access
Author manuscript
Gene Ther. Author manuscript; available in PMC 2011 June 01.

Published in final edited form as:
Gene Ther. 2010 December ; 17(12): 1500–1505. doi:10.1038/gt.2010.109.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


INTRODUCTION

The infantile form of Pompe disease (acid maltase deficiency; glycogen storage disease type 

II; MIM 232300) is a progressive, lethal metabolic myopathy. Pompe disease is 

characterized by the massive accumulation of lysosomal glycogen in striated muscle with an 

accompanying disruption of cellular functions. Infantile-onset Pompe disease causes death 

early in childhood from cardiorespiratory failure related to an underlying hypertrophic 

cardiomyopathy 1 Late-onset forms of Pompe disease feature progressive weakness without 

significant cardomyopathy, and patients with juvenile-onset Pompe disease typically 

become ventilator-dependent due to respiratory muscle involvement.

Pompe disease results from the inherited deficiency of lysosomal acid α-glucosidase (GA; 

acid maltase; EC 3.2.1.20). Currently enzyme replacement therapy (ERT) has received 

marketing approval in Pompe disease. ERT in Pompe disease is facilitated by mannose-6-

phosphate (M6P) receptor-mediated uptake of the 110 kD precursor GAA.1–3. The 

limitations of ERT in Pompe disease include humoral immunity, the requirement for high 

dosages to achieve efficacy, and the high frequency of intravenous infusions. 4,5 In clinical 

trials of ERT in Pompe disease, up to 40 mg/kg of hGAA was required to improve clinical 

endpoints in clinical trials.6–8 High-titer anti-GAA antibody formation has been 

demonstrated in Pompe patients who lacked any residual GAA protein, termed cross-

reacting immune material negative (CRIM-negative). Neutralizing antibodies occurred in 

CRIM-negative Pompe disease patients, and markedly reduced the efficacy of ERT in these 

subjects.6,7,9 Thus, other therapeutic approaches such as gene therapy are under 

development for Pompe disease.

The strategy of liver-targeted gene therapy in Pompe disease depends upon the conversion 

of the liver into a depot for GAA production. The liver secreted GAA into circulating blood, 

similar to injections of recombinant GAA during ERT, which will be taken up by affected 

muscles to correct glycogen storage. Hepatic expression of human GAA has achieved a 

moderate degree of efficacy in mouse models.10–12 This strategy was limited in some 

experiments by anti-GAA antibody formation, accompanied by markedly reduced efficacy.

10,11 However, AAV vectors containing a liver-specific promoter induced immune 

tolerance against hGAA in GAA-KO mice and efficiently cleared glycogen in cardiac 

muscle and the majority of skeletal muscles.10–12 The over-expression of hGAA in liver 

might not be ideal, because the liver is not a therapeutic target and biochemical correction of 

striated muscles has been inconsistent in proof-of-concept experiments. Uptake of GAA has 

been reduced at least in part by down-regulation of the cation-independent mannose-6-

phospahte receptor in type II myofibers, which leads to uncomplete clearance of 

accumulated glycogen in the striated muscles by ERT or hepatic expression of GAA.5

Muscle-targeted gene therapy might be a more efficient approach to gene therapy in Pompe 

disease. Muscle-restricted transgene expression with a muscle-specific expression cassette 

has evaded transgene-directed immune responses; furthermore, this strategy reduced 

glycogen accumulations in the heart to near-normal levels, and to a lesser extent in skeletal 

muscle.13,14 The ideal approach might be to inject an AAV vector intravenously to 

transduce muscle widely with a muscle-specific transgene. While AAV vectors have 
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delivered genes to striated muscle following intravenous administration, achieving efficacy 

without disrupting vascular integrity depended upon the administration of very high 

numbers of vector particles 14,15, which might not be feasible clinically due to the limits 

imposed by limitations of production and potential T cell responses against the vector capsid 

proteins.16

One strategy that might reduce the number of vector particles required to transduce skeletal 

muscle is isolated limb perfusion (ILP), which has the potential to correct multiple limb 

muscles with lower number of vector particles.17,18 ILP involves the rapid injection of a 

plasmid or viral vector while a proximal tourniquet occludes venous drainage of the limb, 

which creates sufficient pressure to disrupt vascular integrity and to release the vector 

solution into surrounding muscle. Originally developed in rat models with plasmid DNA, 

this method has been adapted to the delivery of viral vectors in larger animal models, and 

enhanced transduction of limb muscles was demonstrated with AAV vectors in comparison 

with low-pressure intravenous (IV) infusion. 17–19 The widespread transduction of skeletal 

muscle following hydrostatic ILP suggested that this approach might be advantageous for 

the development of muscle-targeted gene therapy in Pompe disease.

We have evaluated the relative efficacy of low dose AAV vector-mediated GAA expression 

in mice with Pompe disease, administered either by IV injection or hydrostatic ILP. The 

number of vector particles administered (1×1011) previously failed to achieve biochemical 

correction of hindlimb muscles following IV injection with the AAV2/8 vector evaluated, an 

highly efficacious AAV2/9 vector was administered at even lower dose (3×1010), to test the 

limits of efficacy for ILP in this study.

RESULTS

Systemic correction of skeletal muscles in GAA-KO mice required IV administration of a 

very high number of AAV vector particles.14 In order to increase transduction of hindlimb 

muscles with fewer vector particles, an AAV vector containing the highly active muscle-

specific MHCK7 regulatory cassette to drive human placental alkaline phosphatase (AP) 

expression was administered by ILP.20 AP staining demonstrated widespread transduced 

myofibers in the quadriceps, gastrocnimus and extensor digitorum longus (EDL) muscle 

following ILP administration. IV administration of the equivalent number of vector particles 

resulted in much less transduction of skeletal muscles and much more transduction of 

cardiac muscle, in comparison with ILP administration (Figure 1).

We next confirmed that isolated limb perfusion (ILP) of the AAV2/8 vector greatly 

increased AAV transduction and GAA expression in multiple hindlimb muscles of GAA-

KO mice. AAV-MHCK7hGAApA, which contains the MHCK7 regulatory cassette to drive 

human GAA expression, was packaged as AAV2/8 and administered to 3-month-old GAA-

KO mice by hydrostatic ILP or IV injection, and control mice were administered PBS by 

ILP injection. Eighteen weeks following vector administration, high level of GAA 

expression were detected in multiple limb muscles including the gastrocnemius, soleus, EDL 

and quadriceps, in ILP vector-injected mice (Figure 2A). The efficiency of ILP 

administration was higher in three out of 6 GAA-KO with lower glycogen content in the 
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gastrocnemius, and the ILP results were sorted into two groups accordingly (Figure 2B; ILP, 

High vs Low; p=0.049). Biochemical correction was confirmed by demonstrating that 

glycogen reduction was marked following ILP in the hindlimb muscles, including 

gastrocnemius (64%), soleus (70%), EDL (38%), and quadriceps (43%), in comparison with 

PBS-injected GAA-KO mice.

In contrast, the IV-injected mice were found to have elevated GAA activity only in the heart, 

not in skeletal muscles (Figure 2A). Glycogen content was not reduced in the hindlimb 

muscles following IV administration, in comparison with PBS-injected GAA-KO mice 

(Figure 2B). Furthermore, glycogen content was reduced to a greater extent following ILP in 

comparison with IV administration in quadriceps (p=0.02), soleus (p=0.01), and EDL 

(p=0.03) (Figure 2B). The mean glycogen content of gastrocnemius for the higher efficiency 

ILP group (ILP High) was significantly reduced in comparison with the IV group (p=0.008); 

however, combining the results for all ILP-treated mice did not reveal significantly reduced 

glycogen content in the gastrocnemius in comparison with the IV group (p=0.06). The 

differing response between ILP High and Low groups reflected variations in transduction 

efficiency with hydrostatic ILP over the course of the initial experiment, which did not 

preclude significantly improved biochemical correction in 75% of the skeletal muscles 

analyzed over that achieved by IV administration. Differences in anti-GAA antibody levels 

were detected by ELISA between groups of GAA-KO mice following ILP and IV injections. 

The antibody levels were higher in ILP injected mice when compared with IV injected mice, 

and did not interfere with efficacy in terms of biochemical correction of striated muscle 

(Figure 2C). Furthermore, efficacy in skeletal muscle did correlate with vector genome 

quantification. For gastrocnemius, vector genomes were increased following ILP 

administration, in comparison with IV administration (0.11±0.05 versus 0.001±0.001, 

respectively), as quantified by Realtime PCR.

The pattern of GAA expression was further confirmed by Western blot analysis of muscles 

from each group following AAV2/8 vector administration (Figure 3). Glycogen staining 

revealed glycogen clearance in most myofibers in the gastrocneminus of the ILP vector-

injected mouse (Figure 4). Despite the presence of anti-GAA antibodies in all vector-

injected mice (not shown), long-term GAA expression and glycogen clearance was achieved 

in AAV-transduced muscle cells.

Subsequently the number of vector particles was further reduced to evaluate the efficacy of 

ILP at a lower dose. Previously AAV2/9 was deemed a more efficient pseudotype for the 

correction of skeletal muscle than AAV2/8 in GAA-KO mice.14 The AAV2/9 vector was 

administered at a lower dose (3×1010 vp), either by ILP or IV administration.

Immune responses that might reduce efficacy were prevented by treating the tolerant GAA-

KO mouse strain. GAA-KO mice were previously rendered immune tolerant to human GAA 

through the insertion of a low-expressing liver-specific transgene that prevented antibody 

formation in response to long-term ERT 5, Immune tolerant GAA-KO mice would be 

anticipated to achieve a higher degree of efficacy from a given dose of AAV vector, due to 

the potential for secretion of GAA from transduced myofibers and the receptor-mediated 

uptake of GAA by nontransduced myofibers. Initially the absence of antibody formation was 
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confirmed by persistent expression of GAA in plasma in vector treated mice as detected by 

Western blot (not shown). Consistent with earlier results, ILP administration significantly 

increased the GAA activity of hindlimb muscles other than quadriceps (p<0.05), in 

comparison with IV administration (Figure 5A). All mice treated with ILP responded 

demonstrated similarly reduced glycogen content in the hindlimb muscle during the second 

experiment, possibly related to increased experience with the method. Glycogen 

accumulations were significantly reduced in the gastrocnemius (p=0.0005), soleus 

(p=0.0004), and EDL (p=0.03) muscles by ILP administration, in comparison with IV 

(Figure 5B). However, IV administration significantly elevated GAA activity (p=3 ×10−8) 

and reduced glycogen content in the heart (p=0.0007) in comparison with ILP administration 

(Figure 5), confirming the advantage of systemic delivery with regard to correction of 

cardiac muscle.

DISCUSSION

Previously we have demonstrated that muscle targeted gene therapy is an effective approach 

for treatment of GAA-KO mice.13, 14 Muscle-restricted expression of hGAA with an AAV 

vector containing a muscle-specific promoter provoked only a humoral, but not a cellular 

immune response in GAA-KO mice by the evidence of a lack of lymphocytic infiltrates and 

absence of CD8+ lymphocytes in the injected muscle.13 However, systemic correction of 

muscle glycogen content requires intravenous administration of a very high number of AAV 

vector particles.14 The adaptation of ILP for muscle-targeted gene therapy in the mouse 

model has currently demonstrated biochemical correction of GAA deficiency and glycogen 

storage in hindlimb muscles at a much lower vector dose. Previously a 10-fold higher 

number of AAV2/8 vector particles achieved similar levels of biochemical correction in 

skeletal muscles, and the lower number of vector particles administered in this study has 

been consistently inefficacious when administered by the IV route.14 While the 3-fold lower 

number of AAV2/9 vector particles failed to express GAA as highly or reduce glycogen 

accumulations as effectively in a second experiment, the principle of higher efficiency 

transduction of skeletal muscle with fewer vector particles using ILP has now been 

convincingly established in the GAA-KO mouse model for Pompe disease. The main 

limitation of ILP is a lack of cardiac muscle transduction, which would be required to 

achieve efficacy in the severe form of Pompe disease, as it would be in many inherited 

metabolic myopathies and muscular dystrophies. The simple innovation of administering 

vector by both ILP and IV routes has been demonstrated with an AAV2/6 vector encoding a 

histochemical marker protein in a canine model.21

The immune tolerant mouse strain used for the AAV2/9 study was derived by introducing a 

low-expressing liver-specific transgene to achieve immune tolerance to human GAA.5 

These immune tolerant GAA-KO mice are similar to a subgroup of patients with Pompe 

disease who synthesize a non-functional form of native enzyme that can be detected 

immunologically, called cross-reactive immunologic material (CRIM), and such patients are 

deemed CRIM-positive.9 CRIM-positive patients with Pompe disease do not form anti-

GAA antibodies when exposed to human GAA via ERT. We did not intend to compare 

efficacy of AAV2/8 and AAV2/9 in this study; however, we attempted to optimize GAA 

transduction of skeletal muscle by using the immune tolerant GAA-KO mice in the AAV2/9 
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experiment to determine: 1) if secretion of hGAA would be achieved from AAV-transduced 

muscles, and 2) if the secreted GAA in blood would correct heart glycogen storage through 

enzyme uptake. Although the secretion of GAA in these mice was confirmed by Western 

blot analysis of plasma (data not shown), heart glycogen level was not reduced following 

hydrostatic ILP delivery of the AAV2/9 vector in immune tolerant GAA-KO mice. The 

latter data indicated that a high number of AAV2/9 vectors might be needed to convert the 

transduced skeletal muscle to a depot for GAA production in Pompe disease.

Hydrostatic ILP has been evaluated in a number of experiments involving normal rodents, 

dogs, or primates 17–19,21–24 Generally ILP has been deemed well-tolerated, causing no 

apparent dysfunction and only transiently elevating serum creatine phosphokinase levels. 

17,24 Transient edema and minimal levels of myofibers damage were detected following 

ILP in rats and in rhesus monkeys.(toumi 2006; vigen k 2007} One limitation of these 

experiments in normal animals was the inability to demonstrate any biochemical efficacy of 

transgene expression, because the models used lacked any disease phenotype. Recently a 

study involving the delivery of a plasmid encoding dystrophin in mdx mice demonstrated the 

widespread preservation of myofibers following multiple ILP administrations in association 

with up to 20% of normal levels of dystrophin.

The higher resistance of specific muscle groups to correction by ERT in GAA-KO mice has 

been attributed to both a lack of receptor-mediated uptake and abnormal trafficking of GAA 

by type II myofibers.5,25 The EDL muscle is comprised mainly of type II myofibers26, and 

the ability of the AAV vector administered herein to partially correct glycogen 

accumulations demonstrated a potential advantage for muscle-targeted gene therapy over 

ERT, in addition to decreased frequency and potentially decreased cost of gene therapy. 

Achieving a similar degree of correction with 30-fold lower number of AAV2/9 vector 

particles administered by ILP, in comparison with our earlier study of IV administration, 

represents an advance in the development of gene therapy for Pompe disease.14

Several obstacles to the translation of muscle-targeted gene therapy, especially with regard 

to ILP, remain, including the need to transduce skeletal muscles widely with minimal risk. 

Recent studies of ILP in primates have illustrated how this transition might be 

accomplished.24 The need for papaverine administration to achieve vasodilation and 

exsanguinations to eliminate blood from the vasculature prior to vector administration were 

deemed unnecessary, and neither method was used in the current study. In contrast to earlier 

studies, elevations of creatine phosphokinase reflecting muscle damage were much reduced 

by changing the anesthesia regimen. This latter consideration is reassuring with regard to the 

treatment of metabolic myopathies the predispose to myoglobinuria with accompanying 

risks for acute renal failure, although Pompe disease does not convey that risk.27 Finally, 

the ability to perform ILP on multiple limbs could potentially treat late-onset Pompe disease 

that lacks significant cardiac involvement1,24, even in absence of secretion of GAA from 

the transduced skeletal muscles or direct transduction of the cardiac muscle by muscle-

targeted gene therapy.

In conclusion, we have established that muscle-restricted expression of GAA in transduced 

myofibers will achieve long-term biochemical correction in GAA-KO mice, and that ILP 

Sun et al. Page 6

Gene Ther. Author manuscript; available in PMC 2011 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



will enhance AAV transduction of multiple skeletal muscles while reducing the required 

dosages in terms of vector particle numbers. These data justify further preclinical 

experiments aimed toward the development of muscle-targeted gene therapy in Pompe 

disease.

MATERIALS AND METHODS

Preparation of AAV vectors

AAV-MHCK7hGAApA contains the MHCK7 promoter20, the human GAA cDNA, and a 

human growth hormone polyadenylation sequence. The vector plasmids, pAAV-

MHCK7hGAApA14 and αMHCKChAP20 (provided by Dr. Stephen Hauschka, University 

of Washington, Seattle, WA) have been described. Briefly, 293 cells were transfected with 

an AAV vector, the AAV packaging plasmid 28 (courtesy of Dr. James M. Wilson, 

University of Pennsylvania, Philadelphia, PA), and pAdHelper (Stratagene, La Jolla, CA). 

Cell lysate was harvested 48 hours following infection and freeze-thawed 3 times, and 

isolated by sucrose cushion pelleting followed by 2 cesium chloride gradient centrifugation 

steps. AAV stocks were dialyzed against 3 changes of Hanks buffer, and aliquots were 

stored at −80°C. The number of vector DNA containing-particles was determined by DNase 

I digestion, DNA extraction, and Southern blot analysis. All viral vector stocks were 

handled according to Biohazard Safety Level 2 guidelines published by the NIH.

In vivo analysis of AAV vector

The vector stocks were administered by ILP as described17 or intravenously (via the 

retroorbital sinus) in 3 month-old GAA-KO mice.29 At the indicated time points post-

injection, plasma or tissue samples were obtained and processed as described below. All 

animal procedures were done in accordance with Duke University Institutional Animal Care 

and Use Committee-approved guidelines.

GAA activity and glycogen content were analyzed as described.30 Western blotting of 

hGAA was performed as described 31 using the hGAA monoclonal antibody (courtesy of 

Genzyme Corp., Framingham, MA). Alkaline phosphatase staining was performed as 

described.20 The ELISA was performed as described.10 All samples yielded absorbance 

values that were within the linear range of the assay at this dilution. Realtime PCR 

quantification of AAV-MHCK7hGAApA has been described.14

Statistical analyses

Comparison of two groups was assessed by a homoscedastic Student T-test. A P value of 

<0.05 indicated a significant difference between the observed values for each group.
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Fig. 1. Transduction of myofibers following hydrostatic ILP or IV administration of an AAV2/8 
vector
Histochemical staining of striated muscle from GAA-KO mice following IV or ILP 

administration of an AAV2/8 vector that contains the MHCK7 promoter driving human 

placental alkaline phosphatase.
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Fig. 2. Biochemical evaluation of striated muscle transduction with an AAV2/8 vector delivered 
by hydrostatic ILP
GAA activity (A) and glycogen content (B) in GAA-KO mice 18 weeks following AAV 

vector administration.. Mice were injected with AAV vector by ILP and sorted into high 

efficiency (ILP High n=3) or or low efficiency (ILP Low, n=3) transduction groups, or by 

IV injection (IV, n=3); whereas control mice were injected with PBS by ILP (PBS, n=4). 

Mean +/− standard deviation shown.
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Fig. 3. Western blot detection of GAA expression in striated muscle of GAA-KO mice with an 
AAV2/8 vector
Each lane represents one mouse from each group. ILP-AAV mouse: lanes 1,4,7,10,13; IV-

AAV mouse: lanes 2,5,8,11,14; ILP-PBS mouse: lanes 3, 6, 9, 12, 15; Lane 16: recombinant 

human GAA..
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Fig. 4. Glycogen staining of skeletal muscle
Periodic acid/Schiff staining staining of gastrocneminus 18 weeks following intravenous 

administration of the AAV2/8 vector (1×1011 vector particles) by ILP or IV administration 

to GAA-KO mice. Controls were sham-treated, age-matched GAA-KO (PBS) and C57BL/6 

(Wildtype) mice. Arrows indicated clearance of glycogen in the myofibers.
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Fig. 5. Biochemical correction following ILP administration of an AAV2/9 vector
Transduction of striated muscle in tolerant GAA-KO mice 12 weeks following 

administration of the AAV2/9 vector. (A) GAA activity in the indicated striated muscles 

analyzed 12 weeks following administration of AAV vector by ILP (ILP-AAV, n=7), IV 

(IV-AAV, n=3) or mocktreated GAA-KO mice (ILP-PBS; n=5). (B) Glycogen content for 

tolerant GAA-KO mice in B. Mean +/− standard deviation shown.
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