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Abstract
Recently, an indirect genetic association approach that compares genotype frequencies in offspring
of long-lived subjects and offspring from random families has been introduced to study gene-
longevity associations. Although the indirect genetic association has certain advantages over the
direct association approach that compares genotype frequency between centenarians and young
controls, the power has been of concern. This paper reports a power study performed on the indirect
approach using computer simulation. We perform our simulation study by introducing the current
Danish population life table and the proportional hazard model for generating individual lifespan.
Family genotype data is generated using a genetic linkage program for given SNP allele frequency.
Power is estimated by setting the type I error rate at 0.05 and by calculating the Armitage’s chi-
squared test statistic for 200 replicate samples for each setting of the specified allele risk and
frequency parameters under different modes of inheritance and for different sample sizes. The
indirect genetic association analysis is a valid approach for studying gene-longevity association, but
the sample size requirement is about 3–4 time larger than the direct approach. It also has low power
in detecting non-additive effect genes. Indirect genetic association using offspring from families with
both parents as nonagenarians is nearly as powerful as using offspring from families with one
centenarian parent. In conclusion, the indirect design can be a good choice for studying longevity in
comparison with other alternatives, when relatively large sample size is available.
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Introduction
As a complex trait, human longevity involves a large number of both genetic and non-genetic
factors together with their interactions [1]. In the recent years, high throughput genotyping for
the single nucleotide polymorphisms (SNPs) is enabling the genetic association analysis in
fine mapping genes that contribute to human complex traits. In longevity studies, genetic
association analysis using the popular case–control design has been conducted frequently for
which genotypic information from centenarians or nonagenarians (cases) and young subjects
(controls) are collected and genotype frequency compared to infer the association. Similar to
the genetic association study of human diseases, the case–control design in longevity study
requires that the two groups be well matched for potential confounding factors. However, the
case–control design for longevity study failed to account for the important birth cohort effect,
because of the constantly improving living standard and healthcare, which have largely helped
to extend human lifespan [2]. Moreover, similar to any complex disease phenotype, the multi-
factorial nature of human longevity also means that complex interaction between genes and
the environment can be an important contributor to extreme survival. In this case, the changing
environment reflected by the birth cohort effects could result in a biased estimate of the true
genetic model.

Instead of directly comparing the long-lived subjects with young controls, which are taken
from different birth cohorts, Barzilai et al. [3] introduced an indirect genetic association
analysis on the cholesteryl ester transfer protein gene by comparing genotype frequencies
between centenarian offspring and their age-matched controls. Their analysis detected
significant increase of the homozygote genotype of the 405 valine allele in the centenarian
offspring with similar pattern also revealed by a direct comparison between centenarians and
young controls. Similar indirect analyses had been done on health outcomes by Barzilai [3]
and by Adams et al. [4]. The merits in offspring of long-lived subjects in studying exceptional
longevity have been demonstrated in the literature [5–13]. For example, a very recent study
reported that centenarian offspring are more likely to age in better cardiovascular health and
with a lower mortality than their peers [11]. In another study, Rose et al. [12] reported that
centenarians and their offspring show significantly higher level of heteroplasmy in the mtDNA
control region than the controls. All these observations indicate that offspring of the long-lived
subjects could be ideal samples for studying human longevity.

In this paper, we are going to validate the indirect genetic association approach for studying
longevity using computer simulation. Efficiency of the approach will be examined by power
estimation for given parameters (allele relative risk, frequency, mode of inheritance) and for
given sample sizes under two sampling schemes (LP1: at least one centenarian parent; LP2:
both parents over age 90) when type I error rate is fixed to α = 0.05. Individual lifespan data
are generated according to the current population survival to ensure the simulated lifespan
distribution complies with the observed population data. Power estimates for the indirect
association will be compared with our published power estimates for the direct association
approach [14] and advantages and disadvantages will be discussed.

Materials and methods
The Danish population survival data

We introduce the latest life table for Denmark in our data simulation. With the observed
population survival from the Danish life table, we are able to generate our data that follow the
current mortality rate in the Danish population, without imposing any parametric function for
the survival distribution. The Danish life table was taken from the Human Life-Table Database
maintained at the Max-Planck Institute for Demographic Research in Rostock, Germany under
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http://www.lifetable.de/data/MPIDR/DNK_2005-2006.pdf. According to the life table, life-
expectancy at birth for males is 76 years and for females 80 years. The mean survival for the
two sexes was taken for the simulation.

Generating individual lifespan
For a given SNP allele with frequency p and relative risk r (r < 1beneficial and r > 1 harmful
to survival; the other allele is defined as the baseline allele), we decompose the observed
population survival at age x from the Danish life table s ̄(x) into genotype specific survivals,

(1)

where s2(x), s1(x) and s0(x) are genotype-specific survival functions for individuals carrying
2, 1 and 0 copies of the allele. Genotype-specific survivals are dependent on the relative risk
parameter, the number of risky alleles carried by the genotype, and the mode of inheritance.
In a simple proportional hazard model, we assume that the risk of an allele is constant over the
ages (for example, the effect of apolipoprotein E gene as reported by Gerdes et al. [15]) so that
the hazard function corresponding to a genotype-specific survival function, for example
s1(x), can be written as μ1(x) = rμo(x). Here we can see that, for carriers of one allele with r <
1, the hazard of death can be reduced by 100*(1 − r) percent. Given the existence of multiple
unobserved factors or hidden frailty that also contribute to individual survival by increasing or
reducing the hazard of death, we introduce a gamma-frailty model [16] (mean of frailty = 1,
variance = σ2) for defining the genotype-specific survival functions so that we have

(2)

Here so(x) is the baseline survival function and σ2 is set to 0.1 according to our experience in
fitting frailty models to the Danish life table data [17]. Introducing (2) into (1), we can
numerically solve Eq. (1) to obtain a non-parametric baseline survival function so(x) for given
risk and frequency parameters [18] and consequently obtain the genotype-specific survival
functions in (2). Individual lifespan can then be generated for given genotypes.

Generating family data
Family data and individual genotypes are simulated using the linkage program Merlin [19].
The program first randomly generates parental genotypes based on the specified allele
frequency and then offspring genotypes are assigned based on their parental genotypes. Both
parental and offspring genotypes are used for simulating their lifespan data. However, only
offspring genotypes are used for indirect association analysis by frequency comparison
between offspring of long-lived parents (probands) and their age-matched controls who are
offspring from random families. The maximum age gap between the long-lived parents and
their offspring is set to 35 years.

Power calculation
We choose the Armitage’s trend test given by Sasieni [20] as the test statistic for comparing
genotype frequency between offspring of probands and of random families. Following Sasieni,
the Armitage’s test statistic  is calculated using the following formula,
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(3)

Here, N1 and N2 are the number of heterozygous and homozygous allele carriers in the total
sample of size N, R1 and R2 are the number of heterozygous and homozygous allele carriers
in the R offspring of the long-lived parents (Table 1).

In our simulation, an equal number of samples are drawn for offspring from long-lived parents
and from random families. So we have R = S = 0.5*N. The test statistic  follows a chi-squared
distribution with 1 degree of freedom. Power of the test is calculated as the proportion of
significant tests among all the tests performed on 200 replications generated in the simulation.
By setting the type I error rate to α = 0.05, we can calculate the power as

(4)

In (4), B is the total number of replicates set to B = 200,  is the test statistic for the jth

replicate, and .

Results
In Fig. 1, we show the frequency of a beneficial allele in 1,500 offspring with at least one
centenarian parent (LP1 offspring) with an allele frequency at birth of 0.2 in the simulated
samples. Each of the 95% confidence intervals (CIs) is estimated from an independent
simulation with an assigned risk of the allele (0.7, 0.75, 0.8, 0.85, and 0.9). We can see that
the allele frequency estimates significantly deviate from 0.2 and the deviation increases rapidly
with the percentage of hazard reduction (from the lowest reduction of 10% for r = 0.9 to the
highest reduction of 30% for r = 0.7). The message from Fig. 1 is that, frequency of gene alleles
that contribute to human longevity is higher in the offspring of centenarians than in the general
population. This phenomenon also means that offspring of the long-lived can be used for
indirect genetic association analysis of human longevity.

Next we examine the power for the indirect approach using different settings of allele risk
(from 0.6 to 0.9) and frequency parameters (from 0.05 to 0.8) for various sample sizes (from
200 to 3000) under different modes of inheritance (multiplicative or log additive, dominant
and recessive). Table 2 has the power estimates for comparing genotype frequency of LP1
offspring with offspring from random families for additive SNP alleles. For a sample size of
3,000 (i.e. 1,500 centenarian offspring), the power for detecting an allele of r = 0.9 (10% hazard
reduction) is 82% when allele frequency is 0.2, 96% when frequency is 0.5 and 72% when
frequency is 0.8. When the sample size is reduced to 1,600, the model still has high power
(>81%) in capturing common SNP alleles that reduces hazard by 15% (r = 0.85). For a sample
size of 1,000, only common alleles of big effect (r = 0.8 or 20% hazard reduction) can be
mapped with enough power (>81%). For large effect alleles (>20% hazard reduction), a sample
size of 400–600 can be used. A small sample of 200 subjects does not have enough power
unless extremely large effect genes exist which is unlikely.
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As shown in Tables 3 and 4, sufficient power (>80%) can only be achieved with large samples
of centenarian offspring in testing strong effect SNP alleles having over 15% hazard reduction
for dominant alleles with frequency <0.5 and for recessive alleles with frequency >0.5. These
results indicate that, the indirect association is actually a weak approach for studying genes
with non-additive effects.

Instead of sampling centenarian offspring, we also simulated another sampling scheme that
collects genotype information for offspring, whose parents both lived past 90 years (LP2
offspring). Power estimates indicate that such a sampling scheme has high power (>86%) in
identifying common SNP alleles with over 15% hazard reduction for large sample sizes
(>3,000) (Table 5). For a smaller sample size of 1,000, the approach has acceptable power in
detecting common SNP alleles with over 20% hazard reduction. Comparing power estimates
in Table 5 with that in Table 2, one can see that although the LP2 offspring are generally less
informative than the LP1 offspring, the major difference is only for the rare SNPs (frequency
of 0.05). For very high frequency alleles, power estimates are very close, especially for large
sample sizes.

Discussion
We have shown, through computer simulation that indirect genetic association analysis is a
valid method for studying genetic association with human longevity. The estimated power is
highly dependent on the parameters specified (frequency, risk, mode of inheritance) and
sampling schemes (size of study, selection of proband). A relatively large sample size (over
1,000 centenarian offspring) is required for mapping genes with low to modest additive effects.
For non-additive effect genes, the power is generally low. The power is especially low for
detecting high frequency dominant and low frequency recessive genes. The low power can be
due to the high presence of risky genotypes that overwhelm the population, p2 + 2p(1 − p), for
high frequency dominant alleles, and to the low presence of risky genotype that is very rare in
the population, p2, for low frequency recessive alleles in offspring from both proband and
random families.

As shown in Tables 2 and 5, except for rare SNP alleles, the power in testing common SNPs
using offspring from LP1 (centenarian as proband) and LP2 (nonagenarian as proband) families
is comparable. This means, according to our power estimates that, offspring from LP2 families
are nearly equally as useful as those from the LP1 families and thus can be sampled and
analyzed jointly. The joint sampling can help researchers to achieve larger sample sizes and
thus more power for their studies.

It is necessary to compare our power estimates for the indirect approach with that from the
direct approach [14]. For any fixed parameter and sample size, the indirect genetic association
exhibits lower power, compared to the direct approach and thus larger sample sizes are needed
in order to obtain comparable power as in the direct association studies. In general, there is a
3 to fourfold difference in sample size requirement between the two approaches. Note that, the
reported power for the direct association does not take into account the birth cohort effect that
constantly reduces mortality over time. However, we emphasize the following two points.

First, the offspring from both proband and random families, who are genotyped in the indirect
association studies, are of relatively younger ages (over age 65 in LP1 families and 55 in LP2
families). Their genotype information can be re-used when these individuals are followed up
to conduct cohort studies on, for example, aging related diseases or longevity. According to
Hjelmborg et al. [21] the genetic influences on lifespan are minimal prior to age 60 but increase
thereafter. This means that the follow-up studies on the offspring from the indirect approach
can be highly informative. As offspring of centenarians or long-lived subjects reported to

Tan et al. Page 5

Eur J Epidemiol. Author manuscript; available in PMC 2010 November 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



inherit significantly better health [11], important results can be expected from follow-up studies
on these already genotyped samples.

Second, most of the genetic association studies using centenarians are of small scale, because
centenarians are rare samples. However, the indirect design genotypes centenarian offspring
instead of the centenarians themselves. Since the indirect design does not require genotypic
data from centenarians, the sampling scope can be largely expanded.

Third, because of the rarity of centenarians, many case–control association analyses have been
done using nonagenarians or even octogenarians as cases instead of centenarians. Tan et al.
[14] reported that the case–control association using nonagenarians requires a more than
fivefolds increase in the sample size, compared to using centenarians. In this case, a better
alternative would be conducting the indirect genetic association analysis given the above
mentioned advantages.

Obtaining sufficient samples has been a major obstacle in longevity studies. The small sample
sizes used resulted in the lack of power and accounts for the inconsistent results in gene-
longevity association studies [14]. In this aspect, the indirect association design offers a good
alternative although it requires larger sample sizes. It is encouraging that international consortia
have been established for collecting data on long life families (for example, the Long Life
Family Study at https://dsgweb.wustl.edu/llfs/, the Genetics of Healthy Aging Project at
http://www.geha.unibo.it/). Large scale genotype data will be collected for performing both
direct and indirect genetic association analyses for identifying or replicating genetic variations
that affect human longevity.

Our simulation focuses on nuclear families with only one offspring. In practice, multiple
siblings from each family of long-lived parents can be sampled. In this case, inference on
statistical significance in frequency differences needs to take into account of the genetic
correlation among siblings within each family. Statistical models able to handle correlated data
are available, for example the generalized estimation equation model that treats siblings in each
family as one cluster with exchangeable correlation structure [22].

Conclusions
Our computer simulation has shown that the indirect case–control association design, using
centenarian offspring, is a valid approach for studying human longevity. Compared with the
direct design that is based on centenarians, a three to fourfolds increase in samples size is
required to achieve comparable power. However, given the rarity of centenarians and the
usefulness of genotype data of centenarian offspring, the indirect design can be a good choice
for studying longevity in comparison with other alternatives.
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Fig. 1.
Allele frequency estimates with 95% CIs from offspring of long-lived parents (at least one
centenarian) for a beneficial allele with frequency at birth set to 0.2 and risk of the allele varies
from 0.7 to 0.9. Each frequency estimate is obtained from an independent simulation
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Table 1

Genotype frequency table for calculating the Armitage’s test statistic

Offspring Genotypes

Totals0/0 0/1 1/1

Proband families R0 R1 R2 R

Random families S0 S1 S2 S

Totals N0 N1 N2 N
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