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Synthetic biology is a rapidly expanding discipline at the interface between engineering and
biology. Much research in this area has focused on gene regulatory networks that function as
biological switches and oscillators. Here we review the state of the art in the design and con-
struction of oscillators, comparing the features of each of the main networks published to
date, the models used for in silico design and validation and, where available, relevant exper-
imental data. Trends are apparent in the ways that network topology constrains oscillator
characteristics and dynamics. Also, noise and time delay within the network can both have
constructive and destructive roles in generating oscillations, and stochastic coherence is com-
monplace. This review can be used to inform future work to design and implement new types
of synthetic oscillators or to incorporate existing oscillators into new designs.
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1. INTRODUCTION

The aim of synthetic biology is to design and synthesize
biological networks or devices that perform a desired
function in a predictable manner (Endy 2005;
Andrianantoandro et al. 2006; Serrano 2007; Haseloff &
Ajioka 2009). Achieving this goal requires a combi-
nation of in silico and in vivo analysis, and combines
approaches from the fields of engineering, mathematics
and biology. Much attention has focused on the syn-
thesis of gene regulatory networks. Since the early
papers (Becskei & Serrano 2000; Elowitz & Leibler
2000), two paradigmatic types of networks have been
of interest to the scientific community: switches and
oscillators (Tyson et al. 2008).

Over the past few years, numerous designs have been
proposed for both types of networks in prokaryotic and
eukaryotic cells. Because of the highly interdisciplinary
nature of synthetic biology, results are published in a
plethora of different journals ranging from dynamical
systems and mathematics journals to computational
biology and mainstream biological journals. Moreover,
while some papers focus on the design of an oscillator
of interest, others derive its model and analyse its
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features, while yet other journals report the in silico
or in vivo validation. A subset of the current networks
have been discussed in existing reviews (e.g. Hasty
et al. 2001b; Novák & Tyson 2008). However, these
have focused on different aspects of the oscillators and
with various degrees of detail. They also differ in their
structure and approach. Hence, when studying the pro-
blem of synthesizing a new network, it is difficult to find
a coherent description of the various existing oscillators
in a unified framework.

The aim of this paper is to address this gap in the lit-
erature by expounding the features of the main
synthetic oscillators proposed so far in a unified, coher-
ent framework. In so doing, we review and compare the
characteristics of the various oscillating networks avail-
able in the literature, highlighting advantages and
disadvantages. Starting from the simplest Goodwin
oscillator (Goodwin 1963), we will consider repressila-
tors (Fraser & Tiwari 1974; Elowitz & Leibler 2000),
several types of activator–repressor networks and the
very recent oscillators constructed in mammalian cells
(Tigges et al. 2009, 2010). The aim is to present a
review of the features of each network, the models
used for their in silico design and validation and the
main in vivo data available in the literature. The com-
parative analysis of these existing oscillators can be
used to inform the modelling, design and in vivo
This journal is # 2010 The Royal Society
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implementation of future synthetic oscillators, but also
as a guideline to synthetic biologists and engineers
wishing to use existing models and designs.

For brevity and clarity, this review focuses solely on
the analysis of synthetic oscillators. However, the study
of natural genetic oscillators is itself a large and estab-
lished field, with results that are relevant to the study
of synthetic oscillators in their wider context (e.g.
Lewis 2003; Pomerening et al. 2005).

The rest of the paper is organized in the following
sections, each devoted to a different class of oscillators,
giving details on the network, the mathematical analy-
sis presented in the literature and the results of the
in silico and, if available, in vivo implementation of
the design:

— Goodwin oscillator (§2);
— Repressilators (§3);
— Amplified negative feedback oscillators (§4), focusing

on networks obtained by using either transcriptional
repression, repression by sequestration or repression
by proteolysis;

— Fussenegger oscillators (§5);
— Smolen oscillator (§6);
— Variable link oscillators (§7); and
— Metabolator (§8).

2. GOODWIN OSCILLATOR

The Goodwin oscillator, conceived over 40 years ago
(Goodwin 1963), was the first synthetic genetic oscil-
lator to be studied. It is also the simplest oscillator,
comprising a single gene that represses itself
(figure 1a). Early theoretical work was extensive, but
noted for its conflicting results on the existence of oscil-
lations. Relevant references to this early work can be
found within Banks & Mahaffy (1978a) and Smith
(1987), while discussion of the early work can be
found in Tyson (1975), Banks & Mahaffy (1978a) and
Smith (1987).

More recently, different types of models have been
proposed in the literature including ordinary differential
equations (ODEs; Müller et al. 2006; electronic sup-
plementary material, §S2.1), delay differential
equations (DDEs; Smith 1987 (using a model from
Banks & Mahaffy (1978b)); Bratsun et al. 2005; Stricker
et al. 2008; electronic supplementary material, §S2.3
and S1) and discrete stochastic simulations using the
Gillespie algorithm (Bratsun et al. 2005; Gillespie
2007; Stricker et al. 2008).
1This was one of the first demonstrations of a constructive role for
noise in GRN dynamics.
2.1. Mathematical analysis

Both ODE (Müller et al. 2006) and DDE (Bratsun et al.
2005) models suggested that oscillations in the Good-
win network arise through a Hopf bifurcation, if
repression is modelled by a nonlinear Hill function
with a sufficiently high cooperativity coefficient
(Smith 1987; Bratsun et al. 2005). The presence of a
time delay in the negative feedback loop was also
suggested to have a constructive role. In particular,
the region in parameter space where oscillations are
J. R. Soc. Interface (2010)
detected can be expanded by increasing the value of
the time delay within the feedback loop (Stricker
et al. 2008). Moreover, as shown in Mallet-Paret &
Smith (1990), oscillations can be proved to be associated
with a unique limit cycle and hence to be globally asymp-
totically stable.

2.2. In silico experiments

The presence of oscillations was confirmed via in silico
experiments using a number of different techniques.
Early discrete, Boolean-like simulations (Fraser &
Tiwari 1974; Tiwari & Beckman 1974) suggested only
damped oscillations were possible under biologically
realistic parameters. However, oscillations for biologi-
cally plausible parameters could be obtained using
stochastic simulations with parameters drawn
randomly1 from either an exponential (Tiwari &
Beckman 1974) or normal distribution (Fraser &
Tiwari 1974). Recent studies support this early finding,
with increased parameter ranges associated with oscil-
latory behaviour being observed under stochastic
simulations (Lewis 2003; Bratsun et al. 2005; Stricker
et al. 2008).

In one of these examples, a biologically detailed
simulation allied to in vivo work (Stricker et al. 2008),
it is shown that while oscillations are predicted to
decay with a deterministic model, they can persist
under Gillespie simulations (figure 1b). However, this
was only observed under certain conditions, suggesting
that the constructive role for noise may be parameter
dependent. These simulations also suggested that a
robust period appears to be a feature of the Goodwin
oscillator, an observation also made elsewhere (Lewis
2003). Period was of the order of between 10 and 20
min in simulations and was relatively insensitive to inhi-
bition of repression (Stricker et al. 2008). Further in
accordance with these results, a separate study found
that for certain parameter values, period is resistant
to temperature, displaying temperature compensation
(Ruoff & Rensing 1996), a common feature of natural
oscillators (Pittendrigh & Caldarola 1973).

Early simulations also found that a time delay
between transcription and translation, characteristic
of a eukaryotic system, could improve the regularity
of oscillations (Tiwari & Beckman 1974). However,
recent Gillespie simulations incorporating delay conver-
sely suggested that increasing delay within the feedback
loop reduces regularity (Bratsun et al. 2005). Together
with the mathematical results demonstrating the role
of time delay in the negative feedback in improving
oscillatory capacity, studies suggest a trade-off between
an increased oscillatory capacity and noisy oscillations
may exist with regard to time delay.

2.3. In vivo implementation

Given the controversial nature of some of the findings of
the theoretical work, it was important that an in vivo
construction was performed. Construction of the
Goodwin oscillator used the PLlacO-1 promoter (Lutz &
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Figure 1. (a) Goodwin oscillator topology. It comprises a single gene that represses itself. Throughout the text, the convention
used is that a solid line indicates direct transcriptional control, while dotted lines indicate an alternative or indirect regulatory
mechanism. (b) Gillespie simulation of a Goodwin oscillator model. (c) In vivo implementation. The PLlacO-1 promoter (Lutz &
Bujard 1997; also employed in the construction of Elowitz’s repressilator, see §3.3), active in the absence of LacI, was used to
control LacI expression. (d) In vivo time series of GFP fluorescence. Figure (b) and (d) are adapted from Stricker et al. (2008).
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Bujard 1997), repressed by LacI, but capable of driving
transcription at a sufficiently high level when unre-
pressed. By using this promoter to control LacI
expression (Stricker et al. 2008; figure 1c), a negative
feedback loop was formed. The same promoter also con-
trolled expression of the fluorescent reporter protein
yemGFP (monomeric yeast-enhanced green fluorescent
protein), allowing observation of dynamics. LacI and
yemGFP contained sequences termed ssrA ‘tags’,
which are recognized by Escherichia coli proteases,
and are used to increase the degradation rates of LacI
and yemGFP to achieve faster dynamics. Each gene
was constructed on a different plasmid. The system
was introduced into E. coli deficient in the lac operon,
minimizing host genome interference.

Consistent with simulations (Stricker et al. 2008),
oscillations were relatively irregular, often failing to
return to a zero level (figure 1d). Period was of the
order of 30 min, slightly longer than corresponding
simulations. However, in agreement with simulations,
the period of the oscillations was largely unaffected by
IPTG (an inducer molecule that binds to LacI and inhi-
bits repression), varying less than 5 per cent over the
range examined (Stricker et al. 2008). The percentage
of oscillatory cells was not reported, meaning a proper
assessment of robustness is not possible.

In addition to the agreement with simulations, an
in vivo implementation has also validated the mathe-
matical results on the requirement for sufficient
nonlinearity in repression to obtain oscillations. The
implementation here used LacI, which is a tetramer. How-
ever, an earlier implementation used TetR (Becskei &
Serrano 2000), which is dimeric. Repression by TetR
will therefore be described by a lower Hill coefficient
J. R. Soc. Interface (2010)
than LacI, and subsequently there will be less nonlinearity
in repression. In agreement with the mathematical results,
the implementation using TetR did not oscillate, but
instead exhibited highly stable dynamics.

2.4. Discussion

The insensitivity of period to IPTG and (theoretically)
temperature (Ruoff & Rensing 1996) are potentially
useful features of the Goodwin oscillator. However,
oscillations observed thus far have been quite irregular,
which may limit its utility.

We now move to discussing multi-gene oscillators,
starting with one of the most widely known genetic
oscillators presented in the literature: the repressilator.
3. REPRESSILATORS

A repressilator can be thought of as an extension of the
Goodwin oscillator. It is defined as a regulatory network
of one or more genes, with each gene repressing its suc-
cessor in the cycle (Müller et al. 2006). The term was
first used to describe a cycle of three genes (Elowitz &
Leibler 2000; figure 2a). A one-gene repressilator is
the previously discussed Goodwin oscillator (§2).

Repressilators were first studied over 30 years ago as a
logical extension to the Goodwin oscillator, using the
same discrete, Boolean-like simulations (Fraser & Tiwari
1974). Continuous models were subsequently studied
using DDEs (Smith 1987; electronic supplementary
material, §S2.3), and more recently ODEs (Elowitz &
Leibler 2000; El-Samad et al. 2005; Müller et al. 2006;
figure 2c; electronic supplementary material, §S2.1 and
2.2), other DDE models (Wang et al. 2005a) (electronic
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Figure 2. (a) Three-gene repressilator topology. Each gene represses its successor in the cycle. (b) In vivo implementation of a
three-gene repressilator. LacI represses tetR through PLlacO-1, tetR represses l cI through PLtetO-1 and cI represses lacI through
l PR, completing the cycle. All genes contain an ssrA sequence tag to promote rapid degradation. (c) ODE model equations for
the in vivo implementation. mi and pi represent mRNA and protein concentrations, respectively, i and j paired order-wise, result-
ing in six ODEs. a0 and a þ a0 are the number of protein copies produced per cell with saturating repressor levels (promoter
‘leakyness’) and without repressor, respectively. b is the ratio of the protein decay rate to the mRNA decay rate and n the
Hill coefficient. (d) Time series obtained by in silico simulation of ODEs for a particular set of parameters (see Elowitz & Leibler
(2000) for details). (e) In vivo time series of GFP fluorescence. Figure (d) and (e) are adapted from Elowitz & Leibler (2000).
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supplementary material, §S2.4), discrete stochastic simu-
lations using the Gillespie algorithm (Yoda et al. 2007;
Rajala et al. 2010) and hybrid stochastic schemes
(Tuttle et al. 2005) have been used. The repressilator
topology is also observed in other fields. In electronics, a
cycle of an odd number of NOT gates is termed a ‘ring
oscillator’, and in neuroscience, cyclic networks of
neurons are referred to as ‘neural ring networks’
(Pasemann 1995).
3.1. Mathematical analysis

The mathematical results on the Goodwin oscillator are
an invocation of results developed for repressilators in
general. As with the Goodwin oscillator, oscillations
arise through a Hopf bifurcation (Müller et al. 2006),
results on DDEs also suggesting a common requirement
of sufficiently nonlinear repression (Smith 1987).
Results proving oscillations as a global attractor of the
system are also applicable, while a complementary
theory developed for DDEs, not yet applied to the
Goodwin oscillator (Mallet-Paret & Sell 1996), demon-
strates that, at least for three genes, time delay can have
a constructive effect, creating oscillations (Wang et al.
2005a).

Repressilators comprising an even number of genes
were initially found to exhibit multi-stability (Smith
1987; Müller et al. 2006). More recently, it has been
J. R. Soc. Interface (2010)
shown that repressilators with six or more genes actu-
ally possess a quasi-stable periodic solution (all but
one Floquet multipliers less than 1), generated through
a Hopf bifurcation (Strelkowa & Barahona 2010). The
stability of the periodic solution increases for increasing
gene number (Strelkowa & Barahona 2010), the magni-
tude of the multiplier corresponding to the unstable
direction decreasing. This finding potentially expands
the oscillatory capacity of the repressilator class.
Indeed, only the two- and four-gene repressilators
have not been shown to oscillate, the two-gene version
demonstrated in vivo to function as a bi-stable switch
(Gardner et al. 2000).

Bifurcation analysis of a three-gene repressilator
ODE model allied to in vivo work (Elowitz & Leibler
2000; figure 2c) showed oscillations were favoured by
strong promoters (high maximal transcriptional rate),
efficient ribosome-binding sites (high average number
of proteins per transcript), low levels of transcription
when fully repressed and cooperative repression charac-
teristics. It was also important that genes in the system
all had comparable mRNA and protein decay rates.

The studies of Müller et al. (2006) and Elowitz &
Leibler (2000) considered symmetrical networks posses-
sing identical parameter sets for each gene. In vivo
implementation of such a balanced network is likely
to be impossible. Non-symmetric networks can also
display oscillations, although the analysis of these has
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not been extensive (El-Samad et al. 2005; Strelkowa &
Barahona 2010).
3.2. In silico experiments

Early discrete simulations (Fraser & Tiwari 1974)
demonstrated oscillations in three-gene repressilators
over a small parameter range, requiring a high rep-
ression efficiency, in agreement with mathematical
results. Simulations of ODEs by Elowitz (Elowitz &
Leibler 2000) also exhibited oscillations, with a
period of the order of 150 min, using parameters
suggested by their analytical work (figure 2d).
While mathematical analysis had demonstrated the
ability for time delay to generate oscillations, simu-
lations showed that it could also be used to tune
oscillation characteristics. Increasing the total time
delay in the system increased the amplitude and
period of oscillations linearly (Wang et al. 2005a).
Recent work also suggests the rate and duration of
transcriptional pausing can affect the period (Rajala
et al. 2010).

Deterministic simulations also confirmed the exist-
ence of quasi-stable oscillations in even gene-number
repressilators (Strelkowa & Barahona 2010). Although
oscillations eventually decay, it was observed that the
lifetime of oscillations improves for higher gene num-
bers, as predicted by the mathematics. It was also
suggested that this ‘quasi-stability’ can be exploited
to switch oscillations on and off in a controlled way
(Strelkowa & Barahona 2010).

The constructive role for noise observed in the
Goodwin oscillator (Tiwari & Beckman 1974) was also
confirmed for repressilators. The inclusion of stochasti-
city into the initial discrete simulations, this time by
drawing parameters randomly from a normal distri-
bution, significantly decreased the dependence on
repression efficiency for oscillations (Fraser & Tiwari
1974). Furthermore, while the quasi-stability eventually
stopped oscillations in deterministic simulations of even
gene-number networks, the stochasticity in Gillespie
simulations allowed oscillations to continue indefinitely
(Strelkowa & Barahona 2010). However, as observed
for the Goodwin oscillator, a constructive role for noise
can depend on system parameters. In the adiabatic
regime (a significantly higher DNA-protein binding rate
relative to the rate of change in protein number) of a
model presented in Yoda et al. (2007), oscillations
occurred in Gillespie simulations but not in a correspond-
ing ODE representation, suggesting a constructive role
for noise. Yet, the opposite was observed in a strongly
non-adiabatic regime, where noise destroyed the correct
ordering of oscillations, or phase coherence, observed
for the ODEs. A destructive role for noise was also pre-
sent in Gillespie simulations by Elowitz (Elowitz &
Leibler 2000), in which oscillations exhibited significant
amplitude variability. The property of stochastic coher-
ence, a maximum in the regularity of the oscillations
(measure on the distance between peaks) as a function
of the system size (average number of components;
Hilborn & Erwin 2008), has been documented (Yoda
et al. 2007). This has not yet been observed in the
Goodwin oscillator specifically, in this case, it is the
J. R. Soc. Interface (2010)
dependence of phase coherence on noise, phase coherence
depending nonlinearly on noise strength (Yoda et al.
2007).

Finally, the sensitivity to the level of parameter
symmetry observed mathematically persists under sto-
chastic simulations; oscillations are suppressed above
some level of asymmetry (Tuttle et al. 2005).
3.3. In vivo implementation

Based on the suggestions of their mathematical analysis
(see §3.1), Elowitz & Leibler (2000) constructed a three-
gene repressilator in vivo (figure 2b) using LacI from E.
coli, TetR from the Tn10 transposon and cI from the l

phage (Elowitz & Leibler 2000). In their network, LacI
represses transcription of tetR, TetR represses tran-
scription of cI and cI represses transcription of lacI,
completing the cycle of repression. Owing to the math-
ematical results, strong, tightly repressible hybrid
promoters were employed to control tetR and cI, com-
bining the l PL promoter with LacI and TetR
operators, respectively (Lutz & Bujard 1997; Elowitz
& Leibler 2000). The l PR promoter, which contains
cI operators, was used to control lacI. To increase
protein decay rates closer to that of the mRNA, another
suggestion of the mathematical work, ssrA tags were
inserted at the 30 end of each gene, targeting the repres-
silator proteins for rapid destruction (Elowitz & Leibler
2000). The repressilator was constructed on a low copy-
number plasmid and introduced into E. coli deficient
in the lac operon, minimizing interference from the
host genome on dynamics. Additionally, a high copy-
number plasmid containing a reporter gene that
encoded an intermediate stability green fluorescent
protein (GFP) and that was repressed by TetR was
introduced, allowing monitoring of network dynamics
by fluorescence.

At least 40 per cent of cells exhibited oscillations,
with a period of 160+ 40 (mean+ s.d.) min, of the
order of deterministic simulations, and a significant
variation in amplitude, as predicted by stochastic simu-
lations (Elowitz & Leibler 2000). While protein levels in
simulations returned to zero between oscillations, fluor-
escence by GFP increased over time (figure 2e). This is
probably due to the higher stability of the GFP relative
to the rapidly degraded repressilator proteins. However,
it was not explicitly accounted for in modelling, and
hence not predicted. Despite the variability in ampli-
tude, oscillations in progeny were correlated for a
significant amount of time after cell division, demon-
strating that network state is passed to progeny
(Elowitz & Leibler 2000). The timing of oscillations
was not correlated with cell division, suggesting repressi-
lator dynamics were decoupled from the cell-division
cycle (Elowitz & Leibler 2000). However, the entry of
E. coli into stationary phase arrested oscillations, indi-
cating that dynamics are coupled to the global
regulation and effects of cell growth and division
(Elowitz & Leibler 2000). Observation time for oscil-
lations was limited by this entry into stationary phase
to approximately 10 h, allowing three to four oscillations
to occur (Elowitz & Leibler 2000). A potential source of
interference may be the increased concentration of the
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s38 transcription initiation factor that occurs during
stationary phase. This would compete with s70 (the
initiation factor responsible for specifying RNA polymer-
ase binding to the repressilator promoters) for available
RNA polymerase and may significantly affect dynamics.
Designing repressilators that function with both types of
s factor may allow oscillations to continue into station-
ary phase.

3.4. Discussion

Although conceived after the Goodwin oscillator, the
three-gene repressilator was the first synthetic genetic
oscillator to be successfully implemented in vivo
(Elowitz & Leibler 2000). However, less than half of
observed cells exhibited oscillations, suggesting it
lacks robustness. The role of noise is not yet well under-
stood, and may be partly responsible. Furthermore,
although the repressilator can function with some
parameter asymmetry, significant asymmetry could
contribute to the fact that the majority of cells did
not oscillate. Interference from native cellular systems
may also play a role, with the oscillations decaying to
an equilibrium value. The limited studies on time delay
suggest the repressilator may function in eukaryotes,
although there are indications that temporal differences
in how DNA is duplicated in eukaryotes may affect the
repressilator dynamics (Chen et al. 2004).

Regarding improvements, it has been observed that
the addition of a positive feedback loop to any of the
repressilator genes expands the region in parameter
space over which the core repressilator oscillates, enhan-
cing robustness (Tsai et al. 2008). This addition also
allows the repressilator to exhibit a far greater range
of frequencies for a given amplitude (Tsai et al. 2008),
increasing its potential utility as a component of more
complex synthetic networks (Tsai et al. 2008). Finally,
the controllable oscillatory capacity of even-gene repres-
silators may significantly expand the utility of the
topology. More generally, this highlights the potential
for transient dynamics and in particular quasi-stability,
used elsewhere in flight and fluid control (Strelkowa &
Barahona 2010), in gene network function.

The presence of a positive self-feedback loop is a
feature of the class of oscillators presented in the
next section, the amplified negative feedback oscillators.
4. AMPLIFIED NEGATIVE FEEDBACK
OSCILLATORS

The Goodwin oscillator and the repressilators are
formed from solely repressive links. The logical next
step in oscillator design was to explore oscillators also
incorporating activating links between genes. The
amplified negative feedback oscillator comprising two
genes is possibly the simplest type of amplified negative
feedback oscillator. Here, one gene promotes (amplifies)
its own transcription via a positive self-feedback loop
and also activates transcription of the other gene. At
the same time, the second gene represses transcription
of the first gene, forming a negative feedback loop
(figure 3a). Three different versions of this topology
have been considered; repression by transcriptional
J. R. Soc. Interface (2010)
control, repression through sequestration by dimeriza-
tion and repression by proteolysis. In what follows, we
will describe the features of each of these three main
realizations of the network.

4.1. Case I: repression by transcriptional control

ODE models and Gillespie-based stochastic simulations
of these networks have been presented in the literature
(Atkinson et al. 2003; Guantes & Poyatos 2006; Conrad
et al. 2008 (uses model from Guantes & Poyatos (2006));
figure 3c; electronic supplementary material, §S3.1).

4.1.1. Mathematical analysis. The analysis of the
models proposed in the literature suggests two alterna-
tive bifurcation mechanisms to explain the presence of
oscillations in the network. In Guantes & Poyatos
(2006), the occurrence of oscillations is explained in
terms of a saddle-node bifurcation on an invariant
circle (SNIC), while under different parameter values
Conrad et al. (2008) show oscillations can arise from
either a SNIC or a subcritical Hopf bifurcation.
Furthermore, in Atkinson et al. (2003), a Hopf bifur-
cation is also proposed as causing the onset of
oscillatory behaviour. The discrepancies are presumably
due to both model and parameter differences. However,
in all cases, the bifurcation can occur because of signifi-
cantly faster activator than repressor dynamics, either
through faster activator degradation and translation
rates (Guantes & Poyatos 2006; Conrad et al. 2008),
or activator mRNA degradation rates (Atkinson et al.
2003). This has the effect of causing the activator con-
centration to reach a significant amplitude before the
repressive effect gets too great (Guantes & Poyatos
2006), encouraging sustained oscillations. The Hopf
bifurcation in Atkinson et al. (2003) can also arise
through changes in activator and repressor
cooperativity.

4.1.2. In silico experiments. The simulations reported in
Guantes & Poyatos (2006) suggest that oscillations
emerging from a SNIC do so at almost zero frequency,
as the trajectories are still influenced by the slow trajec-
tories of the region where the stable equilibrium was
present before the bifurcation. This slow region cor-
responds to the saturated part of the repressor-response
curve, where repressor concentration is little affected by
small activator changes. This translates into oscillations
with an extended region of high activator and repressor
concentrations and therefore large periods (Guantes &
Poyatos 2006). Immediately after the bifurcation, a
further increase in the ratio of the activator to repressor
degradation rates decreases the period rapidly, which
quickly plateaus. Repression is via a homodimer, requiring
a significant concentration to achieve strong repression,
permitting relatively large amplitudes (Guantes &
Poyatos 2006). Finally, while the Hopf bifurcations gener-
ate sinusoidal oscillations, the SNICs produce ‘relaxation’
oscillations, which rise sharply but decay slowly.

Undamped oscillations owing to the Hopf bifurcation
in Atkinson et al. (2003) have been observed, although
for biologically realistic parameters only damped oscil-
lations were found (figure 3d). A period of 20 h was
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text. (c) ODE model equations for the in vivo implementation. xi represent concentrations of network components (normalized
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observed for a cell doubling time of 2 h, a considerably
longer period than the three -gene repressilator. Period
and amplitude were shown to depend on cell doubling
time, and while halving the doubling time halved
the period, it approximately doubled the amplitude
(Atkinson et al. 2003). The suggestion from mathemat-
ical work that increasing activator cooperativity on its
own transcription could shift dynamics towards an
undamped regime was implemented by increasing acti-
vator gene copy number. Higher gene copy number
leads to higher activator concentration, allowing the
activator to get further along its sigmoidal activation
curve, better realizing the cooperative dynamics mani-
fested in the rapidly changing ‘switch’ section of the
curve (Atkinson et al. 2003). Although undamped oscil-
lations were still not obtained, the number of damped
oscillations could be improved from three to four
(figure 3e).

Gillespie simulations confirmed the presence of oscil-
lations from the SNIC bifurcation in Guantes &
Poyatos (2006), demonstrating weak stochastic coher-
ence when the parameters are such that the network
dynamics are close to the bifurcation point. By modifying
transcription and translation rates such that the average
number of mRNA molecules could be varied while keep-
ing average protein levels unchanged, mRNA number
J. R. Soc. Interface (2010)
could be seen to contribute significantly to noise and
its effect on the regularity of oscillations. Specifically,
the effect of the average mRNA number on regularity
was comparable to the effect of the average number of
all other molecules combined (Guantes & Poyatos 2006).
4.1.3. In vivo implementation. Only the Hopf-driven
oscillator in Atkinson et al. (2003) has been
implemented in vivo. The network consists of two mod-
ules, one encoding the activator, NRI, and the second
encoding the repressor LacI. The activating module of
the oscillator was constructed by fusing glnG, encoding
NRI, to a control region based on a glnA promoter
(glnAP2; figure 3b). The promoter was regulated by
two upstream adjacent high-affinity binding sites for
phosphorylated NRI (NRIp), which formed an ‘enhan-
cer’, and two ‘perfect’ LacI operators, one downstream
of the promoter, and one immediately upstream of the
enhancer (Atkinson et al. 2003). The design intended
to make use of DNA looping; during activation, NRIp
interacts with promoter-bound RNA polymerase via a
DNA loop, while during repression, LacI bound to the
two operators also forms a loop, ensuring stable repres-
sion. The two loops act antagonistically, as formation of
the loops is mutually exclusive (Atkinson et al. 2003).
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The repressor module was constructed by fusing lacI to
a control region comprising the glnK promoter and an
upstream enhancer formed of adjacent high-affinity
and low-affinity NRIp binding sites (Atkinson et al.
2003). Consequently, the glnK promoter is only fully
activated at high NRIp levels (Atkinson et al. 2003).
The modules were incorporated into the E. coli chromo-
some as a single copy within regions flanked by
transcription termination sequences, ensuring tran-
scriptional isolation (Atkinson et al. 2003). E. coli
were mutated such that the only LacI source was the
repressor module, and mutant NRI phosphatase
ensured NRI phosphorylation under all conditions
(Atkinson et al. 2003). LacI dynamics were assayed on
a population level with b-galactosidase encoded by
lacZ present in the lacYZA operon (under the control
of the oscillator) on the E. coli chromosome, and on a
single-cell level using CFP fused to an LacI repressible
promoter present as a single chromosomal copy
(Atkinson et al. 2003).

In vivo dynamics of b-galactosidase closely matched
modelling predictions both qualitatively and quantitat-
ively. Initially, three damped oscillations were observed
(figure 3d) as predicted by simulation. This could be
increased to four (figure 3e) by moving the activator
module next to the replication origin where copy numbers
exist approximately fourfold higher than at the replica-
tion terminus (Atkinson et al. 2003), again, a
prediction of simulations (Atkinson et al. 2003). Further-
more, amplitude and period were comparable between
simulation and experiment, experiments also matching
predicted effects of doubling time, controlled using
growth media, on period and amplitude (Atkinson
et al. 2003). Single-cell observations agreed with those
at the population level, demonstrating damping is not
due to individual cells oscillating out of phase (Atkinson
et al. 2003). The percentage of oscillating cells was not
reported, so it is not possible to assess robustness.

4.1.4. Discussion. Although only damped oscillations
have been obtained in vivo, the significant agreement
between simulations and experiment shows relatively
simple models can capture both qualitative and quanti-
tative behaviour. However, this quantitative agreement
is only relevant at the population level and further
analysis is required to ascertain the applicability of
the model at a single-cell level. Such an analysis
would also help define the role of noise, so far suggested
by Guantes & Poyatos (2006) to be of little importance.

4.2. Case II: repression by sequestration

An alternative implementation of the amplified nega-
tive feedback oscillator is based on repression
occurring through sequestration of proteins from the
first gene, by dimerization with proteins from the
second gene (figure 4a). This implementation was first
considered in Barkai & Leibler (2000). ODEs have
been used to study this network (Vilar et al. 2002;
Hilborn & Erwin 2008; figure 4b; see electronic sup-
plementary material, §S4.1, and §S4.2), SDEs
(Hilborn & Erwin 2008; electronic supplementary
material, §S4.3) and also Gillespie simulations
J. R. Soc. Interface (2010)
(Barkai & Leibler 2000; Vilar et al. 2002; Steuer et al.
2003; Hilborn & Erwin 2008). The network has never
been implemented in vivo.
4.2.1. Mathematical analysis. The existence of oscil-
lations can be proved using the Poincaré–Bendixon
theorem on a simplified model (figure 4b) describing
only the evolution of the repressor and the activator–
repressor complex. Such a model has been observed
in silico to capture qualitatively the main features of
a more complete model (reported in the electronic sup-
plementary material, §S4.1; Vilar et al. 2002).
Oscillatory behaviour was detected over a broad range
of parameter values, suggesting robustness, but requires
an intermediate repressor degradation rate (Vilar et al.
2002), a potential point of fragility.
4.2.2. In silico experiments. In addition to their impor-
tance in determining the existence of oscillations,
deterministic and stochastic simulations highlighted
the significant effect of the repressor degradation rate
on the period of the oscillations; the lower the rate,
the longer the period (Vilar et al. 2002). The amplitude
of the oscillations was found to be sensitive to transcrip-
tion and translation rates (Barkai & Leibler 2000).
Period is predicted to be of the order of 20 h (Vilar
et al. 2002), comparable to the Hopf-driven transcrip-
tionally controlled network in Atkinson et al. (2003).

In addition to oscillations existing (figure 4c) over a
broad parameter range, simulations suggested oscil-
lations could exist even at very low average mRNA
levels (Barkai & Leibler 2000; Vilar et al. 2002), oscil-
lations persisting even when the number of mRNA
molecules mainly alternates between zero and one
(Vilar et al. 2002). This is in contrast to the sensitivity
seen with transcriptional repression, and is a conse-
quence of the fact that average protein levels appear
to be the important factor in permitting oscillations,
which can be maintained at low mRNA levels by
increasing the translation rate (Vilar et al. 2002). A con-
structive role for noise is also apparent, with oscillations
occurring over a wider range of parameter values in sto-
chastic simulations than in deterministic simulations
(Vilar et al. 2002; Hilborn & Erwin 2008). Furthermore,
stochastic coherence is also a feature of the network,
with maximum oscillation regularity being observed
for an intermediate system size in Gillespie simulations
(Steuer et al. 2003; Hilborn & Erwin 2008).

However, the details of the stochastic coherence are
dependent on where noise exists. Under an SDE
model the regularity of oscillations exhibits a very
different dependence on noise subject to whether noise
is added to activator or repressor concentrations
(Hilborn & Erwin 2008). This dependence can probably
be attributed to the difference in dynamics of the com-
ponents (Hilborn & Erwin 2008). Strikingly, the ability
to observe stochastic coherence at all in these simu-
lations is dependent on the model used. Under
Gillespie simulations of a reduced model (electronic
supplementary material, §S4.2), using steady-state
assumptions on fast variables, stochastic coherence is
not observed, even though deterministic simulations of
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the full and reduced model are very similar (Hilborn &
Erwin 2008). The model reduction has therefore
obscured the stochastic coherence.

4.2.3. Discussion. The ability to function over a relatively
broad parameter range confers a level of robustness to
parameter fluctuations, suggesting an in vivo implemen-
tation may be successful. Period is comparable to
repression by transcriptional control. However, in con-
trast, low mRNA levels appear to be less consequential,
and noise plays a more significant role, expanding the
oscillatory parameter region, and generating stochastic
coherence. Finally, it is worth emphasizing that low-
dimensional approximate models can indeed yield infor-
mation on whether a network can oscillate, but might
fail to capture more subtle features of the system of
interest such as stochastic coherence.

4.3. Case III: repression by proteolysis

A third implementation of the amplified negative feed-
back topology where repression is obtained by
J. R. Soc. Interface (2010)
degradation of the protein from the first gene by a pro-
tease encoded by the second gene was studied by
Guantes & Poyatos (2006) and Conrad et al. (2008)
(figure 5a). The network has been studied using
ODEs (Guantes & Poyatos 2006; figure 5b; Conrad
et al. 2008; uses the same model as Guantes & Poyatos
(2006)) and Gillespie simulations (Guantes & Poyatos
2006), but never implemented in vivo.
4.3.1. Mathematical analysis. Oscillations in Guantes &
Poyatos (2006) were found to arise through a subcritical
Hopf bifurcation, requiring the activator to have signifi-
cantly faster dynamics than the repressor, achieved by
considerably faster activator degradation and trans-
lation rates. This is a requirement in common with
repression by transcriptional control. The existence of
a subcritical Hopf bifurcation was confirmed by
Conrad et al. (2008) who also demonstrated, as with
the transcriptionally repressed oscillator, that oscil-
lations could additionally arise through a SNIC.
Oscillations exist for a significant range of values of the
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ratio between the activator and repressor degradation
rates (Guantes & Poyatos 2006).

4.3.2. In silico experiments. Under the Hopf bifurcation,
oscillations appear possessing a finite frequency, which
increases as activator dynamics become increasingly
faster than repressor dynamics. Frequency reaches a
plateau approximately fourfold higher than oscillations
generated by the transcriptionally repressed SNIC-
driven oscillations (§4.1.2). In addition to existing for
a significant variation of the activator to repressor
degradation rate, oscillations are observed for a larger
parameter range than for the SNIC-driven oscillations
(Guantes & Poyatos 2006). This suggests a certain
level of robustness to parameter variations. The subcri-
tical nature of the bifurcation can also permit damped
oscillations for a brief window in the degradation ratio
(Guantes & Poyatos 2006). Repression in the transcrip-
tionally repressed SNIC-driven oscillator occurs with
J. R. Soc. Interface (2010)
homodimers, whereas repression here occurs via mono-
meric proteases. As such, the required level of
repression is reached much sooner, resulting in signifi-
cantly lower activator amplitudes (figure 5c; Guantes
& Poyatos 2006).

Stochastic coherence is observed under Gillespie
simulations, and is notably stronger than in the
transcriptionally repressed SNIC oscillator (Guantes &
Poyatos 2006). However, as for that oscillator, the
mRNA number contributes significantly to noise
and its effect on oscillation regularity (Guantes &
Poyatos 2006).

4.3.3. Discussion. The subtle change from nonlinear
transcriptional repression via homodimers, to linear
repression via monomeric proteases, can produce an
oscillator with higher frequency, lower amplitude oscil-
lations and stronger stochastic coherence. This is a
clear demonstration of how relatively small changes in
the repression mechanism can actually have large
effects on dynamics, and therefore function.

4.4. Remarks

The amplified negative feedback oscillators discussed so
far do not demonstrate sustained oscillations in vivo, or
demonstrably robust dynamics. However, they are valu-
able for their ability to inform on the relationship
between topology and dynamics. Three of the four net-
works described here require the same condition for
bifurcation, significantly faster activator than repressor
dynamics. However, despite this commonality, they
display a wide range of bifurcation mechanisms. The
period of the oscillations is comparable between the
Hopf-driven transcriptionally repressed oscillator in
Atkinson et al. (2003) and the dimerization repressed
oscillator. However, the period of the oscillations exhib-
ited by the proteolytically repressed oscillator driven by
the subcritical Hopf is instead approximately four times
shorter than the SNIC-driven transcriptionally
controlled oscillator.
5. FUSSENEGGER OSCILLATORS

The requirement of relatively faster activator than
repressor dynamics for oscillations is present in three
out of the four oscillator topologies based on amplified
negative feedback discussed so far. This has the same
effect as that of adding a delay in the negative feedback
loop. Both allow the activator concentration to reach a
significant level before repression becomes too great,
encouraging sustained oscillations. It is therefore
expected that increasing the delay in the negative feed-
back loop may increase the likelihood of observing
undamped oscillations in vivo, as opposed to the
damped oscillations obtained in vivo for the amplified
negative feedback oscillators reviewed so far.

This is precisely the idea behind the oscillators
presented in Tigges et al. (2009, 2010) that we shall
refer to, for the sake of brevity, as the Fussenegger
oscillators. The Fussenegger oscillators are the only oscil-
lators to have been implemented in a eukaryotic system.
This is an important step towards using eukaryotic cells
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as hosts for more complex networks and for exploiting
the powerful but often subtle regulatory mechanisms
they possess. The original Fussenegger oscillator
(Tigges et al. 2009) comprises two genes, with both
sense and antisense transcription occurring from one of
them. The sense transcript is translated, the resulting
protein feeding back to itself by promoting transcription,
and also activating the second gene. In a first for a
synthetic genetic network, this second gene activates
antisense transcription from the first gene, the transcript
not translated, instead hybridizing with the sense tran-
script, repressing sense protein production at translation.
This completes a negative feedback loop (figure 6a).
The Fussenegger oscillator is therefore an amplified nega-
tive feedback oscillator (figure 6b). However, importantly,
in comparison to the previous negative feedback oscil-
lators, it contains an additional step in the negative
feedback loop that ‘delays’ the repressive effect.

The biological implementation of the Fussenegger
oscillator was modelled using ODEs (electronic sup-
plementary material, §S5) and Gillespie simulations
(modified t-leap). Models considered the potential
interactions of RNA polymerases transcribing sense
and antisense strands simultaneously, a significant con-
sequence of the sense–antisense repression mechanism.
The final model was obtained after rounds of improve-
ment using extensive parameter estimation from
in vivo data as detailed in Tigges et al. (2009), but
so far no mathematical analysis of its dynamics or
bifurcations have been presented.
5.1. In silico experiments

Simulations demonstrated the occurrence of oscillations
robust to variations in mRNA and protein degradation
rates, but highly sensitive to absolute and relative gene
dosage (Tigges et al. 2009; figure 6e). Gene dosage also
affected period and amplitude nonlinearly, exposing a
potential method of tuning the oscillator. Further con-
trol was available by inhibiting activation by the sense
protein, allowing oscillations to be switched on or off.
Oscillations were insensitive to inhibition of antisense
transcription.

Stochastic simulations showed significant variability at
low gene levels, while at high gene levels, low-amplitude
oscillations not present in ODE simulations were
observed, suggesting a constructive role for noise under
certain conditions.
5.2. In vivo implementation

The sense–antisense construct used for the in vivo
implementation comprised the gene encoding the
tetracycline-dependent transactivator protein (tTA),
controlled in the sense direction by the tTA activated
promoter PhCMV*-1, forming the positive feedback
loop. tTA also promoted production of pristinamycin-
dependent transactivator protein (PIT) through
PhCMV*-1. PIT promoted production of antisense tTA
RNA through a PPIR promoter (figure 6c). Rapidly
degraded GFP controlled by tTA through PhCMV*-1

reported on dynamics. Interactions between tTA and
PhCMV*-1 could be inhibited by tetracycline, while the
J. R. Soc. Interface (2010)
PIT–PPIR interaction could be inhibited by pristinamy-
cin. The tTA, PIT and gfp genes were each placed on
different plasmids, and introduced into Chinese
hamster ovary (CHO-K1) cells (Tigges et al. 2009).

Undamped oscillations were observed with periods of
170+ 71 (mean+ s.d.) min (Tigges et al. 2009;
figure 6f ), confirming the effectiveness of considering
a delay in the negative feedback. However, the fact
that the implementation is eukaryotic may also play a
yet undetermined role. Significant cell–cell variability
was also observed, as predicted by stochastic simu-
lations. The sensitive and nonlinear relationship
between period and amplitude, and relative gene
dosage, also matched predictions by simulations,
demonstrating that network output can be predictably
tuned. Further in accordance with simulations, inhi-
bition by tetracycline of transcriptional activation by
the sense protein could abolish oscillations. However,
in contrast to simulations, inhibition of antisense tran-
scription by pristinamycin also had a marked effect,
fluorescence continually growing rather than oscillating.

A ‘low-frequency’ variant of the Fussenegger oscil-
lator has recently been constructed (Tigges et al.
2010) using direct interference by siRNAs in place of
the indirect repression by production of an antisense
mRNA. Although a step in repression has been
removed, the time delay for the repressive process is
still adequate to support sustained oscillations. The
oscillations possess a period of approximately 26 h,
the longest of any synthetic oscillator. In contrast to
the tunability of the original Fussenegger oscillator,
and in agreement with theoretical predictions, the
period is insensitive to relative plasmid dosages.
However, the oscillator is not robust, at most only
approximately 18 per cent of cells exhibiting oscillations.

5.3. Discussion

In contrast to the damped oscillations displayed in the
previous amplified negative feedback in vivo implemen-
tation (Atkinson et al. 2003), the Fussenegger oscillator
and the recent low-frequency variant produce sus-
tained, undamped oscillations, probably owing to the
additional time delay in the negative feedback loop.
They are the only eukaryotic synthetic oscillators to
date, and the first to incorporate sense–antisense and
siRNA-mediated regulation, potential mechanisms avail-
able for exploitation by synthetic biologists. The results
provide an insight into the non-intuitive relationship
between gene dosage and dynamics, and suggest that
this can be used to fine-tune network output. In both
implementations, a full mathematical study would help
link the underlying mechanisms, together with the impli-
cations for time delay of a eukaryotic implementation, to
the behaviour observed. This would provide a valuable
and experimentally verified first insight into the
dynamics of eukaryotic oscillators.
6. SMOLEN OSCILLATOR

None of the preceding oscillators are demonstrably
robust. In particular, the percentage of oscillating cells
is either low, or not reported. However, robustness is
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vital if synthetic oscillators are to become components
of larger synthetic systems, or interface with and regu-
late natural systems (Lu et al. 2009).

The Smolen oscillator2 (Smolen et al. 1998) com-
prises two genes (figure 7a). The first gene (gene A)
promotes its own transcription and that of the other
gene, while the second gene (gene B) represses its
own transcription and that of the first gene. The self-
repression loop acting on the second gene is the extra
link that differentiates the topology of this oscillator
from the amplified negative feedback oscillators (§4).
Different types of models have been proposed to charac-
terize the dynamics of the Smolen oscillator. In
particular, ODE models can be found in Smolen et al.
(1998) (electronic supplementary material, §S6.2),
Hasty et al. (2002) (electronic supplementary material,
§S6.1) and Stricker et al. (2008) (electronic supplemen-
tary material, §S6.3), this latter model being far more
detailed and higher dimensional than the previous
two. DDE models were also proposed in Smolen et al.
(1998, 1999) (electronic supplementary material,
§S6.4); Smolen et al. (1999) also considering a spatial
2This is sometimes referred to as the Hasty oscillator.
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component. Finally, SDE-based models were discussed
in Wang et al. (2005b; electronic supplementary
material, §S6.5) and Gillespie simulations were used
to study the oscillator dynamics (Wang et al. 2005b;
Stricker et al. 2008).
6.1. Mathematical analysis

Oscillations were first demonstrated mathematically
using a simple model and shown to arise from either a
supercritical or subcritical Hopf bifurcation (Hasty
et al. 2002). It was shown that such a bifurcation is
more likely to occur when the activator degradation
rate is two or three times faster than that of the repres-
sor. A similar requirement was also suggested for
amplified negative feedback oscillators and might be
due to the similarity between the topologies. The exist-
ence of a subcritical Hopf bifurcation is dependent on
the degree to which the activator promotes the tran-
scription of the activator and repressor genes upon
binding to a specific site. Its occurrence yields narrow
regions in parameter space where the coexistence of
oscillations and a stable equilibrium state is detected
(see Hasty et al. (2002) for further details).



see electronic supplementary material, §S6.3 for model equations

1.0

0.5

0 30
time (min) time (min)

fl
uo

re
sc

en
ce

 (
ar

b.
 u

ni
ts

)

no
rm

al
iz

ed
 c

on
ce

nt
ra

tio
n

60 600

4

8

12

Plac/ara-1Plac/ara-1
lacIaraC

120 180

(c)

(a) (b)

(e)(d )

BA

Figure 7. (a) Smolen oscillator topology. Gene A activates its own transcription and that of gene B, while gene B represses its own
transcription and that of gene A. (b) In vivo implementation. Details provided in the main text. (c) ODE model equations for the
in vivo implementation are given in electronic supplementary material, §S6.3. (d) In silico simulation of ODEs for 0.7% arabinose
and 2 mM IPTG. There red and green lines are LacI tetramers and AraC dimers, respectively. The black line is LacI mRNA. (e)
Single-cell fluorescence trajectories, with 0.7% arabinose and 2 mM IPTG. Figure (d) and (e) are adapted from Stricker et al.
(2008).

Review. Synthetic genetic oscillators O. Purcell et al. 1515
More complex dynamical behaviour was detected in
more recent work. For example, using a higher dimen-
sional, detailed model allied to experiments (§6.3),
it was shown that two limit cycles can exist
simultaneously (Stricker et al. 2008). Specifically, a
long-period limit cycle at low arabinose (an enhancer
of activating links) levels can coexist with a limit
cycle characterized by a smaller period with a very
small basin of attraction. As the arabinose level
increases, this latter limit cycle coalesces onto a stable
equilibrium via a Hopf bifurcation, resulting in the pres-
ence of damped oscillations whose basin of attraction
expands for increasing arabinose concentration
(Stricker et al. 2008).
6.2. In silico experiments

All the ODE models studied in the literature predicted
the existence of oscillations with periods of approxi-
mately 40 min (Smolen et al. 1998; Stricker et al.
2008; figure 7d). Such a period is far shorter than the
period of oscillations detected in the Hopf-driven tran-
scriptionally controlled amplified negative feedback
oscillator in Atkinson et al. (2003) or the Fussenegger
oscillators. Relative amplitudes of the activator and
the repressor differ between models (Smolen et al.
1998; Stricker et al. 2008), although Gillespie simu-
lations (Stricker et al. 2008) agree with the earlier
ODE model in Smolen et al. (1998), suggesting activa-
tors achieve a significantly higher concentration. This
is a characteristic of the Smolen oscillator shared with
the SNIC-driven transcriptionally controlled amplified
negative feedback oscillator.

The effects of time delays have also been considered
in the literature. Namely, it was shown that the
inclusion of delays in the models of greater than 2 h,
accounting for transcription factor diffusion, eliminated
oscillations observed in Smolen et al. (1998), but
J. R. Soc. Interface (2010)
created a new stable (delay-induced) limit cycle with
a period of the same order as the delay (Smolen et al.
1999). Also, when spatial diffusion models for mRNA
were considered, oscillations were made to disappear
by a narrow region of low diffusivity representing a
nuclear membrane (Smolen et al. 1999). Conversely,
effectively increasing delay by decreasing reaction
rates in the detailed model increased the region in par-
ameter space associated to oscillatory behaviour and
hence increased robustness to parameter variations
(Stricker et al. 2008). It is clear that the effects of
delay are not yet fully understood.

A certain degree of tunability of the oscillation
period was observed. In particular, IPTG that inhibits
repressive links or arabinose that enhances activating
links had differing effects on period in the detailed
ODE model (Stricker et al. 2008). At low concen-
trations, period rapidly increases for increasing IPTG
concentration to a peak, after which it decreases as
IPTG concentration increases further, while period
increases monotonically to a plateau for increasing
arabinose (Stricker et al. 2008). Using a parameter
relating E. coli cell cycle time to temperature in place
of the Arrhenius constant, period was observed to
decrease almost linearly for increasing temperature
(Stricker et al. 2008). In general, oscillations appear to
be tunable over a wide range of conditions (Stricker
et al. 2008), and could possibly be tuned over a still
greater range by using one or more of these tuning
parameters in conjunction.

The simultaneous existence of a long-period limit
cycle and a stable equilibrium with damped oscillations
(§6.1) manifests itself as a bimodal distribution of
period lengths in Gillespie simulations (Stricker et al.
2008). The majority of oscillations correspond to the
long-period limit cycle, far fewer small-amplitude oscil-
lations occurring by noise-induced incursions into the
basin of attraction of the stable equilibria (Stricker
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et al. 2008). As the basin of attraction expands, the
number of small-amplitude oscillations increases
(Stricker et al. 2008). This is a novel behaviour, directly
attributable to noise.

Surprisingly, oscillations have higher regularity when
the Goodwin oscillator subnetwork itself (B with its
self-repressing feedback only) generates weak, low-
amplitude oscillations with the repressor not reaching
zero (Mather et al. 2009), rather than more regular
oscillations that reach zero (Stricker et al. 2008). This
finding is undoubtedly a consequence of the nonlinear-
ity of genetic networks, and highlights the potential
pitfalls of taking a modular approach to gene network
design.

Stochastic coherence has so far only been observed in
the simple model (Wang et al. 2005b). By positioning
the Chemical Langevin Equation (CLE) and Gillespie
representations of the model (Hasty et al. 2002) close
to the subcritical Hopf bifurcation, a peak in the
signal-to-noise ratio for oscillations occurs for an
intermediate system size (Wang et al. 2005b).
6.3. In vivo implementation

In vivo construction (figure 7b) based on the detailed
model used the hybrid promoter Plac/ara-1 (Lutz &
Bujard 1997) that contained two adjacent AraC bind-
ing sites upstream of the promoter (at a position from
which bound AraC will activate transcription) and
three LacI operators (two upstream of the promoter
and one downstream; Stricker et al. 2008). Plac/ara-1 is
activated by AraC in the presence of arabinose and
repressed by LacI. Repression can be inhibited by
IPTG (Stricker et al. 2008). The araC and lacI genes
were each placed independently under the control of
Plac/ara-1 promoters. yemGFP, also under the control
of Plac/ara-1, reported on dynamics. All proteins con-
tained ssrA tags, promoting rapid degradation. The
activator and repressor genes were placed on separate
plasmids and transformed into E. coli deficient in
araC and lacI, minimizing host genome interference
(Stricker et al. 2008).

Over 99 per cent of cells displayed oscillations, with a
period of approximately 40 min (Stricker et al. 2008;
figure 7e), in accordance with simulations, and a clear
demonstration of robustness. Oscillatory state was
transmitted to progeny and synchrony lost after a few
periods (Stricker et al. 2008). In agreement with theor-
etical results, oscillations were highly tunable,
oscillating over a wide range of IPTG and arabinose
concentrations, temperatures and media sources, allow-
ing period tuning between 13–58 min (Stricker et al.
2008). Modelling also closely captured the effects of ara-
binose and IPTG on period, and accurately predicted
the relationship between temperature and period, from
258C to 378C. However, individual cells showed an
unexpected gradual increase in period, possibly owing
to the dynamics of the reporter used. As with the
three-gene repressilator, this was not accounted for in
the model. Although cell doubling time in minimal
media and Luria Broth differed by approximately 1 h,
period lengths were comparable, demonstrating that
dynamics are de-coupled from the cell cycle (Stricker
J. R. Soc. Interface (2010)
et al. 2008). The bi-modality of period lengths predicted
by Gillespie simulations has not yet been observed
(Stricker et al. 2008), this novel behaviour remaining
theoretical for the time being.

6.4. Discussion

The Smolen oscillator is robust and highly tunable, able
to display periods over a fivefold range, down to a rapid
13 min. These are both characteristics observed in natu-
ral oscillators; robustness provides reliability, while
tunability provides utility. This is encouraging for the
future construction of synthetic oscillators. The rapid-
ity of the oscillations appears to be due to the
addition of a negative feedback loop to what would
otherwise be an amplified negative feedback topology.
It probably also contributes towards robustness and
tunability. Predicted bi-modality is a novel and poten-
tially desirable attribute that also appears to be
tunable. If realized in vivo, this may expand the
future applications of the oscillator. Studies on time
delays are inconclusive, but the construction of
the Fussenegger oscillators suggests a eukaryotic
implementation may be successful.
7. VARIABLE LINK OSCILLATORS

A gene regulatory network is generally abstracted as a
topology comprising a number of nodes connected by
activating or repressing links. However, not all networks
can be described in this way. For instance, the PRM pro-
moter of the l phage is controlled by cI at three
operators: OR1, OR2 and OR3. Binding affinities are
such that binding typically proceeds sequentially,
OR1 before OR2, and OR2 before OR3 (Hasty et al.
2001a). Transcription is enhanced by cI binding to
OR2, but repressed by binding to OR3; therefore, at
low to medium cI concentrations, OR2 will be bound
and transcription enhanced, while at high concen-
trations OR3 will also be bound, repressing
transcription (Hasty et al. 2001a). The link formed by
the regulation of this promoter is therefore variable.

This promoter has been used in an amplified nega-
tive feedback-like topology (figure 8a; Hasty et al.
2001a). The first gene regulates itself and a second
gene, through the variable promoter, while repression
by the second gene is via a protease acting on the
product of the first gene. To study the network in
silico, an ODE-based model was proposed in Hasty
et al. (2001a) (figure 8c).

The implementation relies on the fact that a single
gene regulating itself through the variable promoter
acts as a bi-stable switch (Hasty et al. 2001a), display-
ing hysteresis with respect to its degradation rate. The
remainder of the topology exists to effectively move
the degradation rate back and forward, pushing the
system round the hysteric loop, generating oscillations.
Oscillations are favoured with smaller protein degra-
dation rates and lower protease activity (Hasty et al.
2001a). Gene copy number also plays a role (Hasty
et al. 2001a).

Oscillations were found to exhibit periods of the
order of tens of minutes via in silico simulations of
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the topology (figure 8d). This is comparable to the
Smolen oscillator and significantly more rapid than
either the Hopf-driven amplified negative feedback
oscillator in Atkinson et al. (2003) or the Fussenegger
oscillators. In addition to their importance in determin-
ing the existence of oscillations, degradation rates and
gene copy number were also found to affect the period
(Hasty et al. 2001a).

Although no in vivo implementation has yet been
undertaken, it has been proposed that it might be pos-
sible to use the repressor cI as gene A, and the protease
RcsA as gene B (Hasty et al. 2001a), both controlled by
the PRM promoter (figure 8b).

In conclusion, simulations seem to suggest that the
use of variable promoters in an amplified negative feed-
back topology will increase the frequency of oscillations,
to a level comparable with that exhibited by the Smolen
oscillator. A pressing open problem is the lack of an in
vivo implementation of variable link oscillators. This
is required to assess to what extent the in silico predic-
tions can be matched in vivo, and to ascertain whether
such an implementation can also match the robustness
properties of the Smolen oscillator. The promoter struc-
ture discussed has also been used in another, more
complex transcriptional level controlled oscillator
reported in Wang et al. (2007).
8. METABOLATOR

The metabolator (Fung et al. 2005) is the first oscillator
to be reported in the literature that incorporates metab-
olites as a core component. Conceptually, it comprises
two genes. One gene produces an enzyme that converts
one metabolic pool (M2) to another (M1); its transcrip-
tion being activated by M2. At the same time, the other
gene produces an enzyme that converts M1 to M2; its
J. R. Soc. Interface (2010)
transcription being repressed by M2. Additionally,
there is an influx into M1, and an efflux from M2

(figure 9a). To facilitate comparison with other oscil-
lators, the topology of the metabolator can be
represented schematically as a gene regulatory network
(figure 9b). Here, two genes, A and B, activate each
other and are self-repressed by increasing/decreasing
the metabolic pool M2. A particular implementation
of this concept (figure 9c) was modelled with ODEs
(electronic supplementary material, §S7) and CLEs,
which explicitly represent a GFP reporter (Fung et al.
2005). All following discussion refers to this model.

8.1. Mathematical analysis and in silico
experiments

Mathematical analysis showed oscillations arise through
a Hopf bifurcation, dependent on a number of factors. It
was observed that a high-enough influx rate is essential
for the presence of oscillations which can be instead sup-
pressed by high M2 concentrations. Oscillations were
also found to be sensitive to relative gene copy numbers.
Simulations predicted the oscillation period to be
approximately 40 min and confirmed the requirement
of an adequate in flux rate (figure 9f ), while CLE simu-
lations, as per many of the other oscillators, showed the
addition of noise created significant amplitude
variation.

8.2. In vivo implementation

The E. coli acetate pathway was exploited for in vivo
implementation. Acetyl coenzyme A (acetyl-CoA) was
used as M1, and acetyl phosphate was used as M2.
Acetyl-CoA is converted to acetyl phosphate by phos-
phate acetyltransferase (Pta), which corresponds to
gene A in the network (figure 9c,d). Acetyl phosphate
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equations for the in vivo implementation are given in electronic supplementary material, §S7. ( f ) In silico simulation of
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Fung et al. (2005).
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represses transcription indirectly: it results in the phos-
phorylation of Nitrogen Regulator I (NRI), which
stimulates production of LacI by activating a glnAp2
promoter. LacI represses pta expression through promo-
ter PLlacO-1 (Lutz & Bujard 1997). Acetyl-CoA
synthetase (AcS—synthesises acetyl-CoA) served as
J. R. Soc. Interface (2010)
gene B in the network (figure 9c,d). Its expression
was also under the control of a glnAp2 promoter, and
was thus upregulated by acetyl phosphate via NRI.
Acetyl-CoA is a metabolic product of sugars, fatty
acids and amino acids. Sugars present in growth media
served as the influx to the network. Acetyl phosphate
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is converted to acetate by acetate kinase (AcK), and
after protonation is permeable across the cell membrane,
serving as the efflux. The lacI gene was incorporated into
the E. coli chromosome in single copy, with pta and acs
genes placed on a single plasmid. A reporter gene
encoding GFP, under the control of LacI, was placed
on a separate plasmid. All proteins contained ssrA
tags, ensuring rapid degradation. E. coli contained
non-functioning pta and lacI mutants, ensuring mini-
mal host genome interference, and a glnL knockout,
allowing phosphorylation of NRI by acetyl phosphate.

Oscillations were observed in approximately 60 per
cent of cells, with a period of 45+ 10 min (mean+
s.d.; figure 9g), of the order of in silico predictions,
and lasted at least 4 h. As predicted by stochastic simu-
lations, amplitudes varied significantly. Cell divisions
appeared uncorrelated with oscillations, suggesting
dynamics are de-coupled from the cell cycle.

In agreement with the mathematical analysis, influx
rates from media containing glucose, fructose and man-
nose were high enough to support oscillations, while a
lower rate from glycerol was not. Furthermore, addition
of high concentrations of acetate, which maintains a
high acetyl phosphate (M2) concentration through
AcK, suppressed oscillations. Oscillations can therefore
be easily controlled externally through metabolites.
Natural accumulation of acetate also suppressed oscil-
lations, suggesting removal could support longer term
oscillations (Fung et al. 2005).

8.3. Discussion

Theoretical models of the metabolator account for in
vivo observations, and dynamics can be predictably
controlled by external metabolite sources. Sensitivity
of oscillations to gene copy number, which will vary
temporally, may account for the relatively low per-
centage of oscillating cells. Although a GRN
representation has been proposed here, the metabolator
naturally lends itself to a metabolite-centric represen-
tation (i.e. figure 9a; Fung et al. 2005). This raises the
question of whether GRNs are always the most useful
way of representing biological networks containing
genes.
9. CONCLUSIONS

Synthetic genetic oscillators, both constructed in vivo
and studied theoretically, have been reviewed and
presented, where possible, in a coherent unified frame-
work. A path has been taken from the early
theoretical work of Goodwin, to the recent construction
of the robust Smolen oscillator, and the more sophisti-
cated Fussenegger oscillators. A summary of oscillator
features can be found in tables 1 and 2, collating oscil-
lators using solely transcriptional regulation and at
least one non-transcriptional regulation mechanism,
respectively.

Although outside the scope of this review, there is an
increasing amount of investigation into coupled genetic
oscillators. The focus has been on coupled repressilators
(Garcia-Ojalvo et al. 2004; Ullner et al. 2007; Zhou et al.
2008), although coupling of other networks has also
J. R. Soc. Interface (2010)
been studied (McMillen et al. 2002; Li et al. 2006).
The analysis has almost exclusively been theoretical,
but coupling has recently been used in vivo to generate
a population of cells displaying synchronized
oscillations (Danino et al. 2010).

Comparisons between oscillators are hindered by the
fact that, despite the drive towards a standardized
characterization of synthetic biological components
and devices (The BioBricks Foundation, http://bbf.
openwetware.org/), there currently exists no character-
ization standard for published synthetic oscillators.
Reported characteristics vary significantly between
oscillators in both type and detail, for instance, the per-
centage of oscillating cells, a vital measure of
robustness, is only reported in approximately half of
the in vivo implementations of the oscillators described
in this paper.

In vivo implementations have almost exclusively
been in prokaryotes, the eukaryotic Fussenegger oscil-
lators being a recent exception. The prokaryotic
systems exploited thus far are generally easy to manip-
ulate and their mechanisms of gene regulation are
generally simpler than those of eukaryotes. This relative
simplicity means models are more likely to capture the
systems essential features and hence be more predictive.

Oscillatory periods vary between 13 min and 26 h
(Smolen and the low-frequency Fussenegger oscillator,
respectively), a significant range. The reason for this
variation is not yet clear, and period can be tuned
through a number of different means in different oscil-
lators. For instance, period is tuned by temperature,
and small-molecule concentrations affecting transcrip-
tion regulation, in the Smolen oscillator, and by
relative plasmid dosage in the original Fussenegger
oscillator. Noise is likely to also play a role in determin-
ing period. Amplitude can be tuned through similar
means. In the original Fussenegger oscillator, this is
again through relative plasmid dosage. In terms of
reported oscillating cell percentages, only the Smolen
oscillator can be termed robust.

Simulations suggest a dual role for intrinsic noise in
dynamics. On the one hand, noise accounts for amp-
litude variations, but on the other, it enlarges
oscillatory parameter regions, enhances access to
regions of phase space and generates stochastic coher-
ence. These constructive effects of noise will probably
be exploited in future oscillators through copy number
control. However, the ability to observe these effects
in silico, in particular stochastic coherence, depends
on the parameters and representation used. Stochastic
coherence is abolished in the non-adiabatic regime of
the repressilator, and by quasi-equilibrium assumptions
in the dimerization-controlled amplified negative feed-
back oscillator. It should be noted that as of yet,
there appears to have been no in vivo validation of
stochastic coherence within genetic oscillators.

This review found that modelling has been signifi-
cantly predictive and often in agreement with in vivo
observations, but model parameters were often iden-
tified by heuristic procedures. Generally, simpler
models have been used to determine the network poten-
tial for oscillations, with more detailed models
subsequently being developed to obtain better

http://bbf.openwetware.org/
http://bbf.openwetware.org/
http://bbf.openwetware.org/
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qualitative and quantitative predictions of the network
behaviour. Detailed models can also uncover more com-
plex behaviour as, for instance, the coexistence of
multiple limit cycles observed in the Smolen oscillator.
However, where more complex behaviour has not yet
been observed in vivo, it is important to check that
such behaviours are not just an artefact of the increased
model detail and the subsequent higher dimensionality,
which might serve to distract from the main dynamical
behaviour.

Surprisingly, not all models explicitly take into
account the dynamics of the reporter, usually a fluor-
escent protein, as the means of assessing dynamics.
For example, the models proposed for both the repres-
silator and the Smolen oscillator do not, and both
show unexpected effects that might be explained by
the reporter characteristics, specifically, the continually
growing fluorescence of the repressilator, and the gradu-
ally increasing period of the Smolen oscillator.

Both mathematical analysis and in silico simulations
confirmed that the most common source of oscillations
is the presence of a Hopf bifurcation in the model,
although other bifurcation scenarios, such as a saddle-
node of limit cycles or homoclinic bifurcation, are also
potential mechanisms. Despite the importance of these
mechanisms, their implications are only marginally dis-
cussed in the literature. This is rather surprising as
they can have dramatic effects on the dynamics exhibited
by the oscillators. Good examples are the transcription-
ally and proteolytically controlled amplified negative
feedback oscillators where in both cases oscillations can
be generated either through a SNIC or a subcritical
Hopf bifurcation (Guantes & Poyatos 2006; Conrad
et al. 2008). In the transcriptionally repressed oscillator,
the SNIC leads to oscillations with arbitrarily low fre-
quencies and large periods, while in the proteolytically
repressed oscillator, the subcritical Hopf bifurcation
yields higher frequencies and damped oscillations. Differ-
ences are further apparent when responses to external
stimuli are considered. In both oscillators, the SNIC
causes the respective oscillator to act as an integrator
of signals, while the subcritical Hopf bifurcation
causes it to act as a frequency-sensitive resonator, both
behaviours directly attributable to the underlying bifur-
cation mechanism (Guantes & Poyatos 2006; Conrad
et al. 2008).

There is an interesting relationship between topology
and dynamics. Although bifurcation mechanisms varied
significantly across the amplified negative feedback
implementations, the bifurcation requirement of a signifi-
cant difference in the speed of activator and repressor
dynamics was well conserved. This requirement even
extended through to the Smolen oscillator, presumably
owing to the similarity between the two topologies. Pre-
vious studies demonstrated correlation between topology
and the frequency–amplitude relationship of oscillators
(Tsai et al. 2008). Together with the findings here, it
appears that correlations between topology and
dynamics exist within certain levels of classification,
and over certain ranges of topologies.

Time delay has both constructive and destructive
effects. In the Goodwin oscillator, it increases the oscil-
latory parameter space, but also reduces regularity,
J. R. Soc. Interface (2010)
while under one representation of the Smolen oscillator,
it probably increases robustness, yet under another
oscillations are abolished when it is too great, or in a
manner representing a nuclear membrane. However,
increased time delay is the likely reason why the
Fussenegger oscillators display undamped oscillations
while the earlier amplified negative feedback implemen-
tation does not.

Even in light of the apparent robustness of the
Smolen oscillator, robustness is still a significant issue
for synthetic oscillators. Although current oscillators
generally appear decoupled from the cell cycle, net-
works exist in cellular environments that are not fully
characterized or understood. Interference from the
host cell is likely, possibly accounting for the low per-
centages of oscillating cells reported. The halting of
oscillations in the three-gene repressilator by entry
into the stationary phase is an indication of such inter-
ference (Elowitz & Leibler 2000). With the exception of
the Fussenegger oscillators, all in vivo implementations
used mutation or removal of particular host genes to
mitigate against interference. However, as networks
become larger, the number of potentially interfering
host components will increase. Unknown components
will form interactions and known components will
form unknown interactions. Both of these are more
likely in lesser characterized and larger eukaryotic sys-
tems into which networks will increasingly be placed.
These issues also extend to purely synthetic com-
ponents. A measure of how likely network function is
to be compromised if subjected to reasonable levels of
host cell interactions is required. In this direction, two
empirical rules have been developed for the repressilator
(Goh et al. 2008). Generally, non-specific interactions
forming coherent couplings (couplings preserving regu-
latory signs between nodes) are more likely to
maintain oscillations than those forming incoherent
couplings, and non-specific interactions having higher
regulatory homogeny (a greater fraction of their inter-
actions with the network positive or negative) are also
more likely to preserve oscillations (Goh et al. 2008).
Effects of the cell cycle, through changes in volume,
component levels at division (Chen et al. 2004; Yoda
et al. 2007) and levels of host cell components required
for network function e.g. RNA polymerase and ribo-
somes (Tuttle et al. 2005), are also starting to be
considered. Together, these should aid the design and
implementation of new types of reliable, robust, tunable
biological oscillators, and their incorporation into new
synthetic genetic regulatory network designs.

We acknowledge funding from the UK EPSRC via the Bristol
Centre for Complexity Sciences. We thank Matthew
R. Bennett for providing model details.
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