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Throughout biology, cells and organisms use flagella and cilia to propel fluid and achieve
motility. The beating of these organelles, and the corresponding ability to sense, respond
to and modulate this beat is central to many processes in health and disease. While the mech-
anics of flagellum–fluid interaction has been the subject of extensive mathematical studies,
these models have been restricted to being geometrically linear or weakly nonlinear, despite
the high curvatures observed physiologically. We study the effect of geometrical nonlinearity,
focusing on the spermatozoon flagellum. For a wide range of physiologically relevant par-
ameters, the nonlinear model predicts that flagellar compression by the internal forces
initiates an effective buckling behaviour, leading to a symmetry-breaking bifurcation that
causes profound and complicated changes in the waveform and swimming trajectory, as
well as the breakdown of the linear theory. The emergent waveform also induces curved swim-
ming in an otherwise symmetric system, with the swimming trajectory being sensitive to head
shape—no signalling or asymmetric forces are required. We conclude that nonlinear models
are essential in understanding the flagellar waveform in migratory human sperm; these
models will also be invaluable in understanding motile flagella and cilia in other systems.

Keywords: sperm motility; buckling instability; nonlinear flagellar dynamics;
symmetry breaking; asymmetric waveforms; internally driven filaments
1. INTRODUCTION

Spermatozoan motility is critical for fertilization and
relies on the whip-like beating of a flagellum. This wave-
form arises through an intricate balance of internally
generated shear, flagellar elastic resistance and hydro-
dynamic viscous drag. Despite complex beat patterns,
aspects of the overall swimming trajectories are simply
related to properties of flagellar bending. In particular,
averaged over a beat cycle, symmetrical flagellar wave-
forms propel free swimming cells in relatively straight
paths (Gray & Hancock 1955; Katz et al. 1989; Smith
et al. 2009a,b), while bending asymmetry drives the
cell in curved trajectories, as illustrated in figure 1b.
Furthermore, when the sperm head is pinned to a sur-
face, beat asymmetry induces cell rotation about the
point of attachment (Goldstein 1977). Asymmetric
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bending has also been observed to be important in the
chemotactic response of sperm (Miller & Brokaw
1970; Wolgemuth et al. 2000) and during hyper-
activation (Katz et al. 1989; Kinukawa et al. 2003),
a motility change that is thought to be required for suc-
cessful fertilization. However, despite the vital role of
symmetry-breaking phenomena for the flagellar wave-
form, and consequently for sperm transport, the
mechanism by which asymmetric beating is generated
is yet to be fully understood.

Domain boundaries can also induce asymmetric
dynamics (Katz et al. 1989). When sufficiently close
to a solid boundary, typically at a distance of less
than the sperm body length, numerous swimming
behaviours have been observed. Rodent sperm with
hook-like heads often swim with a planar flagellar
waveform and a trajectory curvature of fixed chirality
relative to the sperm head. This is considered to arise
from the influence of head geometry on stable surface
swimming (Woolley 2003). Similarly, for sperm with
more symmetrical heads, non-planar beating can
This journal is q 2010 The Royal Society
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(a) (b)

Figure 1. Imaging frames for non-rolling human sperm cells migrating within a viscous medium, containing 2% methyl-cellulose,
in a capillary chamber of 400 mm depth, captured at the same focal plane: (a) swimming trajectories (arrows) for three cells,
indicated in white, yellow and cyan and plotted at the same time interval, 0.4 s (electronic supplementary material, movie S1).
(b) A circularly swimming cell further along the capillary chamber; the imaging sequence is superimposed at equal time intervals
of 2 s, with the swimming trajectory given by the yellow curve. For further details about the microscopy materials and methods, see
electronic supplementary material.
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occur with cell rolling during surface swimming,
resulting in circular swimming trajectories in the direc-
tion of cell rolling, which is always the same within a
species (Woolley 2003).

Surfaces do not always appear to dictate the sym-
metry breaking of sperm cells. This is illustrated in
figure 1a, for non-rolling human sperm that have
migrated significant distances within a deep chamber
(400 mm) filled with a physiological high-viscosity
medium. Here, clockwise (yellow) and counterclockwise
(cyan) surface swimmers can be observed together with
an approximately straight swimming path (white). In
this case, no obvious morphological feature dictates
the chirality of path curvature. In figure 1b, the mani-
fest asymmetrical bending associated with circular
swimming is also illustrated.

These observations readily establish that symmetry
breaking and curved trajectories can occur without
cell rolling or asymmetric cell morphology and need
not be driven by dominant boundary influences. In
such cases, it is not clear that an internal asymmetry
of the flagellum is dynamically important and driving
symmetry breaking, whether it be due to an asymmetric
force generation by the dynein molecular motors, as
indicated in hyperactivation arising from elevated intra-
cellular calcium (Suarez & Ho 2003), or the subtle
heterogeneities of flagellar structure (Fawcett 1975).
This is especially the case for species such as humans
that can also exhibit highly symmetric waveforms.
Thus, our aim is to explore whether physical principles
support the null hypothesis that asymmetric waveforms
can be generated within flagella with no intrinsic asym-
metry and without asymmetric internal forces via a
dynamical instability, as observed with passive filament
bending in viscous shear flows (Becker & Shelley 2001).
In the following study, we therefore summarize relevant
features of flagellar mechanics, construct a simple
elastohydrodynamical model exploring flagella wave-
form symmetry breaking for sperm motility within
viscous, Newtonian, fluids and, finally, place the find-
ings in the context of sperm motility through
numerical simulations and a parameter study.
J. R. Soc. Interface (2010)
2. FLAGELLAR MECHANICS

The elastohydrodynamic formulation, which couples
the structural mechanics of the flagellum with the sur-
rounding fluid, has been extensively studied (Machin
1958; Brokaw 1971, 1975; Hines & Blum 1978;
Lindemann & Kanous 1995; Camalet et al. 1999;
Camalet & Jülicher 2000; Riedel-Kruse et al. 2007;
Fu et al. 2008; Hilfinger & Jülicher 2008; Hilfinger
et al. 2009), both experimentally and theoretically. In
the founding study, Machin (1958) proposed that an
internal forcing mechanism was required to maintain
the flagellar bending observed in spermatozoa exper-
iments. This hypothesis was later established with the
discovery of the axoneme internal structure, revealing
that sliding microtubules drive active flagellar bending
(Satir 1965). Although Brokaw first considered this
microtubule sliding mechanism in modelling flagellar
locomotion (Brokaw 1971, 1975), the nonlinear flagellar
elastohydrodynamic equations were only derived several
years later by Hines & Blum (1978). Later, analogous,
models have also been proposed in the literature, explor-
ing both linear (Camalet et al. 1999; Camalet &
Jülicher 2000; Riedel-Kruse et al. 2007; Fu et al.
2008) and more recently weakly nonlinear dynamics
(Hilfinger et al. 2009).

Despite such progress in modelling the internally
driven flagellum, the influence of dynamical nonlinear
instabilities on the emergent flagellar beat pattern
and the consequences for cell swimming have been lar-
gely neglected. Nonetheless, nonlinear instabilities are
well established for the biophysical dynamics of
slender-body systems, including gliding motility assays
of cytoskeletal filaments with flow defects (Bourdieu
et al. 1995), torque-induced writhing of a rotating
elastica (Wolgemuth et al. 2000) and the behaviour of
passive filaments within shear flows (Becker & Shelley
2001). The latter in particular highlights that instabil-
ities can emerge from filament compression, with a
sharp transition to buckling followed by complicated
shape perturbations. Recent studies of flagellar wave-
form mechanics have initiated explorations of
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internally generated shear between the microtubules via
a linear formulation (Camalet et al. 1999; Camalet &
Jülicher 2000; Riedel-Kruse et al. 2007; Fu et al.
2008), as well as considering the lowest order nonlinear
effects on the self-organized bending waves (Hilfinger
et al. 2009). These investigations highlight that the
emergent axonemal beat patterns are a good approxi-
mation to the weakly nonlinear problem (Hilfinger
et al. 2009). However, except for a brief, perturbative,
study on the role of tension owing to an external force
(Camalet & Jülicher 2000), the possibility that
nonlinear tension dynamics can induce dynamical
symmetry breaking has been widely neglected in
active flagellar mechanics. Furthermore, this entails
that the range of validity of the linear model is not
completely explored.

Thus, in contrast to the vast majority of works on
the internally driven filament, we investigate whether
flagellar tension can induce symmetry breaking via a
buckling mechanism and how it may influence flagellar
beating and sperm swimming trajectories. This requires
considering geometrical nonlinearities in flagellar
models coupling internal shear generation via micro-
tubule sliding, the flagellum elastic response and
viscous drag. In addition, we also explore the agreement
between the geometric nonlinear theory and the linear
approximation. This will allow us to delimit the
region of validity of linear theory in parameter space,
further bridging the gap between linear and nonlinear
regimes. In turn, such studies will be important for
the formulation of well-founded models for forced
elastohydrodynamic problems in the future.
2.1. Elastohydrodynamic formulation

We consider an internally driven sperm flagellum with
a planar waveform, immersed within a viscous fluid.
Inertial effects are negligible, because of the very low
Reynolds number of sperm swimming, while the hydro-
dynamic interactions are simplified using resistive-force
theory (RFT; Gray & Hancock 1955). This local drag
model is the leading order term of the equations of
slender-body hydrodynamics (Johnson 1980), and it is
simply specified by a local linear relation between the
velocity of the flagellum centreline and the force (per
unit length) exerted on the fluid, through the aniso-
tropic drag coefficients. Although RFT is only valid
for very slender filaments, it is widely used for general
elastohydrodynamic problems, including relaxational
and forced dynamics of stiff polymers (Machin 1958;
Bourdieu et al. 1995; Goldstein & Langer 1995;
Goldstein et al. 1998; Wiggins et al. 1998; Wolgemuth
et al. 2000; Becker & Shelley 2001; Yu et al. 2006), as
well as flagellar dynamics (Machin 1958; Brokaw
1971; Hines & Blum 1978; Johnson & Brokaw 1979;
Lindemann & Kanous 1995; Camalet et al. 1999;
Camalet & Jülicher 2000; Riedel-Kruse et al. 2007; Fu
et al. 2008; Hilfinger & Jülicher 2008; Hilfinger et al.
2009), among others. Theoretical predictions using RFT
have previously shown a remarkably good agreement
with experimental measurements for actuated filaments
(Wiggins et al. 1998; Yu et al. 2006) and the buckling
instability exhibited by a single passive filament within a
J. R. Soc. Interface (2010)
shear flow (Becker & Shelley 2001; Tornberg & Shelley
2004). In addition, microscopy imaging (Riedel-Kruse
et al. 2007) has also confirmed that RFT is surprisingly
accurate when applied to bull sperm flagellar dynamics,
while numerical simulations accounting for non-local
hydrodynamic effects support the use of RFT for micro-
swimmers with relatively small cell bodies, including
human sperm (Johnson & Brokaw 1979).

Sperm flagellar motion is driven by dynein motor
proteins, exerting a relative shearing force between
outer adjacent filaments, or microtubules, of the flagel-
lar axoneme: this is referred to as the sliding filament
model (Brokaw 1971, 1975; Hines & Blum 1978;
Camalet et al. 1999; Camalet & Jülicher 2000; Riedel-
Kruse et al. 2007; Fu et al. 2008; Hilfinger & Jülicher
2008; Hilfinger et al. 2009). For planar flagellar wave-
forms of mammalian sperm, there is a preferred plane
of beating imposed by the mammalian flagellar accessory
structures (Lindemann et al. 1992). In this context, faith-
ful three-dimensional descriptions of the cylindrical
arrangement of microtubule doublets in mammalian
sperm have been shown to be equivalent to a simpler
two-dimensional representation of the sliding forces
within the axoneme, as depicted in figure 2 (Hilfinger &
Jülicher 2008; Hilfinger et al. 2009). Here, a pair of paral-
lel elastic filaments may slide relative to each other within
the beat plane in response to dynein forces. Each sliding
filament is assumed to be homogeneous, inextensible and
separated by a constant gap spacing b, which corresponds
to the axoneme diameter. At the sperm head junction, we
assume for simplicity that no interfilament shear is
permitted owing to structural constraints. The axoneme
motor proteins induce active shear stresses along the
flagellum, which act in opposite directions and force
the filaments to locally slide with respect to each other,
inducing flagellar bending (figure 2).
2.2. Geometrically nonlinear theory: equation
of motion

It is convenient to describe the flagellum position, rela-
tive to the laboratory frame of reference, by its neutral
line X(s,t) (figure 2), noting that t is time and s denotes
the distance along the flagellum with 0 � s � L, where
L is the filament length. The local flagellum coordinate
system is represented as an orthonormal pair with a
positive orientation (ŝ(s,t),n̂(s,t)), where ŝ ¼Xs ;
@X/@s is the tangent vector and n̂ is the vector
normal to the flagellum centreline (figure 2). The flagel-
lar dynamics is inertialess and simply arises via
balancing the viscous drag force per unit length with
the internal forces per unit length within the flagellum.
Non-dimensionalizing with respect to the length scale
L, time scale v21 and force density E/L3, for a given
beating frequency v and constant flagellum elastic stiff-
ness E, the dimensionless elastohydrodynamic equation
of motion for the flagellum neutral line reads

Sp4Xt ¼ �Xssss � ðg� 1ÞðXs �XssssÞXs

þ ðTXss þ gTsXsÞ þ ðfsn̂þ gf n̂sÞ: ð2:1Þ

Here, the subscript t denotes differentiation with
respect to time, f(s,t) is shear force density within the



r+

r−

ŝ

n̂

X(s,t)

x̂

ŷ
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Figure 2. A schematic of the sliding filament mechanism. Relative to a laboratory fixed frame fx̂, ŷg, the vector X(s,t) describes
the position of the point which is an arclength s along the flagellum neutral line (dashed curve) at time t. The internal shear force
f(s,t) is acting tangentially and in opposite directions on each sliding filament r+(s) (solid grey curves) causing the flagellum to
bend. The distance between the centre of mass of the sperm head and the flagellum junction is denoted by a and the flagellar
axoneme diameter is b.
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flagellum and g ¼ j?=jk is the ratio between the perpen-
dicular, j?, and parallel, jk, fluid dynamic resistance
coefficients. The sperm-compliance parameter

Sp ¼ L
vj?
E

� �1=4

ð2:2Þ

is dimensionless and characterizes the relative impor-
tance of elastic forces to viscous drag (Wiggins et al.
1998). The tensile force T(s,t) is related to the Lagrange
multiplier for inextensibility, and it is implicitly deter-
mined by the constraint Xs . Xs ¼ 1. Under appropriate
variable transformations, these equations are equivalent
to earlier models proposed by Hines & Blum (1978),
Gueron & Liron (1993) and Camalet & Jülicher
(2000). A detailed derivation is presented in the elec-
tronic supplementary material as well as the explicit
form of the inextensibility constraint.

Although the sliding filament mechanism has been
successful in explaining flagellar bending, there is a lim-
ited quantitative understanding of the regulation and
nature of the internal shear stress f, which represents
the coupling between the dynein molecular motor
activity and the passive cross-linking proteins within
the flagellum (Brokaw 2009; Mitchison & Mitchison
2010). There have been several attempts to explain
the observed flagellar beat via different shear-control
hypotheses dictating the regulation of internal shear f
(Brokaw 1971, 1975, 2009; Hines & Blum 1978;
Lindemann & Kanous 1995; Camalet et al. 1999;
Camalet & Jülicher 2000; Mitchison & Mitchison
2010), although comparison with experiments has
only become possible recently (Riedel-Kruse et al.
2007). Here, it is beyond the scope of the study to con-
sider detailed assessments of the internal shear
regulation and the difficulties associated with dynein
control mechanisms. Instead, we use a symmetric
model, based on observations of shear in situ, to explore
the symmetry-breaking event. As detailed in the elec-
tronic supplementary material, travelling waves of
bending (Smith et al. 2009b), and thus internal shear
forces, periodically propagate down the flagellum;
given that the dominant mode typically dictates the
dynamics (Riedel-Kruse et al. 2007), we therefore
J. R. Soc. Interface (2010)
model the internal shear density as a simple travelling
wave

f ðs; tÞ ¼ A cosðks � tÞ; ð2:3Þ

with dimensionless force amplitude A and wavenumber
k. This particular choice of internal shear will not
just isolate the potential for symmetry breaking of a
symmetrically driven flagellum, it will also enable us
to investigate a wide range of shear distribution k,
bringing to light new nonlinear effects within a general
framework.

2.3. Boundary conditions

The equations governing the flagellar dynamics are
closed by defining the initial cell configuration together
with the boundary conditions, in which either the
movement of the flagellar endpoints is specified or a bal-
ance of forces and torques at each end is imposed. In
particular, at the distal boundary, s ¼ L, the flagellum
is free to move and, therefore, the external torques
and forces are zero, i.e.

Mext ¼ Fext ¼ 0 at s ¼ L:

At the proximal end of the flagellum, s ¼ 0, we consider
three distinct boundary conditions motivated by
laboratory examples:

— The clamped head. The sperm head is strongly
adhered, with no rotation about its point of attach-
ment, so that both its position and tangent vectors
are fixed: Xtjs¼0 ¼Xstjs¼0 ¼ 0.

— The pivoting head. The sperm head is adhered so
that it does not move except for rotation about its
attachment, due to the absence of an external
moment: Xtjs¼0 ¼Mextjs¼0 ¼ 0.

— The swimming sperm. The cell body experiences a
hydrodynamic viscous drag force, Fhead, and
moment, Mhead, which are balanced by the contact
force and torque between the sperm head and the
flagellum at their junction. This balance yields the
required boundary condition for the flagellum in
terms of the motion of the sperm head via a specifi-
cation of Xtjs¼0 and Xstjs¼0.
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The full nonlinear numerical scheme, using methods
similar to (Tornberg & Shelley 2004), validation and
derivation of the boundary equations are summarized
in the electronic supplementary material.

2.4. Parallels with the linear theory

For small deflections, Camalet & Jülicher (2000) have
shown that the equation of motion (equation (2.1))
simplifies to

Sp4ht ¼ �hssss þ fs; ð2:4Þ

where x � s and X(s,t) � sx̂ þ h(s,t)ŷ. The tensile
forces only contribute at subleading orders, and hence
T(s,t) � 0. In the absence of internal shear, equations
(2.1) and (2.4) describe the elastohydrodynamics of a
passive filament in a viscous fluid and have already
been studied analytically (Machin 1958; Bourdieu
et al. 1995; Goldstein & Langer 1995; Goldstein et al.
1998; Wiggins et al. 1998; Wolgemuth et al. 2000; Fu
et al. 2008) and experimentally (Bourdieu et al. 1995;
Wiggins et al. 1998; Yu et al. 2006). Despite the relative
simplicity of the linearized formulation equation (2.4),
there has not been a study of its accuracy compared
with the full nonlinear framework equation (2.1) given
the variation of parameters such as the shear force wave-
number k, shear force amplitude A and the sperm
compliance Sp. This was circumvented in Fu et al.
(2008) by choosing the sliding force amplitude A, for a
given Sp and k, so that the maximum deflection of the
filament was no larger than 10 per cent of the total fila-
ment length L. More recently, Jülicher and collaborators
(Hilfinger et al. 2009) have considered the role of leading
nonlinear contributions in a perturbative formulation
and demonstrated that the linear theory provided a
good estimate, with no evidence of a buckling instability.
3. RESULTS

Numerical simulations were carried out assuming a fluid
dynamic resistance ratio g ¼ 2. Once the boundary con-
ditions are specified, there are two further degrees of
freedom: the sperm-compliance parameter Sp and the
wavenumber k. Given these, the force amplitude A is
fixed by the constraint that the maximum flagellar dis-
placement does not exceed 10 per cent of the flagellar
length in the linear theory, that is, maxxtjhj ¼ 0.1 in
equation (2.4), as in Fu et al. (2008). The force ampli-
tude A is plotted for the clamped and pivoting
boundary conditions in electronic supplementary
material, figure S1, and the parameter regimes con-
sidered are consistent with typical physical quantities
observed in spermatozoa experiments (Baltz et al.
1990; Lindemann et al. 2005; Smith et al. 2009b). As
detailed in the electronic supplementary material, esti-
mates for the human sperm-compliance parameter for
various media range from Sp ¼ 4 to Sp ¼ 24, which dic-
tates the choice of Sp in the illustrative examples below.
We also display results for smaller Sp, as low as unity,
for completeness, when assessing the validity of the
linear theory as other flagellates can operate at smaller
compliance numbers, as briefly discussed in the
electronic supplementary material.
J. R. Soc. Interface (2010)
3.1. Clamped head and pivoting head results

We begin our investigation by contrasting the nonlinear
flagellar dynamics equation (2.1) with its linear
approximation equation (2.4), with illustrations of the
symmetry-breaking behaviour, for the clamped and
pivoting head boundary conditions. Figure 3a– l shows
the time evolution of the linear and nonlinear flagellar
shapes for both clamped and pivoting boundary con-
ditions, and six different pairs of wavenumber and
sperm compliance parameter (k, Sp). Figure 3m–x
additionally illustrates the time evolution of the non-
linear model predictions for the flagellar beat pattern
when symmetry breaking occurs for a range of internal
shear wavenumbers, k, and sperm compliance Sp ¼ 19
for the clamped head plus sperm compliance Sp ¼ 15
for the pivoting head.

The linear theory provides a good agreement with the
full nonlinear problem for cases a, b, g, h and d, e, j, k in
figure 3. In contrast, the linear approximation fails for
cases c, i, f, l in figure 3 for both the pivoting and clamped
boundary conditions, where the nonlinear solutions are
characterized by condensed or highly asymmetric wave-
forms, breaking up–down symmetry in the plane. This
is despite the constraint on the maximum flagellum
amplitude, as illustrated for k ¼ 5p and Sp ¼ 12 in
figure 3f. The symmetry-breaking behaviour within the
nonlinear model is further highlighted in figure 3m–x.
In particular, at large values of the sperm-compliance
parameter, Sp, corresponding to increasing viscous dom-
ination of the dynamics, the symmetry-breaking
behaviour is particularly enhanced. For clamped head
boundary conditions, the emergent asymmetrical wave-
forms are relatively constrained as the tangent vector is
also pinned at s ¼ 0, whereas asymmetrical bending
causes the flagellum to rotate about the point of attach-
ment for the pivoting head boundary condition. We
also observe that all flagellar patterns are eventually per-
iodic in time, once transients have decayed, despite the
complexity in the dynamics, though the period is greatly
increased once symmetry breaking has occurred.

To delimit the values of the internal shear force
wavenumber, k, and sperm compliance parameter, Sp,
simulations were performed for 0� k � 10p, 1 � Sp�
20. A measure of the discrepancy between the linear
theory predictions for the flagellar waveform, XL(s,t),
and the nonlinear theory predictions, XN(s,t), is given by

Dmax ¼ max
s;t
jXNðs; tÞ �XLðs; tÞj:

When Dmax ¼ 0, the agreement is perfect, while if
Dmax � 0.1 or less, the agreement is observed to be
qualitatively reasonable. For example in figure 3e,c,
Dmax ¼ 0.08 and 0.11, respectively, whereas in
figure 3i, Dmax ¼ 0.47.

In figure 4a,b, Dmax is plotted as an interpolated
function of Sp and k, with the black contour given by
Dmax ¼ 0.1. The linear theory is increasingly inaccurate
as the sperm compliance parameter, Sp, increases even
for moderate internal shear force wavenumbers, k,
especially for the pivoting head boundary conditions.
In figure 4c,d, the linear theory prediction for the
global maximum curvature, kmax, is plotted as the
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Figure 3. Snapshots of the flagellar evolution for the clamped and pivoting head boundary conditions, plotted at equal time inter-
vals (darker curves for later times). The internal sliding force is given by equation (2.3) for p � k � 10p and 4 � Sp � 19, as
indicated, and the dimensionless force magnitude A is chosen to produce a maximum flagellum amplitude of 0.1L in equation
(2.4) (electronic supplementary material, figure S1). (a– l ) Comparison of the time evolution for the linear (Lin) and nonlinear
(Non) theory. Note that the linear theory fails to predict the flagellar shape for cases (c,i,f,l ), and that the pivoting boundary
condition is more sensitive to the influence of the nonlinear dynamics. (m–x) Typical symmetry-breaking shapes, characterized
by an ‘S’ for clamped boundary conditions (Sp ¼ 19) and a ‘C’ for pivoting boundary conditions (Sp ¼ 15). Furthermore, all
beating patterns are periodic in time, despite their appearance.

1694 Nonlinear instability in flagella H. Gadêlha et al.
sperm compliance Sp and wavenumber k are varied, with
the contour Dmax ¼ 0.1 once more given by a solid black
curve. Clearly, there is a strong positive correlation
between the maximum curvature obtained from the
linear model and the discrepancy measure, Dmax, for
both boundary conditions, explicitly highlighting that
the linear theory becomes inaccurate as its predictions
for flagellar curvature increase. In particular, once the
radius of curvature is less than, approximately, 10 per
cent of the flagellar length (kmax ¼ 10), the linear
theory is observed to be unreliable.

One should note that figure 4b,d exhibits a blank
region in the upper left corner. The high flagellar compli-
ance, slowly varying internal shear distribution and
flagella hinging characterizing this region of parameter
space allow a local build-up of high curvature and ten-
sion, with sudden changes in the force direction.
Discretizing the nonlinear equations produces matrices
that are too ill-conditioned for reliable simulation. This
region of parameter space will not be considered further.

The symmetry-breaking transient dynamics is illus-
trated in figure 4e,f, where we, respectively, display
the flagellar pattern and absolute tension as the buck-
ling instability progresses for the pivoting head
boundary conditions with k ¼ 6p and Sp ¼ 15
(figure 3q). During this instability, a common feature
is a large absolute tension concentrated towards the
sperm cell–flagellum junction at s ¼ 0, noting that
the tension is zero at the distal flagellum, s ¼ L. After
reaching a critical value of absolute tension, the beating
shape instability is followed by a sudden drop in the
absolute tension together with an increase in the
J. R. Soc. Interface (2010)
period (figure 4f ). Also, it is noteworthy that the quan-
tity Dmax, displayed in figure 4a,b, or kmax, plotted in
figure 4c,d, can be used as a bifurcation diagram to
identify the parameter regimes where the buckling-
type instability occurs, since inaccuracies of the linear
theory are always observed to be accompanied by this
dynamic symmetry-breaking behaviour.
3.2. Swimming sperm

We examine the influence of the flagellar buckling
instability on swimming sperm. We have considered
the effect of two different head morphologies: a
‘human-like’ sperm head (Smith et al. 2009a) with
dimensions 4.5 � 2.8 � 1.12 mm and a spherical head
with diameter 2.40 mm so that it has the same
volume. The swimming sperm was found to be less sen-
sitive to the flagellar buckling instability, although once
both the sperm compliance, Sp, and the internal shear
wavenumber, k, are large, sperm swimming is observed
to be profoundly altered by the symmetry-breaking
mechanism. The transition in behaviour is, however,
smooth and drives the sperm towards swimming in cir-
cular paths of constant radius. Furthermore, a small
(large) sperm head viscous drag leads to larger (smaller)
circular paths. The sperm trajectories for both human-
like (dashed red) and spherical head (dashed blue),
when k ¼ 10p and Sp ¼ 20, are illustrated in
figure 4g. In addition, the swimming direction in
figure 4g changes from clockwise to counterclockwise
if f! 2f in equation (2.1), illustrating that overall
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Figure 4. The breakdown of linear theory, the symmetry-breaking instability and its consequences for the free head swimmer.
(a,b) The discrepancy measure, Dmax ¼ maxt,sjXN 2 XLj, is illustrated for varying internal shear wavenumber k, and sperm
compliance parameter, Sp, in both the pivoting head and clamped head cases. (c,d), the maximum of the linear theory prediction
of curvature, kmax, is presented. In all these four plots, the solid black contour marks where Dmax ¼ 0.1, noting that significantly
larger values are observed to characterize poor agreement between the linear and nonlinear theories. (e,f ) The transient features
of the symmetry-breaking bifurcation to asymmetric waveforms for the pivoting head boundary condition, when k ¼ 6p and Sp¼ 15
(figure 3q). (e) Time sequence once the flagellar buckling instability can be readily observed, with waveforms overlaid at equal time
intervals with the point of attachment in blue. The initial waveform (t ¼ 18.18) is illustrated in light grey and the final waveform
(t ¼ 150.76) in black, with a progression in darkness with time. ( f ) The associated absolute tension jTj as a function of time t and
arclength s. (g) The influence of the symmetry-breaking instability on the overall trajectory and flagellar beating pattern of the free
swimming cell, plotted at equal time intervals. Smoothed trajectories are plotted for two different sperm head geometries: a spherical
head (dashed blue) and a ‘human-like’ head morphology (dashed red), both with the same human-like head volume (Smith et al.
2009a). Here, the internal shear density is given by equation (2.3) with k ¼ 10p and Sp¼ 20, and the dimensionless force magnitude
A is 75% of the force amplitude used for the pivoting case when the maximum displacement is 0.1L (equation (2.4) and electronic
supplementary material, figure S1). The buckling transition induces an asymmetric waveform that drives swimmers towards
permanent circular paths; the swimming direction is inverted if f! 2f in equation (2.1).
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path direction after buckling is sensitive to the phase of
the internal shear forcing.
4. DISCUSSION

Although the dynamics of an internally driven filament
in viscous fluids has been widely studied, the possible
influence of a nonlinear buckling instability on the ulti-
mate flagellar patterns has not been explored. Here, we
consider the physical principles of this instability in the
context of flagellar dynamics, incorporating the influ-
ence of the surrounding fluid through RFT. The
structural response of the flagellum is governed by geo-
metrically nonlinear filament elasticity theory and the
internal forcing is represented via the sliding filament
model of eukaryotic flagellar motility. The coupling of
these three physical phenomena leads to the emergence
of complex flagellar waveforms, which were examined in
detail through numerical simulations for a large spec-
trum of internal shear wavenumber, k, sperm
compliance, Sp, and different boundary conditions.

While weakly nonlinear analyses (Hilfinger et al.
2009; Mitchison & Mitchison 2010) support the use of
J. R. Soc. Interface (2010)
geometrically linear elasticity theory in recent models
of flagellar dynamics (Camalet et al. 1999; Camalet &
Jülicher 2000; Riedel-Kruse et al. 2007; Fu et al.
2008), we have demonstrated that the linear theory
can be unreliable in general. On varying the internal
shear wavenumber k and the sperm compliance, Sp,
the linear theory yields inaccurate predictions for
reasonably large values of Sp and a wide range of wave-
numbers k (figure 4a,b). While the linear model
demonstrates a plausible behaviour in this parameter
regime (Fu et al. 2008), the nonlinear simulation
exposes the higher order effects and exhibits complex
flagellar beating (figure 3). Physically, it is reasonable
to expect an increasing inaccuracy of the linear model
for larger values of k and Sp, even with constraints on fla-
gellar waveform amplitude. In particular, higher
wavenumbers continuously force the flagellum to increase
its curvature locally. With higher sperm compliance par-
ameters Sp (equation (2.2)), and thus a sufficient viscous
resistance to prevent the tendency of elastic forces to
reduce this curvature, high tangential forces are induced,
which are nominally a second-order contribution (Cama-
let & Jülicher 2000; Hilfinger et al. 2009). Hence, the
validity of the linear theory requires a larger flagellum
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radius of curvature, observed to be at least 10 per cent of
flagellum length, rather than constraints on the ampli-
tude of flagellar deflection (Fu et al. 2008).

Our main result from this nonlinear investigation is
that asymmetric flagellar waveforms may arise dyna-
mically from intrinsically symmetric flagellar
dynamics; this is not captured by linear or weakly
nonlinear theories. Consequently, an asymmetric fla-
gellar waveform can be initiated and maintained
without any change in cell signalling or the presence
of flagellar heterogeneity. The asymmetric flagellar
bending is caused by a common phenomenon in elastic
filament dynamics, the buckling instability (Becker &
Shelley 2001), which is frequently found in passive fila-
ments when subjected to high tangential forces. This
mechanism is also manifested in driven flagellar
dynamics (figure 3), though, conversely, it is triggered
by the internal shear force via the fn̂s contribution in
equation (2.1). This causes the absolute tension to
rise; once beyond a critical value that the flagellum
elastic structure cannot support, asymmetric bending
is observed (figure 4e,f ). Furthermore, the flagellum
is still driven by the same internal shear after buck-
ling, which continuously forces the flagellum to
maintain the emerging asymmetric bending pattern:
roughly an ‘S’ shape for a fixed head and a ‘C’
shape for both the pivoting head case and the swim-
ming sperm (figures 3 and 4g). This represents a
markedly distinct buckling instability from those
reported in the literature (Bourdieu et al. 1995;
Becker & Shelley 2001; Tornberg & Shelley 2004).

This flagellar buckling instability is readily found for
large values of the internal shear wavenumber k and the
sperm compliance parameter Sp; it is also apparent for
moderate wavenumbers, in particular, for constrained
sperm especially when the sperm head is pivoting.
While the clamped boundary condition restrains the
motion, the free torque condition in the pivoting head
simulations allows the sperm to rotate around its fixed
point; analogously, the free head swimmer boundary
conditions induce waveform asymmetries that drive cir-
cular trajectories. Furthermore, the swimming sperm
trajectories are sensitive to sperm head morphology.
Morphologies may subtlety alter the net viscous drag
on the swimming flagellum, in turn altering the tension
via the boundary conditions. However, in the context of
the emergent behaviour from a tension-driven buckling
instability, this can have a substantial effect on the
emergent waveform, and hence the resulting swimming
trajectory (figure 4g). Furthermore, the swimming
direction is a non-trivial consequence of the force and
torque balance during the bifurcation to asymmetric
waveforms and, in particular, exhibits a dependence
on the phase of the internal sliding forces.

These results demonstrate that asymmetric flagellar
beating does not necessarily require an intrinsic asym-
metric forcing mechanism. Thus, observations of
circular swimming or flagellar waveform asymmetry
are not sufficient to infer the presence of hyperactiva-
tion or any other asymmetric physiological regulation
or signalling influencing the internal dynein molecular
motors within the flagellum. Similarly, one cannot
immediately infer that subtle flagellar structural
J. R. Soc. Interface (2010)
asymmetries, such as the 5–6 microtubule bridging
(Satir 1965; Olson & Linck 1977), are dynamically criti-
cal and driving symmetry breaking. Moreover, high
wavenumbers are commonly exhibited by sperm
migrating in high viscosity fluids (Smith et al. 2009b)
and circling cells (figure 1). The results we have pre-
sented indicate that it is physically plausible for this
behaviour to be caused by excessive tangential forces
on the flagellum owing to both internal shear forces
and the viscous drag on the sperm cell. Nonetheless,
the influences of ultrastructural, histological and phys-
iological complications are currently unexplored. For
example, we have not considered the role of tapering
in the accessory flagellar structures commonly found
in mammalian sperm cells, such as the outer dense
fibres. These accessory structures reinforce the flagellum
in regions where high tensions are expected, and may
also act to prevent the flagellar buckling instability;
likewise, subtle structural asymmetries of the sperm fla-
gellum could encourage buckling. Similarly, possible
dynein detachment mechanisms at high flagellar curva-
ture, such as the geometric clutch hypothesis
(Lindemann & Kanous 1995), may influence the emer-
gent waveform and require exploration. Further work
could also account for non-local hydrodynamic effects.

In summary, our formulation is the first to explore
the buckling instability of a filament driven by internal
shear forces within viscous fluids. It has firstly delimited
the validity of geometrically linear elastic filament
theory. Secondly, the study has demonstrated the phys-
ical plausibility of dynamical symmetry breaking of
filaments. Our demonstration that the asymmetric
waveforms (figure 1 and electronic supplementary
material, movie S1) that characterize specialized
sperm behaviours, such as hyperactivation or chemo-
taxis, can also emerge dynamically without recourse
to variations in structure or signalling (figures 3 and
4g), emphasizes the importance of being alert to this
symmetry-breaking mechanism when interpreting
observations of sperm flagella. These findings are crucial
when considering motility at these scales in physiologi-
cal fluids and their analogues, because of the fact that
increased viscosity induces a higher sperm compliance
number, as defined in equation (2.2). Furthermore,
mathematical models exploring the oscillatory behav-
iour of cilia and flagella beating should also consider
geometrically nonlinear dynamics to accommodate
the high curvatures observed physiologically. We hope
these findings will stimulate future mathematical
research, which considers the role for geometrically non-
linear dynamics and buckling instabilities in other
systems exhibiting flagellar motility, such as protozoa,
algae and artificial microswimmers.
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