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For many years, the dominant conceptual framework
for describing non-oriented animal movement patterns
has been the correlated random walk (CRW) model in
which an individual’s trajectory through space is rep-
resented by a sequence of distinct, independent
randomly oriented ‘moves’. It has long been recognized
that the transformation of an animal’s continuous
movement path into a broken line is necessarily arbi-
trary and that probability distributions of move
lengths and turning angles are model artefacts.
Continuous-time analogues of CRWs that overcome
this inherent shortcoming have appeared in the litera-
ture and are gaining prominence. In these models,
velocities evolve as a Markovian process and have
exponential autocorrelation. Integration of the velocity
process gives the position process. Here, through a
simple scaling argument and through an exact analyti-
cal analysis, it is shown that autocorrelation inevitably
leads to Lévy walk (LW) movement patterns on
timescales less than the autocorrelation timescale. This
is significant because over recent years there has been
an accumulation of evidence from a variety of experi-
mental and theoretical studies that many organisms
have movement patterns that can be approximated by
LWs, and there is now intense debate about the
relative merits of CRWs and LWs as representations of
non-orientated animal movement patterns.
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1. INTRODUCTION

For many years, the dominant conceptual framework
for describing non-oriented animal movements has
been the correlated random walk (CRW) model in
which an individual’s trajectory through space is
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regarded as being made up of a sequence of distinct,
independent randomly oriented ‘moves’ (Kareiva &
Shigesada 1983; Turchin 1998 and references therein).
Turning angles are drawn at random from a unimodal
distribution that is typically peaked around zero
degrees. Because small turns are much more likely
than large ones, the models can mimic the observed ten-
dency of many animals to move forward, a tendency
known as ‘directional persistence’.

It has long been recognized that the transformation
of the animal’s continuous movement path into a
broken line is necessarily arbitrary and that probability
distributions of move lengths and turning angles are
model artefacts (see Turchin 1998 and references
therein). Dunn & Brown (1987) and Alt (1988, 1990)
were perhaps the first to address the problem. They
formulated ‘continuous-time’ CRW models. In these
models, velocities evolve as a Markovian process and
are exponentially autocorrelated. Integration of the
velocity process gives the position process. The
approach pioneered by Dunn & Brown (1987) and by
Alt (1988, 1990) has recently been developed by
Johnson et al. (2008) who demonstrated its utility in
an analysis of telemetry data for harbour seals (Phoca
vitulina) and northern fur seals (Callorhinus ursinus).
All of these models are founded on the classic Langevin
equation

du ¼ � u
T

dt þ
ffiffiffiffiffiffiffiffi
2s2

T

r
dj; ð1:1Þ

where dj(t) is an incremental Wiener process with auto-
correlation kdj(t)dj(t0)l ¼ d(t 2 t0)dt. This stochastic
equation describes how velocity, u, changes by an
amount du in a time increment of size dt. Modelled vel-
ocities, u, are Gaussian distributed with mean zero and
variance s2. Velocities are also exponentially correlated,
ku(t þ t)u(t)l ¼ s2 exp(2t/T ). Discrete versions of the
Langevin equation are first-order autoregressive AR(1)
processes, and these correspondences allow for statisti-
cal inferences of model parameter values from discrete
telemetry records (Johnson et al. 2008). Two-dimen-
sional movements can be simulated using two
independent Langevin equations for movements in the
x- and y-directions, and such a model has been shown
to represent faithfully the movement patterns of har-
bour and northern fur seals (Johnson et al. 2008). At
short times, t , T, mean-squared displacements evolve
according to kx2l ¼ s2t2 and movements are said to be
‘ballistic’. At long times, kx2l ¼ 2s2Tt and movements
are diffusive (Doob 1942). At long times (t .T ), the
Langevin equation reduces to the simplest discrete-
time CRW model. This can be seen by first multiplying
both sides of the Langevin equation by T and then
taking the long-time limit (equivalent to letting T! 0
while s2T! K, where K is the diffusivity). This pro-
cedure gives T du ¼2u dt þ

ffiffiffiffiffiffiffi
2K
p

dj. The term T du
vanishes because velocity increments are bounded.
The quantity u dt is just the incremental change in pos-
ition, dx. The Langevin equation thus reduces to the
discrete CRW model, dx ¼

ffiffiffiffiffiffiffi
2K
p

dj, at long times. A
more general argument developed by Thomson
(1987), in the context of atmospheric dispersal model-
ling, shows that any continuous-time CRW model
This journal is q 2010 The Royal Society
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with fixed parameters will reduce to dx ¼
ffiffiffiffiffiffiffi
2K
p

dj at
long times.

In parallel with these developments, there has been
an accumulation of empirical and theoretical evidence
that many animals have movement patterns that can be
approximated by Lévy walks (LWs) (see Raposo et al.
2009; Reynolds & Rhodes 2009 and references therein).
LWs first entered the literature on animal movement
patterns when it was proposed that they may be
observed in foraging ants (Shlesinger & Klafter
1986). LWs have subsequently been found to rep-
resent accurately the movement patterns of a
diverse range of animals that includes microzooplank-
ton (Bartumeus et al. 2003), honeybees (Reynolds
et al. 2007a,b, 2009), fruitflies (Reynolds & Frye
2007) and many marine predators (Edwards 2008;
Sims et al. 2008).

LWs comprise clusters of short move step lengths
with longer moves between them. This pattern is
repeated across all scales, with the resultant scale-
free clusters creating fractal patterns. Directions of
movement are uniformly distributed between 08 and
3608. Distributions of individual movement lengths,
l, have power-law tails, pl(l) � l2m, where 1 , m � 3.
Distributions of total displacements (i.e. sums of indi-
vidual lengths) tend to Lévy stable distributions by
virtue of a generalized central limit theorem owing
to Gnedenko and Kolmogorov. For m . 3, total dis-
placements eventually become Gaussian distributed
by virtue of the central limit theorem and so these
motions are effectively Brownian at long times. The
cases of m � 1 do not correspond to normalizable
distributions with probabilities that sum to unity.
Mean-squared displacements of m � 2 Levy walks
grow ballistically as kx2l � t2 (Klafter et al. 1996)
just as they do for continuous-time CRWs at short
times.

LWs have not met with acceptance in some quarters.
This is in part because of a perceived lack of biological
realism. It is one thing to explain large-scale move-
ments with Gaussian, space-filling CRW but quite
another to do so with fractal, superdiffusive LWs. But
this common and perfectly reasonable viewpoint is
shown here to be erroneous. An exact mathematical
analysis reveals that the distances travelled between
successive ‘turns’ in movement patterns produced by
the Langevin equation are m ¼ 4/3 power-distributed.
Such power-law scaling is the defining characteristic
of a m ¼ 4/3 LW movement pattern and illustrates
that the CRW and LW paradigms are not mutually
incompatible. The connection between CRWs and
LWs therefore runs far deeper than their appearing to
have similar superdiffusive characteristics in some situ-
ations (Viswanathan et al. 2005). The new analysis
draws upon the previous work of Kearney & Majumdar
(2005) who obtained exact m ¼ 4/3 power-law scaling
for the area under continuous-time Brownian motion.
The approach developed by Kearney & Majumdar
(2005) is rigorous and is the simplest one known for
the establishment of such power-law scaling. Here,
this approach is used to establish an exact power-law
scaling for the area under velocity records produced
by the Langevin equation. The area under a velocity
J. R. Soc. Interface (2010)
record is a net displacement and the area under a vel-
ocity record between successive zero-crossings is a net
displacement made between successive turns in a one-
dimensional movement pattern. So while the physical
content of the results presented here has previously
appeared in other contents, the results are interesting
in a biological context because they provide a straight-
forward connection between CRWs and LWs. The
connection is a priori relevant in real animal
trajectories.

In the next section, it is proved that one-dimensional
m ¼ 4/3 LW movement patterns arise from the Lange-
vin equation. A simple, more accessible but
approximate scaling argument is then given for the pro-
duction of m ¼ 4/3 LW movement patterns by other
one-dimensional continuous-time CRW models. The
theoretical predictions are supported by the results of
numerical simulations. One dimensionality is not an
unrealistic scenario as terrestrial ecotones such as ripar-
ian forests, dune systems or rocky shores with strong
depth-environmental gradients force ‘edge’-foraging
(one dimensionality; Bartumeus et al. 2008).
Two-dimensional movement patterns produced by two
independent Langevin equations for movements in the
x- and y-directions do not seem to be amenable to ana-
lytic analysis and are examined later with the aid of
numerical simulations. This analysis uncovers the
presence of LW movement patterns. A discussion of
the findings and their connection with recent
observations is presented in §3.
2. AUTOCORRELATION AS A SOURCE OF
LW MOVEMENT PATTERNS

2.1. Exact analytic analysis of one-dimensional
movement patterns

Here, through an exact mathematical analysis and a
general scaling argument it is shown that the distances,
x, travelled between successive turns in one-dimensional
movement patterns produced by the Langevin equation
are power-law distributed over an extended range of
scales and are indicative of m ¼ 4/3 LW movement
patterns.

Let P(xju0) be the distribution of distances x given
the initial condition, u(0) ¼ u0. The Laplace transform
of P(xju0) is

ePðs u0j Þ ;
ð1

0
e�sxP x u0jð Þdx ¼ k exp �s

ðt
0
uðtÞdt

� �
l

ð2:1Þ

where s is the Laplace transform variable and where the
angular brackets denote an ensemble average over of all
possible velocity records that begin with u(0) ¼ u0 and
end with u(t) ¼ 0, i.e. end immediately prior to a
change in direction (Kearney & Majumdar 2005).
Following Kearney & Majumdar (2005), the time
interval [0, t] is now split into two parts: a left interval
[0, Dt] where according to the Langevin equation
(equation (1.1)) the velocity proceeds from u0 to
u0 þ Du ¼ u0 � ðu0=TÞDt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2s2=TÞ

p
Dj in a time Dt

and a right interval [Dt, t] in which the process starts
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at u0þDu0 at time Dt and reaches 0 at time t. Equation
(2.1) can then be rewritten in the form of a recurrence
relation

ePðs u0j Þ ¼ k expð�su0DtÞePðs u0 þ Duj Þl; ð2:2Þ

where we have used the fact that for the right
interval [Dt, t], the starting position is u0 þ Du0,
which itself is random. The ensemble average in
equation (2.2) is over all velocity increments Du. Substi-
tuting u0 þ Du ¼ u0 � ðu0=TÞDt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2s2=TÞ

p
Dj into

equation (2.2), expanding in powers of Dt, averaging
over the noise Dj and then collecting together terms
of order Dt yields the celebrated Feynman–Kac
equation (Kac 1949)

� su0T eP � d
du0
ðu0ePÞ þ s2 d2 ~P

du2
0
¼ 0: ð2:3Þ

Appropriate boundary conditions for equation (2.3)
follow from equation (2.1). When u0/s! 0, the time
t till u ¼ 0 must also tend to zero. The integralÐ t
0 uðtÞdt in equation (2.1) then vanishes andePðs u0j Þ ! 1. When u0/s !1, the time t till u ¼ 0

must diverge. The integral
Ð t
0 uðtÞdt in equation (2.1)

then diverges and ePðs u0j Þ ! 0. Normalization requires
that ePð0 u0j Þ ¼ 1: For small speeds (ju0j , s), the sol-
ution to equation (2.3) satisfying these conditions is

~P s u0jð Þ¼ exp
u2

0

4s2

� �
Ai½ðsT=s2Þ1=3u0þ1=s2ðs2=sTÞ2=3�

Aið1=s2ðs2=sTÞ2=3Þ
;

ð2:4Þ

where Ai(x) is the Airy function.
In the short time limit (equivalent to T!1),

equation (2.4) reduces to

~P s u0jð Þ ¼ 1
32=3Gð2=3Þ exp

u2
0

4s2

� �
Ai

sT
s2

� �1=3

u0

" #
:

ð2:5Þ

The inversion of the Laplace transform of equation
(2.5) gives the distribution P(xju0) of distances travelled
between consecutive turning points made over short
times. The inversion is achieved by noting that

AiðxÞ ¼ p�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x=3K1=3

q 2
3

x3=2

� �
;

where K1/3 is a modified Bessel function, and by noting
thatð1

0
e�sxx�4=3e�b=xdx ¼ 2

s
b

� �1=6

K1=3 2
ffiffiffiffiffi
sb

p� �
: ð2:6Þ

This gives

Pðx u0j Þ ¼
u0

2p31=6G ð2=3Þ
T
s

� �1=3

x�4=3 exp � Tu3
0

9s2x

� �
� exp

u2
0

4s2

� �
: ð2:7Þ
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This distribution P(xju0) has a power-law tail

Pðx u0j Þ �
1

2p
u0

31=6

T
s

� �1=3

x�4=3: ð2:8Þ

Equation (2.8) is indicative of m ¼ 4/3
LW movement patterns. This finding can be
explained using a simple but approximate scaling
argument. Integration of the Langevin equation
(1.1) gives uðtÞ ¼ u0 expð�t=TÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2s2=TÞ

p
exp

ð�t=TÞ
Ð t
0 expðt=TÞdjðtÞ. Velocities therefore grow

diffusively like u � t1/2 at short times (t/T , 1) after
a turn (u0/s , 1). And so distances travelled between
consecutive turns, x ¼

Ð t
0 uðtÞdt, will typically scale as

t3/2 where the distribution of times, t, between consecu-
tive turns, pt(t) � t23/2 (Wang & Uhlenbeck 1945).
The result of Wang & Uhlenbeck (1945) is an example
of the continuous-time analogue of the Sparre Andersen
theorem according to which any discrete-time random
walk process with each step chosen from a continuous,
symmetric but otherwise arbitrary jump length distri-
bution produces a first passage time density governed
by the universal long-time decay n23/2 (Sparre
Andersen 1953, 1954). It follows that distances travelled
between consecutive turns are distributed according to
a power law p(x) � x24/3. The generality of the scaling
argument suggests that m ¼ 4/3 LW movement patterns
are a ubiquitous characteristic of continuous-time CRW
models. This possibility is supported by an exact analy-
sis (not presented) of the continuous-time CRW model
for exponentially distributed velocities.

It can be shown that in the long-time limit (equival-
ent to T! 0), Pðx u0j Þ � x�3=4 exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x=3sT

p� �
. LW

characteristics are therefore truncated at large scales.
2.2. Analysis of simulation data for one- and
two-dimensional movement patterns

One-dimensional movement patterns were simulated by
numerical integration of the Langevin equation. The
Akaike information criterion was used to test whether
simulation data provided more evidence for distances,
l, travelled between successive turns being power-law
p1(l ) ¼ (m 2 1)am21l2m (l . a) or exponentially distrib-
uted p2(l ) ¼ le2l(l2 a) (l . a). The Akaike weight for a
power-law distribution can be considered as the weight
of evidence in favour of a power-law distribution being
the better model of the simulation data, i.e. the
Akaike weight for a power law can vary from 0 (no sup-
port) to 1 (complete support; Edwards 2008). Plots of
the survival function (the complement of the cumulat-
ive distribution function) were also used to further
examine the form of the tails and to determine the
extent of power-law scaling: an approach that is more
reliable than probability density function plots (White
et al. 2008). To construct the survival function, the
simulation data {li} is first ranked from largest to smal-
lest {i ¼ 1, . . . , n}. The probability that a length is
greater than or equal to li (the survival function) is
then estimated as i/n.

For one-dimensional movements, the Akaike weights
for power laws are 1.00, indicating that power-law dis-
tributions are convincingly favoured over exponential
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Figure 1. The survival function (the complement of the cumu-
lative distribution) of ‘move’ lengths travelled between
consecutive turns (solid line). Shown for comparison are the
maximum-likelihood power-law (dashed line) and exponential
(dotted line) distributions. A straight line on this log–log plot
is indicative of power-law scaling. Here, approximate power-
law scaling is seen to extend over about two decades. Data
are shown for one-dimensional movement patterns produced
by the Langevin equation with s ¼ 1 and T ¼ 10. The
Langevin equation was integrated numerically with a time
step Dt ¼ 0.01 arbitrary time units. 0.01
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Figure 2. (a) An example of a simulated movement pattern
produced by two independent Langevin equations (s ¼ 1,
T ¼ 10) for the x- or y-components of velocity. The Langevin
equations were integrated numerically with a time step Dt ¼
0.01 arbitrary time units. The turning points where the direc-
tion of travel changed by an amount Duc ¼ 458 are indicated
(filled circle). (b) The survival function (the complement of
the cumulative distribution) of ‘move’ lengths travelled
between consecutive turns (solid line). Shown for comparison
are the maximum-likelihood power-law (dashed line) and
exponential (dotted line) distributions. A straight line on
this log–log plot is indicative of power-law scaling. Here,
approximate power-law scaling is seen to extend over about
two decades.

1756 Report. Lévy walk movement patterns A. M. Reynolds
distributions. And the maximum-likelihood estimate
m ¼ 1.33 (a ¼ 0.01) coincides with the analytically-
determined scaling for one-dimensional movements
(e.g. figure 1). Power-law scaling extends over about
two decades but breaks down when lengths are com-
parable with sT (figure 1). The lower cut-off length
a ¼ 0.01 is comparable with the mean distance during
the time step of numerical integration. The Akaike
weights and the maximum-likelihood estimates m are
not sensitively dependent upon a.

Two-dimensional movement patterns were simulated
using two independent Langevin equations for move-
ments in the x- and y-directions. Whereas the notion
of a turn is clear in one dimension (turns arise whenever
the velocity changes sign), the definition of a turn is
ambiguous in two dimensions. Here the first turn in a
movement pattern is deemed to have arisen when the
absolute difference between the current and initial
directions of travel, u1 and u0, differed by a critical
amount, Duc, i.e. when the direction of travel had chan-
ged by an amount Duc. The next change turn arises
when ju2 2 u1j ¼ Duc, where u2 is the new current direc-
tion of travel (figure 2a).

Analysis of simulation data for two-dimensional
movements revealed that straight-line distances
(rather than travelled distances) between consecutive
turns are power-law distributed to good approximation.
The Akaike weights for power-law distributions are
typically 1.00 and are not sensitively dependent upon
Duc. Maximum-likelihood estimates for m are dependent
upon Duc and values for m range between about 1.1 and
about 1.4. For Duc ¼ 458, maximum-likelihood estimate
for m ¼ 1.16 (a ¼ 0.01) and power-law scaling extends
over about two decades (figure 2b). Akaike weights
and maximum-likelihood estimates for m do not
change significantly when instead of the aforemen-
tioned definition, a two-dimensional turn is deemed to
J. R. Soc. Interface (2010)
have arisen when the angle between two successive
moves (i.e. between three successive positions) is less
than some critical angle. Whether or not LWs charac-
teristics are identified in discretely sampled data is
dependent upon the sampling protocol (Plank &
Codling 2009).
3. SUMMARY

Whether individual movement patterns are better
described by CRW or LW models has been long
debated, leading to two streams of thought in the
model development of an organism’s movement behav-
iour (Bartumeus 2009). The present study attempts to
unify these two directions of model development by
showing that continuous-time CRW produce LW move-
ment patterns. This was done by adapting an exact
analytic approach developed earlier by Kearney &
Majumdar (2005) within a purely theoretical probabil-
istic context to determine the area under a
continuous-time Brownian motion till its first passage
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time. When applied to the classical Langevin equation,
the simplest possible continuous-time CRW model for
one-dimensional movement patterns, this approach
revealed m ¼ 4/3 power-law scaling of the distances tra-
velled between successive turns. Such power-law scaling
is the hallmark of m ¼ 4/3 LW movement patterns. A
simple, approximate but general scaling argument
showed that m ¼ 4/3 LW movement patterns are not
specific to the Langevin equation but will arise from
almost any one-dimensional continuous-time CRW
model. Analysis of simulation data (figure 2) suggests
that this correspondence between continuous-time
CRW and LW extends to two dimensions. LW move-
ment patterns were found to provide a good
representation of simulation data for two-dimensional
movement patterns produced by two independent
Langevin equations for movements in the x- and
y-directions.

The new results open up new perspectives for under-
standing and predicting the movement patterns of the
enormous variety of animals whose movement patterns
can be well represented by discrete CRW (see Turchin
1998 and references therein) and which are likely
to be better modelled by more realistic continuous-
time CRW.

This advance has resonance with recent develop-
ments in the understanding of cell mobility. Most
models of cell motility as random motion are founded
on generalizations of the Langevin equation (Selmeczi
et al. 2005). Model components are, however, ad hoc
as they are inspired by fits to experimental data. As a
consequence, model agreement with experimental
data does not add much to our understanding of spon-
taneous movements of these cells beyond demonstrating
that they can be modelled phenomenologically. How-
ever, a slight re-parametrization and re-interpretation
of the driving noise lead to the model of Lubashevsky
et al. (2009) which realizes LW as Markovian stochastic
processes (Reynolds 2010). The distinction between
CRW and LW therefore appears to be superficial one,
in the context of cell mobility modelling.

The new results do not account for the m � 2 LW
movement characteristics of microzooplankton, honey-
bees, fruitflies and many marine predators
(Bartumeus et al. 2003; Reynolds & Frye 2007;
Reynolds et al. 2007a,b, 2009; Sims et al. 2008) that
have been attributed to optimal searching. Nonetheless,
the findings do suggest that LW movement patterns are
ubiquitous because they are an inevitable by-product of
autocorrelation. Autocorrelation must be present in all
movements but is not captured in discrete CRW model-
ling. Autocorrelation has been quantified in cell
motility studies (see Selmeczi et al. 2005 and references
therein) but until recently it has received scant atten-
tion in the literature on the movement patterns in
‘higher’ animals. A notable exception to this is the
analysis by Johnson et al. (2008) of harbour seal
(P. vitulina) and northern fur seal (C. ursinus) teleme-
try data. Johnson et al. (2008) reported that
autocorrelation timescales are several hours long. LW
movement patterns on these scales should be evident
but have not been reported on. LW movement patterns
with m ¼ 1.25 (1.07, 1.43, 95% CI) and so consistent
J. R. Soc. Interface (2010)
with model expectations have, however, been found in
grey seals (Halichoerus grypus; Edwards 2008).

The fact that LW movement patterns have not so far
been uncovered in movement data well described by
CRW models can be attributed, at least in part, to the
data analysis techniques that tend to mask behavioural
intermittency (i.e. turns and bouts of relatively
straight-line motion) that is indicative of LW movement
patterns (Bartumeus 2009). Recent observations
(Mashanova et al. 2010) of the movement patterns of
black bean aphids (Aphis fabae) are an exception to
this and may provide the first empirical evidence
for the synthesis of CRW and LW characteristics.
Mashanova et al. (2010) reported that the movement pat-
terns of starved aphids are nearly ballistic at short times
and nearly Brownian at long times. This is consistent
with a continuous-time CRW. Mashanova et al. (2010)
also reported that the durations of ‘fast phases’ during
which speed remains continually above a threshold
value were distributed according to a truncated power
law. Such a truncated power-law distribution was uncov-
ered by Wang & Uhlenbeck (1945) in their analysis of the
Langevin equation and underlies the occurrence of LW
movement patterns reported on here.

It is hoped that the present study will change the
nature and tone of the debate about whether CRW
models of animal movement patterns are more or less
realistic than LW models.
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