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The role of protein isoaspartyl methyltransferase (PIMT) in
repairing a wide assortment of damaged proteins in a host of
organisms has been inferred from the affinity of the enzyme
for isoaspartyl residues in a plethora of amino acid contexts.
The identification of PIMT target proteins in plant seeds,
where the enzyme is highly active and proteome long-lived,
has been hindered by large amounts of isoaspartate-containing
storage proteins. Mature seed phage display libraries circum-
vented this problem. Inclusion of the PIMT co-substrate, S-ad-
enosylmethionine (AdoMet), during panning permitted PIMT
to retain aged phage in greater numbers than controls lacking
co-substrate or when PIMT protein binding was poisoned with
S-adenosyl homocysteine. After four rounds, phage titer pla-
teaued in AdoMet-containing pans, whereas titer declined in
both controls. This strategy identified 17 in-frame PIMT target
proteins, including a cupin-family protein similar to those iden-
tified previously using on-blotmethylation. All recovered phage
had at least one susceptibleAsporAsn residue. Five targetswere
recovered independently. Two in-frame targets were produced
in Escherichia coli as recombinant proteins and shown by on-
blot methylation to acquire isoAsp, becoming a PIMT target.
Both gained isoAsp rapidly in solution upon thermal insult.
Mutant analysis of plants deficient in any of three in-frame
PIMT targets resulted in demonstrable phenotypes. An over-
representation of clones encoding proteins involved in protein
production suggests that the translational apparatus comprises

a subgroup for which PIMT-mediated repair is vital for ortho-
dox seed longevity. Impaired PIMT activity would hinder pro-
tein function in these targets, possibly resulting in poor seed
performance.

Spontaneous conversion of L-Asn or L-Asp residues in pro-
teins to the unusual, uncoded amino acid, L-isoAsp, occurs at
varying rates depending on primary, secondary, and higher
order protein structure (1) as well as cellular environment (2).
This conversion can be detrimental to protein function and/or
solubility (2–5) or in rare instances necessary (6) or as an inter-
mediate step that effects an Asn3 isoAsp3 Asp conversion
that optimizes protein function post-translationally (7, 8). Pro-
tein L-isoaspartyl methyltransferase (PIMT)4 is an intracellular
enzyme present in most life forms. It recognizes and modifies
isoaspartyl residues in proteins and peptides (9, 10). Complete
(Asp3 isoAsp3Asp) or partial (Asn3 isoAsp3Asp) repair
is effected by PIMT through an iterative process of isoAsp
methylation at the �-carbon atom, reformation through the
loss of methanol of an unstable succinimide, and subsequent
hydrolysis of one of two carbonyls, producing either isoAsp or
Asp. IsoAsp formation results in another round of PIMT action
(supplemental Fig. 1).
In plants, PIMT activity is primarily localized in seed tissues

during the late stages of embryogenesis during and after matu-
ration desiccation, suggesting a role in rescuing the functionally
active conformation of the generally long-lived (11) orthodox
seed (12) proteome upon imbibition. Considering the fact that
embryos and at least some cell layers of the endosperm (if pres-
ent) remain viable for extended periods of time in the dry state
(13), repairing the accumulated damage to proteins upon imbi-
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bition may be important for longevity (14–17). PIMT activity
may also be instrumental in maximizing fitness during abiotic
stress, to which seedlings are particularly susceptible (18).
InArabidopsis (A. thaliana L. Heynh), two PIMT genes have

been identified (19–21). Transcription of the PIMT2 is partic-
ularly complex (22, 23), providing PIMT2 variants to organelles
as well as the cytoplasm.
A few proteins containing L-isoaspartyl residues have been

identified as PIMT substrates in cells and tissues in non-plant
species, including calmodulin (10, 24) and tubulin (25, 26). The
use of post-extraction (27) or post-separation (28) labeling of
isoAsp-containing proteins has identified a number of PIMT
targets in themouse brain and some seed storage proteins in the
Arabidopsis seed (23). In the latter study, a recombinant,
human PIMT (rHsPIMT) with a dramatically lower Km for
AdoMet than either Arabidopsis enzyme was used in on-blot
methylation (OBM) assays to identify the seed target protein.
OBM requires protein extraction from the seed and heat treat-
ment, either of which can cause isoAsp formation through heat
shock (29), oxidation (30), or other damage (31). Although
usingOBMon seed proteins has resulted in the identification of
some seed storage proteins as isoAsp-containing proteins (23),
their abundance and susceptibility to damage (32) has made
identification of additional PIMT-target proteins from seeds
difficult. Additionally, it was desirable to avoid isoAsp produc-
tion due to chemical/thermal insult during protein extraction.
In this work we have taken an alternative approach that

allows the use of the plant enzyme to identify plant target
proteins and does not require protein extraction. Addition-
ally, this approach reduced the number of seed storage pro-
tein targets that can overshadow other substrates of PIMT.
Here, we constructed a phage display cDNA library for biopan-
ning of isoAsp-containing polypeptides. The use of radiola-
beledAdoMet could be avoided, andAdoMet in concentrations
sufficient for theKm of the plant PIMT could be used. Potential
target proteins would be produced by the phage within the bac-
terial host, and a natural lysiswould occur afterwhich the phage
could be rapidly recovered by centrifugation at neutral pH in
PEG solution. A normalized phage-display cDNA library from
an amalgamofmRNA frommature, dehydrated, and germinat-
ing seeds would circumvent the problem of storage protein
abundance because mRNA for storage proteins are less abun-
dant in the mature, dehydrated seed than during mid-to-late
development (33) and are decimated after imbibition (34). The
paucity of storage protein mRNA in the libraries focuses the
phage display onPIMTprotein targets produced from stored or
de novo-synthesized mRNA present during germination.
Studies of PIMT from a variety of species have determined

that the enzyme works by an ordered sequential mechanism in
which it must first bind AdoMet before attaining a conforma-
tion allowing protein substrate binding (35, 36). Thereafter,
PIMT (serendipitously fulfilling one of the important criteria
essential for successful phage display) has a low turnover rate
for substrate release (37, 38). The objective of the current work
was to identify PIMT target proteins from phage display cDNA
libraries normalized for transcripts present in quiescent and
germinating Arabidopsis seeds.

EXPERIMENTAL PROCEDURES

Feasibility and Optimization—Experimental procedures
associated with establishing the feasibility of biopanning using
phage display to acquire rAtPIMT1 target proteins can be
found in the supplemental material.
Screening the Libraries by Biopanning—The biopanning pro-

tocol employed aliquots of amplified libraries that had been
recovered from LB liquid lysates (from a multiplicity of infec-
tion (m.o.i.) of 0.001) and clarified by centrifugation (8000 � g,
10 min), and the supernatant was stored at 4 °C for 2 weeks.
Three replications of three 500-�l aliquots were prepared for
biopanning by adding a 0.2 volume of 5�modified TBS-Tween
(mTBST) to each of the 9 aliquots. One set of three aliquots
received 0.01 volume of 10 mM S-adenosylmethionine, one
received 0.01 volume of 10 mM S-adenosyl homocysteine
(heated until dissolved just before dilution), and one received
0.01 volume of double distilled H2O. The final library aliquots
were in 1) 1� mTBST, 2) 100 �M S-adenosylmethionine (re-
purified from Sigma (39)) in 1�mTBST, or 3) 100�M S-adeno-
syl homocysteine in 1� mTBST. The amended libraries were
added to multiple ELISA plate wells (100 �l�well�1) to which 1
�g��l�1 rAtPIMT1 in 0.7 M urea had been previously intro-
duced, washed inmTBSwithout urea, blocked using BR (Nova-
gen Inc., La Jolla, CA), and washed with mTBST. The libraries
and rAtPIMT1 in the wells of the plate were incubated at 25 °C
for 30 min. The wells were then washed 10 times with 500 �l of
mTBST per wash. After the last wash, 150-�l aliquots of Esch-
erichia coli (BLT5403, A600 � 0.7) in LB were added to each
well, and the plate was sealed with adhesive film, incubated for
1 h at 37 °C to allow infection, recovered, andwhen statistics on
phage titer and/or insert presence per biopanning round were
not to be collected, the cells from wells containing the same
library amendment were combined. A portion of the recovered
cells was plated at low density to determine the titer and the
presence of insert (see below). The remainder were added to,
and amplified in, 37 ml of BLT5403 cells growing at 37 °C with
shaking. Incubation continued for �3 h until visible lysis
occurred.Amplified phagewere centrifuged (8000� g, 10min),
recovered in the supernatant of spentmedia, titered, and stored
at 4 °C to age until the next biopanning round.
PCR and Sequence Analysis of Phage Recovered during

Biopanning—After four rounds of biopanning, an aliquot of the
final infected bacteria was plated at low density and titered, and
some of the isolated plaque was PCR-amplified and size-frac-
tionated as in previous biopanning rounds. This entailed scrap-
ing the top agarose with the isolated plaque with a sample loop
and swirling the loop in 100�l of 1.0mMEDTA in anEppendorf
tube. The tube was capped and heated to 65 °C for 10 min
before being cooled and centrifuged at 14,000 � g for 3 min.
The supernatant (2 �l) was used as a DNA template with
T7Select-UP and -DOWN primers (supplemental Table S1)
designed to amplify over themulticloning site between the vec-
tor arms in 50 �l of PCR reactions performed as described by
the manufacturer (T7Select 10–3 cloning kit; Novagen).
Aliquots of the PCR reactions were size-fractioned through

1% (w/v) agarose gels, and the remainder of those reactions
providing amplicons greater than 100 bp were purified away
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from the primers using spun columns (QiaQuick PCR purifica-
tion kit; Qiagen Inc.). These amplicons were then cycle-se-
quenced, aligned with Arabidopsis cDNA sequences in WU-
BLAST using The Arabidopsis Information Resource (40), and
the gene producing the cDNA was identified. Each sequence
contained a portion of the vector arms and linker associated
with theArabidopsis cDNA fromwhich itwas possible to deter-
mine 1) whether the cDNA was ligated in-frame or not and,
from this information, 2) the deduced amino acid sequence
displayed on the phage coat.
Assessment of Amino Acid Frequencies and Contexts from In-

frame Hits—The frequencies with which individual amino
acids occurred within each of the in-frame proteins recovered
during phage display was analyzed to ascertain if proteins par-
ticularly rich in any one (or subgroup of) amino acid(s) were
more prone to selection. The amino acid sequence of the Ara-
bidopsis protein or fragment thereof attached to the phage coat
was subjected to non-parametric analysis (�2, Proc Freq (41))
for significant deviations from its expected frequency of occur-
rence based on the deduced codon usage for 80,395 protein
coding regions of the species (Kazusa DNA Research Institute
(42)).
Independent in-frame protein sequences recovered by phage

display were examined using a nine-amino acid moving win-
dow centered on any Asp or Asn residue not immediately fol-
lowed by P- (a P1� prolinemakes Asp or Asn resistant to isoAsp
formation (54)). These nonamers were depicted in separate
WebLogos (43) for Asp or Asn, which were examined for the
occurrence of amino acids in any position from P4-P4� that
were over represented. A control data set was comprised of the
same number of consecutive nonamers for both Asp and Asn
from a series of proteins commencing at a randomly selected
point in the Arabidopsis genome (At1g30000-At1g30100,
excluding At1g30030, which is a transposable element; The
Arabidopsis Information Resource (40)).
Additionally, the entireArabidopsis proteome (UniProt data

base version 15.3, 31,638 protein sequences) was analyzed by an
in-house-developed perl script to determine the frequency of
occurrence of individual amino acids in the proteome and also
the frequencywithwhichAsn orAsp residueswere surrounded
by all other amino acids in positions P4-P4�.
Recombinant Protein Production, Purification, and On-blot

Methylation of Two rAtPIMT1 Target Proteins—The coding
sequence of two in-frame, AtPIMT1 substrates was amplified
and cloned into pET23b (Novagen) by introducing NdeI
and XhoI (At4g26050, plant intracellular Ras group-related
leucine-rich repeat protein 8 (PIRL8) (47)) or BspHI and EcoRI
(At5g62190, plant RNA helicase 75 (PRH75) (44)) sites into the
amplicon 5�- and 3�-termini, respectively (supplemental Table
S1). Recombinant protein production was induced in the E. coli
strain BL21(DE3)RIL (Stratagene, La Jolla, CA), solubility was
determined, and proteins were purified using nickel columns
(Hi-Trap, GE Healthcare) and FPLC. Pure fractions (deter-
mined by SDS-PAGE of aliquots) were combined, protein con-
centration was determined (Ref. 45, as modified in the DC
ProteinAssay, Bio-Rad), and two identical SDS-PAGE fraction-
ations of recombinant proteins and commercial, prestained
molecular weight markers (Bio-Rad) were simultaneously pre-

pared. One gel was stained with Coomassie Brilliant Blue, and
the otherwas transferred overnight to PVDF.After transfer, the
PVDF membrane was blocked at room temperature (30 min in
0.2 mg�ml�1 BSA, 10 mM MES, pH 6.2). Recombinant and
marker proteins were subjected toOBM (28) as inDinkins et al.
(23).
Assessment of the Rapidity of Isoaspartate Accumulation in

Two AtPIMT1 Protein Targets—Purified PRH75 and PIRL8
recombinant proteins were quantified (45), and the concentra-
tionwas determined using the polypeptidemolecularmasses of
75,000 and 42,309 daltons, respectively. Exactly 330 pmol of
each protein was diluted to a final volume of 66 �l in 50 mM

Tris-HCl, 500 mM NaCl, pH 7.4. These samples were put into
thin-walled PCR tubes and floated in 37 °Cwater alongwith the
samemolar concentrations of hen egg ovalbumin (Sigma grade
V) and bovine serum albumin (Sigma). Four tubes for each sub-
strate (replicates) were retrieved and analyzed for isoaspartate
after 0, 8, 14, 21, and 28 days. At each time point, three 20-�l
aliquots (triplicates) were taken from each of the incubated
tubes (each aliquot containing 100 pmol of polypeptide) and
reacted with a large amount of human recombinant PIMT
(based on an activity of 20 pmol/min) for an extended time (120
min) to ensure, insofar as possible, nearly stoichiometric meth-
ylation of all L-isoaspartyl (D-aspartyl) residues. The number of
methyl esters formed from [14C]AdoMet in the triplicate sam-
ples was then quantified, and the results were averaged. The
average from the four replicates was determined as well as the
S.E.
Acquisition and Assessment of Homozygous T-DNA Inser-

tional Mutant Seeds for Some rAtPIMT1 Targets—Only WT
and heterozygotes for the T-DNA insert were recovered for the
PRH75 putative mutant (SALK_016729), whereas none of the
plants from seeds designated as SALK_040581.53.40.x carried a
T-DNA insert in PRH75. Being unable to test whether the
homozygous prh75 seeds were altered from WT, this line was
reserved for future studies of embryo lethality.5 A single T-
DNA-interrupted mutant for a lysine-glutamate-aspartate-
rich protein (similar-to-KED from tobacco (46) (Table 1,
At1G56660, SAIL_163_D09)), two T-DNA- and one trans-
poson-interrupted mutant for the Arabidopsis late embryo-
genesis abundant 4 protein gene (seed maturation protein 1,
At3G12960 (SAIL_1184_D08, WiscDsLox297300_22J and
CSHL_ET11624), and two independent T-DNA insertional
mutants of PIRL8 (At4G26050 (47) and SALK_095144) were
identified (through PCR and Southern blot on pools of genomic
DNA for pirl8-1 (47)) or on the SIGnALwebsite (83), and seeds
acquired from the Arabidopsis Biological Resource Center
(ABRC, Ohio State University, Columbus, OH or Cold Spring
Harbor Laboratories, Cold Spring Harbor, NY). Homozygotes
for these alleles were sought using PCR with gene-specific
primers (supplemental Table S1) on either side of the insertion
site (SIGnAL iSECT tool) and outward-facing primers to the
T-DNA/transposon as well as with antibiotic resistance for
those lines expressing this trait. Template DNA was acquired
from leaf disks using a kit (Extract-N-Amp, Sigma) and ampli-

5 N. Nayak and A. B. Downie, unpublished data.
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fied using RedTAQ (Sigma). Amplicons were isolated and
sequenced to identify the exact insertion sites.
For those lines for which seeds from homozygous mutants

were acquired, both wild type and mutant seeds were sown at
the same time, and plants were grown on the same shelf under
the same conditions and harvested on the same day. These
seeds were then either sown directly (pirl8 alleles and respec-
tive WTs) or kept under the same conditions inducing dry
after-ripening for at least 3months until testing (all genotypes).
Germination tests were conducted on at least 50 seeds per rep-
lication, 4 replications per experiment, sown on 2 layers of filter
paper (Whatman No. 1, 55-mm diameter, Fisher, placed in the
bottom of Petri dishes (60 � 15 mm, Falcon, BD Biosciences)
moistened with 2 ml of double distilled H2O write and sealed
with Parafilm (Fisher). All experiments were performed on at
least two separate occasions and on at least two separate gen-
erations. When imbibed seeds were exposed to 40 °C, the Petri
dishes were placed in a plastic bag with water-soaked paper
towels, and the bag was sealed. Four Hygrothemochron iBut-
tons (DS1923, Embedded Data Systems, Lawrenceburg, KY) in
the bag were tasked to simultaneously log temperature and
humidity every 10 min for the duration of the supraoptimal
temperature. This monitored the uniformity of the stressful
conditions within the bag (supplemental Fig. 3).
Based on the information on gene expression under environ-

mental perturbation (The Bio-Array Resource for Plant Func-
tional Genomics (BAR) website) and on co-expression with the
genes of interest (GeneCAT website) whose proteins were
rAtPIMT1 targets, mutant seeds were tested for rapidity in
completing germination and final percentage germination rel-
ative to respective wild types on water at 25 °C. Seeds were also
tested at sub (4 °C)- and supra-optimal (35 °C; similar to
Tamura et al. (48)) temperatures. Separate analyses were per-
formed on seeds that were or were not moist-chilled and with
or without light during the germination test in the following
assays. Seeds were tested at 25 °C after 4 days at 40 °C either
after 3 months of dry after-ripening (ked, smp1, and pirl8
mutants) or immediately after harvest (pirl8mutants).
Seeds were tested at 25 °C on an ABA or Paclobutrazol con-

centration series (49). Seeds were also tested on a salt concen-
tration series (0–250 mM NaCl) and on 200 mM H2O2. Finally,
the pirl8mutant and respective wild type seeds were tested on
glucose (0–6% w/v), sorbitol (0–6% w/v), insulin (1 or 5 nM),
wortmannin (1 or 5 nM), or �-ketoglutarate (1, 10, 100 �M)
concentration series. After testing, seeds failing to complete
germination were moist-chilled 3 days at 4 °C and then placed
at 25 °C for 1 week to assess seed viability.
Statistical Assessment of the Data for Optimizing the Biopan

and for Mutant Seed Germination Attributes Was Performed
with the Statistical Analysis System (SAS for Windows Version
9.1, 2002)—In each experiment analysis of variance was per-
formed on themain effect, and if significantly different, Tukey’s
mean separation test was performed to distinguish among sig-
nificantly deviating means. In those instances where more than
one main effect was tested (e.g. urea concentration in which
rAtPIMTwas introduced into the wells and urea concentration
in the subsequent wash buffer) interactions between the main

effects were tested, and if significant, each level of one main
effect was tested over the range of the other separately.

RESULTS

LibraryCharacteristics—Theprimary library I titerwas 1.6�
107 pfu�ml�1, and that of primary library II was 2 � 107
pfu�ml�1. After amplification, the titers of library I and II were
8.15 � 109 pfu�ml�1 and 3.6 � 1010 pfu�ml�1, respectively.
The rAtPIMT1 from Arabidopsis was the most active of

the various AtPIMT isoforms from Arabidopsis (22). How-
ever, its Km for ovalbumin was between 1.2 and 5 mM (20) for
VYP(isoD)HA �28 �M and for AdoMet, 6 �M (20). Several
rAtPIMT2 isoforms have an even greaterKm for VYP(isoD)HA.
Based on these results, the rAtPIMT1 was chosen to perform
biopanning to capture isoAsp-containing proteins expressed
from a seed library on phage coats by their interaction with
AdoMet-charged rAtPIMT1 bound to a solid support.
Optimization of the rAtPIMT Biopan—Preparatory to bio-

panning, it was necessary to determine whether this technique
would work with the plant enzyme attached to solid support
and, if so, to optimize the protocol.
The rAtPIMT1wasmost expeditiously obtained in the quan-

tity and purity required for biopanning from inclusion bodies
(see the inset Fig. 1a, lane 2) before nickel column purification.
This necessitated solubilizing and purifying the protein in urea,
a technique that allows recovery of considerable activity (21).
rAtPIMT1 relative activity (in a range of urea concentrations)
was greatest in liquid assays in 1 M urea (Fig. 1a). However, this
was not the urea concentration permitting maximum active
rAtPIMT1 attachment to the microtiter plate wells. In a com-
binatorial experiment, rAtPIMT1 maximum activity was
retained by introducing the protein into the wells in 0.7 M urea
and then eliminating urea from the mTBS buffer used to wash
the wells to remove unbound rAtPIMT (Fig. 1b).
A variety of substances were used to block the wells once

rAtPIMT1 had been introduced. These resulted in similar
PIMT activity when assayed in the well by the addition of pep-
tide substrate (data not shown). However, considerably more
phagewas retained inwells blockedwith the commercial block-
ing reagent (BR) sold with the phage display kit than with the
other three substances assayed (Fig. 2a). This may have been
beneficial due toBRnot competingwith phage for PIMT1bind-
ing (as did BSA and nonfat milk protein in liquid assays when
each blocking reagent was added as rAtPIMT1 substrate; data
not shown) or detrimental due to BR indiscriminately binding
phage, artificially inflating titer. To distinguish between these
two possibilities, equal plaque-forming units were introduced
into ELISA wells that had or had not (buffer only) been coated
with rAtPIMT1 before blocking with BR. Subsequently, the
background titer could be lowered to insubstantial amounts in
the non-rAtPIMT1-containing wells by frequent washing with
mTBST, whereas phage titer in wells coated with rAtPIMT1
before blockingwithBRwas significantly greater after extended
washing (Fig. 2b).

Boiling rAtPIMT1 or exposing it to low pH before washing
and introduction of agedphage resulted in significantly lowered
phage titers relative to the un-boiled or un-acidified control
(data not shown). Efforts to eliminate indiscriminate phage
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binding to the ELISA plate wells, blocking reagent, and/or
rAtPIMT1 using either low concentrations of SDS in the TBST
wash buffer (Fig. 2c) or by performing negative selection before
biopanning (data not shown) were unfruitful. Greatest phage
titer was consistently obtained by introducing the E. coli
directly into the wells after the last stringency wash (data not
shown).
Phage Titer Increased Only When rAtPIMT1 Was Active—

After each round of biopanning, an aliquot of the cells intro-
duced into each well for infection by the bound phage was
titered (Fig. 3a). During the biopan, the phage libraries were
introduced into the wells as controls (without AdoMet or

AdoHcy) or in the presence of either AdoMet (a co-substrate
of PIMT) or AdoHcy (a potent inhibitor of PIMT activity;
negative control). Titer increased with successive rounds of
biopanning only when AdoMet was present (Fig. 3a). In fact,
titer decreased from the original by the final round of bio-
panning when nothing or AdoHcy were added to the phage
during panning (Fig. 3a).
PCR amplification of isolated plaque from plates used to

ascertain titer revealed considerably more plaque from the
AdoMet-containing biopan housing inserts relative to either

FIGURE 1. Urea concentration and relative rAtPIMT1 activity in solu-
tion or when bound to microtiter plates. a, recombinant A. thaliana
PIMT1 (rAtPIMT1), recovered from inclusion bodies, was solubilized in 6 M

urea, purified over a nickel column, and dialyzed to remove imidazole (see the
inset) First lane, rAtPIMT1 from inclusion bodies; second lane, purified, dialyzed
rAtPIMT1. The enzyme was assayed in different concentrations of the chao-
trope. The rAtPIMT1 (1 �l of 0.05 �g��l�1) was most active in 1 M urea. Differ-
ent lowercase letters above the bars indicate significantly different relative
activities in different urea concentrations when compared using Scheffe’s
multiple pairwise comparison. b, 100 �l of rAtPIMT1 (0.01 �g��l�1) was intro-
duced into ELISA plate wells in a variety of urea concentrations (0.1–2.5 M).
The wells were then washed with � mTBS containing no or 1 M urea to elim-
inate unbound rAtPIMT1, and the bound enzyme was assayed in reaction mix
with no or 1 M urea. Greatest bound rAtPIMT1 relative activity was obtained
when the enzyme was introduced into the wells in 0.7 M urea and washed
with 1� mTBS buffer without urea before assay. Significant deviation was
determined using Scheffe’s test after an analysis of variance. In b, rAtPIMT1
activity was greater regardless of urea concentration used for rAtPIMT1 intro-
duction, when the wash was without urea. Lowercase letters over bars indicate
significantly deviating means among urea concentrations used for rAtPIMT1
introduction when no urea was included in the wash. Uppercase letters indi-
cate the same for rAtPIMT1 activity when 1 M urea was used in the wash buffer.
(500 mM Tris).

FIGURE 2. Blocking reagent and washing buffer optimization. a, different
blocking solutions influence phage titer. PVP, polyvinylpyrolidine. The com-
pany product achieved high titers either by preserving rAtPIMT1 activity or by
binding phage indiscriminately. Different lowercase letters over the bars indi-
cate significantly deviating mean plaque forming units retained in the wells
coated with different blocking agents. b, these alternatives were tested by
washing wells to which rAtPIMT1 or no protein (buffer only) had been bound
before blocking with BR. Effect of the number of washing steps before phage
elution on phage titer during the biopanning is shown. BR preserves rAtPIMT1
activity rather than indiscriminately binding phage. Different lowercase letters
above bars (within a washing regime) indicate significantly deviating means
dependent on the presence of rAtPIMT1. c, shown is SDS-amended mTBST
washing buffer and rAtPIMT1 activity. The inclusion of even small percent-
ages of SDS in the mTBST washing buffer detrimentally influenced the
rAtPIMT1 activity. Significantly deviating means identified using Scheffe’s test
after an analysis of variance.
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the control- orAdoHcy-containing biopans in the second, third
(Fig. 3b), and fourth (not shown) rounds. After the third round,
the size of the amplicons for an experiment (successive rounds
of phage aging and introduction to rAtPIMT1 in the presence of
AdoMet) tended to consolidate around a few representative
plaques, which were usually identical cDNAs (Fig. 3b and data
not shown). Hence, in the gel image depicted for AdoMet-con-

taining biopans after round 3, 6 of
18 amplicons were of the same size
and sequence (lanes 5, 6, 7, 9, 16,
17).
Identification of rAtPIMT1 Tar-

get Proteins Displayed on Phage—
From all biopans, 111 Arabidopsis
sequences were read from phage
recovered from wells containing
AdoMet. All of these C-terminal
additions to the phage coat, regard-
less of whether they were ligated in-
frame or not, resulted in at least one
Asp/Asn residue for which isoAsp
conversion was possible (i.e. not fol-
lowed by proline; Fig. 3c). There
were 80 sequences recovered that
translated proteins out-of-frame
and 31 in-frame (Fig. 3c). All in-
frame proteins had more than one
susceptible Asp/Asn residue (Fig.
3c). For any one biopanning experi-
ment, some clones when sequenced
were identical to others recovered
in the same biopan (Fig. 3, c and d).
There was nomeans of determining
whether multiple recoveries within
an experiment were due to a single
phage being retained and later mul-
tiplying (despite no effort to amplify
phage before plating to ascertain
titer) or whether multiple inde-
pendent but identical phages were
retained. On the other hand, the
same sequence recovered from the
other library within the same or dif-
ferent experiments or from the
same library in different experi-
ments could be counted as inde-
pendent recoveries of the same
clone (Fig. 3e). The gene loci are
provided for those clones recovered
multiple times regardless of the
frame. The identity of all in-frame
hits is provided in Table 1, and their
sequences are in supplemental
Table 2.
The Amino Acid Sequence of

Recovered, In-frame Proteins Was
Atypical—Sixty-five percent of the
in-frame proteins had amino acid

frequencies significantly deviating from those expected based
on amino acid frequencies derived from the codon usage for
this species and assuming a random chance of any amino acid
occupying a position (i.e. Leu should be most abundant with a
probability of occupying any position of 0.0935; Trp should be
least abundant with a 0.0125 probability (42)). However, only
three of these proteins had greater than expected numbers of

FIGURE 3. a, shown is the effect of AdoMet (SAM) and AdoHcy (SAH) on phage titer from successive rounds of
biopanning. None, neither AdoMet nor AdoHcy was added to the phage before introduction into the microtiter
plate wells. S-Adenosylmethionine, a PIMT co-substrate, was added to the phage library to 100 �M just before
biopanning. S-Adenosyl homocysteine, a PIMT inhibitor, was added to the phage library to 100 �M just before
biopanning. Significantly deviating means among the three treatments were identified using Scheffe’s test
within each of the four rounds and are represented by different lowercase letters over each bar. b, shown is the
effect of AdoMet and AdoHcy on the retention of phage with inserts in successive rounds of biopanning.
c, shown is a graphical depiction of the 111 hits retrieved from the biopans. Out-of-frame (O.O.F.) and in-frame
(I.F.) hits have been divided into those clones that were recovered only once (or the same clone (identical
sequence) obtained multiple times; shades of red-purple), and those hits that are represented by at least two
different clones (different lengths and/or portions of the same cDNA; shades of blue and green). All clones, after
four rounds of biopanning, had at least one Asp or Asn residue. d, shown is clone identity for those recovered
only once or for those recovered more than once but from the same biopan. e, clone identity for those recov-
ered from different biopans and/or those that were different in sequence length and/or position in the cDNA
and/or those that were from different libraries is shown. Different clones of At5g66400 recovered from library
II are depicted in blue text. In all instances, the numbers in the pie slice represent the number of clones recov-
ered and sequenced in that category.
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Asp, and one had greater frequencies of both Asp and Asn
(Table 1, bold text). Nevertheless, 9 of 20 hadmoreGlu, and 7 of
20 had more Lys than expected.
When a nine-amino acid window was examined centered on

Asx, amino acid frequencies were significantly different from
the expected (based on codon usage forA. thaliana and assum-
ing a random chance of any amino acid occupying a position
within 4 of Asx) for all positions except the P4 position sur-
rounding Asp. Only the amino acid frequencies in the P2� posi-
tion in Asn-centered nonapeptides was significantly different
from the expected (Fig. 4c). Examining the in-frame hits for
amino acid-nearest neighbors in a nonapeptide window cen-
tered on Asx, Glu is the most frequent amino acid in positions
P2�–P4� followed by Lys, except for P4� in Asn-containing pro-
teins, where it is preceded in abundance by Asp (Fig. 4, a and c,
supplemental Table 2). For positions P4–P1, Lys and Glu were
also the most, or among the most prominent amino acids in all
but position P2 for Asn-containing proteins (Fig. 4, a and c). In

addition to Glu, Asp, and Lys, positions P3-P1 and P1� and P4�
containedSer inhigh frequencies forAsp-containingproteins and
P1 in Asn-containing proteins, whereas no discernable trend in
amino acid frequency was present at P1� in Asn-containing pro-
teins (Fig. 4c). Based on an analysis of the entire A. thaliana pro-
teome, amino acidsGlu and Lys are notmore likely than expected
due to a randomchance to be locatedwithin four positions ofAsn;
in fact, the opposite ismore probable (supplementary Table S3A).
Although the same is true for Lys within two positions either side
ofAsp,Glu ismore likely tobe locatedwithin fourpositionsofAsp
(supplementary Table S3B).
Recombinant rAtPIMT1 Target Proteins Are Susceptible to

IsoAsp Formation and PIMTMethylation—The two rAtPIMT1
targets generated as recombinant proteins (PIRL8, At4g26050;
PRH75, At5g62190: Figs. 5, a–c) were methyl-accepting pro-
teins from the rHsPIMT in on-blotmethylation assays (Fig. 5d).
Of the molecular weight markers also included on this blot,
carbonic anhydrase was a strong methyl acceptor in this assay

TABLE 1
Seventeen in-frame rAtPIMT1 protein targets identified using phage display
Seed library (SL) hits, shown in bold type, contained significantly greater numbers of Asx than expected based on codon usage for the species in the peptide displayed on
the phage coat. The amino acid deviating most from expected is indicated. TAIR, theArabidopsis Information Resource; FLC, Flowering locus C; FLM, Flowering locusM.

In-frame hits
Protein identity Subcellular residence/authority

Library Locus identifier

SL_ TC224 (Asp) AT5G02050 Mitochondrial glycoprotein family protein/MAM33 Plastid, mitochondrial matrix/TAIR
SL_TC241 AT2G33590 Cinnamoyl-CoA reductase family protein; first step

of the phenylpropanoid pathway specifically
dedicated to the monolignol biosynthetic branch

Unknown/TAIR

SL_TC276 AT1G56660 Similar to KED: similar to unknown protein. (46).
KED in this manuscript

Unknown/TAIR

SL_ TC291 AT3G46440 UDP-xylose synthase 5 (UXS5) Plastid/TAIR
SL_ TC305 (Asp) AT3G48690 A. thaliana carboxyesterase 12, ATCXE12 (77) Cytoplasm/TAIR
SL_ TC293 AT2G01100 Similar to CAX interacting protein 4 (CXIP4), a

nuclear H�/Ca� antiporter activating protein
Unknown/TAIR

SL_TC344 AT4G26050; AY849578 PIRL8 (47) Unknown/TAIR
SL_ TC312 AT2G06210 VIP6, ELF8 ELF8 (early flowering 8). Encodes a

yeast CTR9 homolog that is involved in the
control of flowering time by elevating FLC
expression to a level that creates the
vernalization-responsive, winter-annual habit.
Yeast CTR9 is a component of a five-member
PAF1 complex that associates with RNA
polymerase II and is thought to regulate gene
expression by recruiting SET1 (a histone 3 Lys-4
(H3-K4) methyl transferase) to the initially
transcribed (5�) regions of target chromatin.
Mutants display reduced H3-K4 methylation in
both FLC and FLM chromatin

Unknown membrane component/
TAIR

SL_ TC331 AT2G28450 Zinc finger CCCH-type family protein: zinc finger,
CX8CX5CX3H type; S-adenosyl-L-methionine-
dependent methyltransferases

Unknown/TAIR

SL_ TC321 AT3G46230 ATHSP17.4 (A. thaliana) class I heat shock protein
(78, 79)

Unknown/TAIR

SL_ TC335 AT3G12960 Similar to seed maturation protein (G, tomentella):
a LEA 4 protein (57). SMP1 in this manuscript

Unknown/TAIR

SL_ TC338 AT5G51150 Similar to unknown protein (A. thaliana) Plastid/TAIR
SL_ TC341 AT3G22640 Cupin family protein (23, 80) Cell wall/(81)
SL_ TC295 AT3G51270 ATP binding/protein serine/threonine kinase. The

N-terminal domain is found in RIO2 kinases and
is similar in shape to the winged helix (wHTH)
domain. This domain permits DNA binding, and
in yeast, the RIO2 proteins are implicated in cell
cycle progression, DNA-repair, and ribosomal
maturation

Unknown/TAIR

SL_ TC237 (Asp and Asn) AT5G62190 PRH75 Nucleolus, nucleus/(44); TAIR
SL_ TC333 (Asp) AT5G55920 Oligocellula 2, nucleolar protein, putative 16 S

rRNA m5C967 methyltransferase. Yeast Nop2p
is a probable RNA m(5)C methyltransferase
essential for processing and maturation of 27 S
pre-rRNA and large ribosomal subunit
biogenesis (82)

Nucleolus/TAIR

SL_ TC349 AT3G22230 60 S ribosomal protein L27 (RPL27B) Cytoplasm/TAIR
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(Fig. 5d). Carbonic anhydrase has been identified previously as
a protein susceptible to isoAsp formation (50).
The rate with which these proteins generated isoaspartate

was explored by incubating them at 37 °C. Initially, neither pro-
tein contained considerable isoaspartate (Table 2). At 37 °C
PRH75 accumulated some isoaspartate, approaching that of
BSA, which was aged under the same conditions, although BSA
commenced the assay with considerably more isoaspartate
(Table 2). PIRL8 accumulated similar amounts of isoaspartate
as ovalbumin, although, like PRH75, it commenced the assay
withmany fewer isoaspartyl residues than ovalbumin (Table 2).
During the course of the assay, the relative rate of isoaspartate
accumulation for both PRH75 and PIRL8 was considerably
greater than that of ovalbumin, a protein known to be suscep-
tible to isoaspartyl formation (Ref. 51, Table 2).
Absence of rAtPIMT1 Target Proteins Impacts Seed At-

tributes—Insertional mutants of some of the genes encoding
rAtPIMT1 target proteins were acquired. Attempts to isolate

homozygotes of plant RNA helicase 75 (prh75) failed, suggest-
ing lethality at some stage.5 For three other genes, homozygotes
were analyzed for physiological consequences of the genetic

FIGURE 4. A representation of the frequency of neighboring amino acids
at positions from non-prime 4 to prime 4 on either side of the Asp (D) (A
and B) or Asn (N) residues (c and d) from the in-frame hits (a and c) and
from proteins (b and d) along a randomly chosen segment of the A. thali-
ana genome. An asterisk above a bar indicates a significantly greater abun-
dance of one/some amino acids relative to that expected based on codon
usage for the species. The n under the graphs represents the number of Asp or
Asn amino acid positions evaluated.

FIGURE 5. Two full-length PIMT substrates, protein fragments of which
were identified through biopanning, were cloned into pET23 and
expressed in E. coli BL21(DE3)RIL. a, the Coomassie-stained PRH75 protein
gel includes molecular weight (M), a blank, lysate from uninduced cells at
harvest (1), insoluble (2)and soluble protein (3) from induced cells after har-
vest and centrifugation, a nickel column wash after introduction of soluble
protein (4), a post-wash before imidazole (5), elution (2 ml of 1 M imidazole) (6),
blank, and protein post-dialysis (7). b, The PIRL8 recombinant protein was
recovered from lysed cells as an inclusion body and solubilized in 6 M urea,
and Ni-NTA column-purified. The Coomassie-stained gel includes lysate from
uninduced cells (1), molecular weight markers (M), lysate from IPTG-induced
cells (2), the insoluble pellet from the lysate after centrifugation (3), the solu-
ble proteins post-centrifugation (4), protein from the inclusion body after
urea solubilization and Ni-NTA column purification, undialyzed in 6 M urea
and imidazole (5), purified inclusion body in 6 M urea dialyzed to remove
imidazole (6). In all lanes, for both purifications, 10 �l of the lysate/eluate/
dialyzed sample was mixed with 10 �l of SDS-containing loading dye, boiled,
and loaded. c, both purified proteins were electrophoresed using SDS-PAGE
and Coomassie-stained or assayed for isoaspartyl formation through on-blot
methylation (fluorograph depicted here) and liquid assay after incubation at
37 °C (Table 2) using human recombinant PIMT (d). kDa, kDa of the Bio-Rad-
prestained molecular weight markers.

TABLE 2
Isoaspartyl accumulation in ovalbumin, bovine serum albumin, and
the PIMT1 target proteins, recombinant PRH75 and PIRL8
ME, methyl equivalents

Substrate
Identity 37 °C pmol of ME/

pmol of substrate
Relative increase
in isoaspartate

Days Mean � S.D.
PRH75 0 0.0031 � 0.0003 0

8 0.0176 � 0.0004 5.7
14 0.0356 � 0.001 11.6
21 0.0317 � 0.0011 10.3
28 0.0397 � 0.0009 12.9

PIRL8 0 0.0018 � 0.0003 0
8 0.0183 � 0.0009 10.2

14 0.0350 � 0.0005 19.5
21 0.0620 � 0.0007 34.5
28 0.0924 � 0.0012 51.4

Ovalbumin 0 0.0442 � 0.0011 0
8 0.0589 � 0.0003 1.3

14 0.0715 � 0.0011 1.6
21 0.0907 � 0.0010 2.1
28 0.1330 � 0.0015 3.0

BSA 0 0.0162 � 0.0008 0
8 0.0259 � 0.0018 1.6

14 0.0303 � 0.0004 1.9
21 0.0395 � 0.0004 2.4
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lesions. Freshly harvested seeds with a T-DNA insertion in a
lysine/glutamate/aspartate-rich protein (ked), a strong knock-
down (Fig. 6a), completed germination demonstrably faster
thanWT (selected from the same batch of seeds fromABRC) if
not moist-chilled (Fig. 6b). Three insertional mutants for the
seed maturation protein 1 (SMP1) gene were analyzed, but the
insertion in the WiscDsLox297300_22J line was in the 3�-UTR

and did not diminish the amount of mRNA of the SMP1. The
other two alleles were strong knockdowns (Figs. 6, c and d), and
seeds from these lines completed germination faster than WT
when they were placed at 25 °C after heat shock for 4 days at
40 °C (Fig. 6e) as did the ked mutant (data not shown). Both
plant intracellular Ras group-related leucine-rich repeat pro-
tein 8 (pirl8-1 and pirl8–2) mutants were strong knockdowns
(see pirl8-2 in Fig. 6f and Ref 47), but no consistent phenotype
could be demonstrated for these mutants.

DISCUSSION

Exploration of the recombinant seed proteome using phage
display libraries and rAtPIMT1 as bait identified 17 in-frame
target proteins in an optimized biopan. The salient feature of
the optimized biopan was that the phage titer increased only
when the PIMT co-substrate AdoMet was included in the
assays. Additionally, after four rounds of biopanning, the
majority of recovered phage contained a cDNA insert that was
not the case for unsupplemented orAdoHcy-poisoned negative
controls. None of the recovered targets were without suscepti-
ble Asp or Asn residues, which (despite the lenient recognition
requirements for PIMT binding) were situated in amino acid
contexts that overrepresented Lys and, for Asn-containing pro-
teins, Glu residues. Two of the in-frame targets were suscepti-
ble to isoAsp formation in vitro and were methylated by PIMT.
The elimination of any of three rAtPIMT1 targets through
insertional mutagenesis resulted in demonstrable phenotypes.
Phage Display and Biopanning Successfully Identified

rAtPIMT1 Target Proteins—AtPIMT1 target proteins were
identified by biopanning normalized seed, phage-display librar-
ies. Previous results using OBM with a recombinant human
PIMT found some seed storage proteins to be strong methyl
acceptors (23). However, due to their abundance in seeds (33),
these protein species decrease the sensitivity of the OBM tech-
nique to other, less abundant targets. Additionally, when OBM
was performed using the plant PIMT recombinant enzymes,
the high Km values of the plant enzymes for protein substrate
andAdoMet prevented the successful employment of this tech-
nique (23). Although the use of rHsPIMT (with a lower Km for
both protein substrate and AdoMet) was a necessary expedient
for examination of the seed proteome for proteins containing
isoAsp using OBM, it was desirable to examine the seed pro-
teome for plant PIMT target proteins using a plant PIMT. Seed
storage protein mRNA abundance peaks during seed develop-
ment declines drastically by the time the seed entersmaturation
desiccation (33) and is greatly diminished after imbibition (34).
Hence, using phage display libraries from mRNA extracted
from mature, dehydrated seeds and seeds during germination
but before the completion of this event permitted scrutiny of
themature seed proteome and that arising post-imbibition dur-
ing seed germination. This minimized the interference pre-
sented by the seed storage proteins, although phage-displaying
peptide from a protein in the same family as the storage pro-
teins identified previously (23) was recovered in-frame in the
biopan (Table 1). Due to its nonradioactive nature and the lim-
ited surface areawithin themicrotiter plate wells, phage display
also permitted greater AdoMet concentrations to be added to
the reactions than was financially possible using OBM. This

FIGURE 6. Homozygous insertional mutant lines for three of the genes
whose proteins were identified as being PIMT1 targets in phage display
were recovered as homozygotes. a, one insertional mutant in the KED gene
was determined to be a severe knockdown. The chevron points to a nonspe-
cific amplicon from cDNA of both wild type and the ked mutant. b, seeds of
this mutant, along with wild type seeds, were tested at 25 °C on water in
constant light without moist chilling. c and d, three independent mutants of
an Arabidopsis LEA 4 protein, similar to seed maturation protein1 (SMP1) from
Glycine tomentella were obtained. One of these, smp1-1 located in the 3�-UTR,
did not reduce SMP1 transcript and showed no phenotype in the screens used
on the seeds (data not shown). The other two insertions resulted in severe
knockdowns (smp1-2 and smp1-3). e, mutant and wild type seeds were placed
on water-saturated filter paper at 40 °C in light in a sealed plastic bag with
soaked paper towels for 4 days before being placed at 25 °C in light to com-
plete germination. The smp1 mutants completed germination to a greater
percentage than WT without moist chilling. f, two independent insertional
mutants of the PIRL8 were identified (pirl8-2 depicted) and determined to be
severe knockdowns. After heat shock to induce secondary dormancy and
after the seeds had completed germination at 25 °C to the extent possible,
seeds were moist-chilled for 3 days and placed at 25 °C to complete germina-
tion to distinguish between dead and dormant seeds (final germination per-
centage is depicted to the right of the vertical dashed line over M.C. in e). When
possible, primers were designed to span an intron. For each germination time
point, an analysis of variance was conducted between mutant and wild type
to distinguish between significantly deviating means. This is depicted in b
where different lowercase letters distinguish those time points where the ked
mutant seeds averaged a greater percentage germination than their WT. For
the other mutant/wild type combination significance is obvious.
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alleviated the constraint caused by the high Km of the plant
PIMT for AdoMet. Finally, the proteinmoieties exposed on the
phage coat have not been subjected to chemical insult experi-
enced in extraction procedures using detergent or other chao-
tropes. Many of the plant proteins on the phage coat are only
fragments of the native proteins and, due to this and other rea-
sons, are possibly in an incorrect secondary structure because
of improper folding. They also may not be able to form tertiary
or higher order structures in which they may be involved in
vivo. It is possible that the curtailed protein on the phage coat
places Asx residues in abnormal secondary structures that
greatly facilitates their conversion to isoAsp, particularly
regions of a protein that are not usually solvent-exposed in the
intact protein. Nevertheless these arguments can also be levied
against OBMwhere the proteome has been extracted into buff-
ers, denatured, and fractionated using SDS-PAGE and adhered
to a solid support.
The success keeping rAtPIMT1 active when bound to the

microtiter plate wells and defining an optimized biopanning
strategy for use with the phage display libraries allowed the
exploitation of the small well volumes to increase the concen-
tration of AdoMet present with the recombinant plant enzyme
and libraries. The fact that phage titers increased only in the
presence of AdoMet suggests that, at this concentration of
AdoMet, biopanning permitted detection of protein fragments
in which at least one isoAsp residue was present. Additionally,
the convergence of clones retained by the rAtPIMT1 in the
presence of AdoMet to a few identical species during successive
rounds of biopanning (Fig. 3b) is a hallmark of success in this
endeavor (52), suggesting that these clones were particularly
susceptible to isoAsp formation, out-competing others for
available rAtPIMT1. This fact also necessitated re-commence-
ment of the biopan with the naïve libraries after a (several)
target had been recovered in the fourth biopanning round.
Selection of protein fragments by rAtPIMT1 in the presence of
AdoMet was not simply a matter of numerical probability, i.e.
proteins that contained a large number of Asx residues, auto-
matically inflating the possibility of having one convert to
isoAsp, as only 4 such proteins of the 17 in frame hits were
preferentially retained by rAtPIMT1. Rather, somebiochemical
basis (resulting from primary sequence context) for the desta-
bilization of Asx residues in these proteins is probable.
It is remarkable that there is a high frequency of Asn andAsp

residues that are surrounded by charged, hydrophilic amino
acids (Lys, Glu, and Asp) in the in-frame rAtPIMT1 substrates.
The former two amino acids belong to those contributingmost
to a disordered structure (53), which in some instances
enhances flexibility, which in turn promotes isoAsp formation
(1). Examining deamidation rates of synthetic peptides, Robin-
son and Robinson (54) determined that paired acidic-basic
nearest-neighbors decelerated Asn deamidation considerably,
whereas basic-acidic nearest-neighbors also retarded deamida-
tion, although this effect was not as pronounced. However,
there was not a single Asn in this context (somewhat stabilized)
in the in-frame hits and only 10 Asp residues (significantly, 8 of
the 10 occurring in one protein; similar-to-KED, AT1G56660;
Table 1, supplemental Table 2). Perhaps more important to the
current study is that both Glu and, especially, Lys have been

demonstrated to accelerate Asn deamidation rates when in the
P2�-P4� position, whereas the P1� position is where Lys is
thought to be incapable of accelerating Asn deamidation (55).
In mouse histone H2B, a protein known to undergo constant
conversion to isoAsp at Asp25 (4), Lys is in the P2, P1, P2�, and
P3� positions (56). Note that in the in-frame hits, the frequency
of Lys in P1 and P2�-P4� positions is quite high (Figs. 4, a and c),
whereas it is less in the P1� position (Fig. 4, a and c).
Both Ser and Gly enhance the ability of peptides to form

isoAsp when they occur in the P1� position of Asx (1) as well as
N-terminal to these amino acids (55), the influence of Ser (at
least) lessening as it becomes more distal to Asx (55). A trend,
although not obvious for Asn (Fig. 4c), can be seen of increasing
Ser abundance from P4 to P1 in Asp-containing in-frame hits
(Fig. 4a). Additionally, the proteins assessed in this fashion
from the out-of-frame hits (data not shown) and those from
randomly chosen proteins (At1g30100-At1g31000; Fig. 4, b and
d) upon examination of the entire A. thaliana proteome (sup-
plemental Table S3, a and b) showed no such amino acid bias
surrounding Asx. The subcellular location of the various in-
frame hits (Table 1) included the mitochondria, plastid,
nucleus, and cytoplasm, all of which have some variant of
PIMT-1 and/or -2 resident (23) as well as the cell wall, which is
without PIMT protection.
Following the lead from a demonstration of the importance

of AtPIMT1 for both seed longevity and vigor (17), an impor-
tant question was whether any of the proteins identified using
phage display were demonstrably crucial for either seed trait.
Indeed, insertional mutagenesis of the four genes examined in
this manner altered the seed developmental or germination
phenotype relative to that of the WT for all but pirl8. Two
prh75mutants examinedwere embryo lethal.5Mutations in the
phosphorylated seed maturation protein 1 (57) resulted in
faster completion of germination than wild type when seeds
were first subjected to 4 days of 40 °C in the light before 25 °C.
The same phenotype was recorded for the kedmutant. The ked
mutant also resulted in faster thanWT completion of germina-
tion at 25 °Cwithout prior heat shock ormoist chilling (Fig. 6b).
Only the pirl8mutants were similar to their respective WTs in
all aspects examined.
Disruption of KED or SMP1 reduced either the primary

and/or secondary dormancy of the seeds. After heat shock,
seeds entering a period of secondary dormancy may do so to
ensure repair and proper functioning of systems permitting
subsequent seedling establishment before completing germina-
tion. Certainly seed dormancy has been correlated with seed
longevity in storage in a number of species for a variety of rea-
sons (58–61).
The proteins of the translationalmachinery are hypothesized

to be important targets of PIMT (62). The abundance of pro-
teins involved in the coordinated generation and subsequent
functioning of the eukaryotic ribosome notwithstanding (63–
67), almost one quarter (4 of 17) of the in-frame targets identi-
fied in this paper are integral to the ribosome (At3g22230), its
function (At5g62190; PRH75), or its assembly and/or matura-
tion (At3g51270, At5g55920).
PRH75 shares considerable homology with DED1 from Bak-

ers’ yeast (Saccharomyces cerevisiae) and themung bean,Vigna
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radiata RNA helicase 1 (VrRH1). The former is thought to be
involved in translation (68–71) and in mRNA storage in cyto-
plasmic processing bodies (P-bodies) (72). The latter was iso-
lated as a differentially expressed cDNA, noticeablymore abun-
dant in artificially aged but viable seeds (73), relative to un-aged
seeds just after the completion of germination of both groups
(axis �0.5 cm long). PRH75 may also be engaged in the assem-
bly of functional ribosomes and/or processing of rRNA (73),
and its expression varies based on developmental state (more
abundant in rapidly growing cells (44, 73). PIMT is thought to
protect the proteome fromone effect of aging (74) and has been
recently demonstrated to do so in seeds (17). Hence, the iden-
tification of PRH75, an orthologue of which has been impli-
cated by others to be important for the seed to survive aging, as
a PIMT1 substrate is probably not serendipitous. This is partic-
ularly noteworthy because the putative function of the PRH75
orthologue in yeast is to aid translation.
Translation of storedmRNAbut not production of new tran-

scripts is known to be vital for the completion of seed germina-
tion (75, 76). Together, the stored proteome and intact, stored
mRNA provide the germinating seed with two options for
obtaining a particular functional enzyme systemafter storage in
the dehydrated state and without recourse to transcription; 1)
use of pre-existing protein X that is functional or can be made
to be functional or 2) use of pre-existing mRNA from which to
manufacture de novo, functional protein X. However, for the
subset of proteins essential for translation, loss of option 1 (i.e.
all of the population of a particular stored protein, crucial for
translation, is non-functional and beyond repair) automatically
renders option 2 (and transcription) useless. Therefore, at least
some of this category of protein must be maintained functional
or at least be repairable if the seed is to be able to complete
germination, quite an impressive feat given the fact that under
some conditions seeds have remained viable for �1000 years
(11, 13). If the population of any one of these vital proteins of
the translational machinery is beyond repair during seed stor-
age, the consequence is death because no mRNA (stored or de
novo-synthesized) can be translated without them. Addition-
ally, de novo ribosome biogenesis has been hypothesized to be
the most energetically costly process in any cell (67), constitut-
ing an investment well worth salvaging through repair if possi-
ble. Therefore, we hypothesize that the proteins of the transla-
tional machinery can be viewed as an Achilles heel of orthodox
seed longevity and may be a major target of PIMT-mediated
repair in organisms capable of entering a period of quiescence.
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