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Abstract

Hundreds of RNA-binding proteins (RBPs) control diverse aspects of post-transcriptional gene regulation. To identify novel
and unconventional RBPs, we probed high-density protein microarrays with fluorescently labeled RNA and selected 200
proteins that reproducibly interacted with different types of RNA from budding yeast Saccharomyces cerevisiae. Surprisingly,
more than half of these proteins represent previously known enzymes, many of them acting in metabolism, providing
opportunities to directly connect intermediary metabolism with posttranscriptional gene regulation. We mapped the RNA
targets for 13 proteins identified in this screen and found that they were associated with distinct groups of mRNAs, some of
them coding for functionally related proteins. We also found that overexpression of the enzyme Map1 negatively affects the
expression of experimentally defined mRNA targets. Our results suggest that many proteins may associate with mRNAs and
possibly control their fates, providing dense connections between different layers of cellular regulation.
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Introduction

Immediately when RNA is synthesized by RNA polymerases,

RNA binding proteins (RBPs) assemble on the nascent transcript

forming ribonucleoprotein (RNP) complexes, which tightly control

all of the further steps in a RNA’s life. On one hand, RBPs assist

the processing and assembly of non-coding (nc) RNAs into RNP

complexes, which mediate essential cellular functions such as

splicing and translation [1]. On the other hand, RBPs are essential

for mRNA maturation, which involves the addition of a 7-

methylguanosine cap at the 59end of mRNA-precursors, the

splicing-out of introns, editing, and the addition of a polyadenosine

tail at the 39end of the message. RBPs further guide mRNA export

and localization to specific cytoplasmic loci for translation, and

ultimately, they control the decay of (m)RNAs [2]. Notably, all

these steps are highly connected to each other and linked with

other gene regulatory layers to ensure proper expression of every

gene in a cell [3].

The availability of genomic tools now allows the systematic

identification of RNA targets for RBPs to obtain a global view of

their gene regulatory potential. One of the main approaches

include the immunopurification of RNP complexes followed by

the analysis of the associated RNAs with DNA microarrays, a

method referred to as RNA-immunopurification-microarray (RIP-

Chip). Numerous studies applying these genomic tools revealed

that many RBPs associate with distinct RNA target sets comprised

of a few up to several hundred RNAs, which are often enriched for

specific sequence/structural elements that define RBP binding

sites. The sets of bound RNAs were often related containing

mRNAs coding for functionally or cytotopically related proteins

(e.g. [4–6]; reviewed in [7–9]). These findings lead to a model that

proposes important coordinative roles for RBPs in the expression

of functionally related groups of messages, referred to as ‘RNA

regulons’ or ‘post-transcriptional operons’ [7]. Moreover, it

underscores that RBPs bind simultaneously and/or sequentially

to RNAs generating numerous RNP particles, whose dynamic

composition and combinatorial arrangement may be unique for

each mRNA expressed in a cell [8–10].

RBPs comprise 3 to 11% of the proteomes in bacteria, archaea

and eukaryotes underlining the importance of RNA regulation for

cell function [11]. In the budding yeast Saccharomyces cerevisiae, more

than 500 proteins are predicted to function as RBPs [6,10]. An

extensive bioinformatic survey, considering evolutionary conser-

vation, identified almost 100 protein motifs linked to RNA

regulation; about half of them have been classified as ‘‘enzymatic’’

domains mostly present in RNA modification enzymes and

nucleases. Another 40 motifs or so have been classified as ‘‘non-

catalytic’’ RNA-binding domains, which are often part of multi-

subunit RNP complexes [11]. Notably, RBPs often contain an

array of RNA-binding motifs (RBMs), which further increases the

specificity and affinity towards the RNA.

The vast number of protein motifs linked to RNA regulation

and the ancient origin of RNA regulation, which is possibly the

most evolutionary conserved component of a cell’s physiology,

proposes that many proteins implicated in other cellular processes

could have retained RNA-binding capacity. For instance, several
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metabolic enzymes in mammals have been shown to bind to and

regulate mRNA expression (reviewed in [12–15]). Perhaps best

characterized are the iron regulatory proteins (IRP), cytoplasmic

aconitases that regulate the translation or stability of several

messages depending on cellular iron levels [16]. Moreover, a

recent comprehensive RIP-Chip study analyzing the RNA targets

for more than 40 different RBPs and some other proteins in yeast

showed that two metabolic enzymes, for which homologs in

mammals have been reported to bind RNA, were reproducibly

associated with cellular RNAs, indicating that RNA regulation by

these proteins may be evolutionarily conserved [6]. These

observations have raised speculations about the existence of yet

largely overlooked post-transcriptional regulatory networks be-

tween intermediary metabolism and RNA regulation [12]. It

furthermore highlights the need of systematic discovery tools to

identify novel RBPs as the ‘‘universe’’ of RBPs in eukaryotes could

be well underestimated. Possibly many more proteins could have

retained or acquired the capacity to bind RNA enabling post-

transcriptional gene regulation at yet uncharacterized levels and

processes.

In this study, we set out to screen for novel and unconventional

RBPs. We therefore used protein microarrays containing 70% of

the yeast’s proteome and probed them with different sorts of RNA.

We selected almost 200 proteins that reproducibly interacted with

RNA, most of them not previously annotated to act as RNA-

binding proteins such as metabolic enzymes. We further

determined in vivo associated RNAs for 13 potential RBPs by

RIP-Chip. Most of the RBPs bound to distinct subsets of mRNA,

some of them code for functionally related proteins and thus,

possibly comprise ‘‘RNA regulons’’. Since this screen is not

saturated we expect that many more RBPs - including proteins

with dual functions - exist in eukaryotic organisms, forming a

dense and robust post-transcriptional scaffold that effectively

coordinates gene expression to ensure the integrity and stability of

a cells fate.

Results

Detection of specific RNA-protein interactions with
protein microarrays

We used functional protein microarrays to screen for proteins

that interact with RNA (Figure 1). Protein microarrays have been

previously used to identify proteins that interact with small viral

RNAs [17], but to our knowledge, there has been no screen to

detect proteins interacting with cellular RNAs. To establish the

experimental procedure, we first probed protein microarrays with

a short 36 nucleotide (nt) long RNA termed E2Bmin, which is a

fragment of the Ash1 mRNA known to specifically interact with

She2p [18]. She2 is a RBP that facilitates the localization of Ash1

mRNA and other messages to the bud-tip during cell division [19].

Among the 4,088 proteins present on the array, the strongest

signal of fluorescently labeled E2Bmin RNA was seen with She2p

(24.2 standard deviations [SD] above the mean of signal intensities

from two independent experiments; Z-scores are given in Dataset

S1). No signals were obtained with an array where proteins were

heat-denatured before probing with RNA, indicating that RNA

interactions must derive from active proteins. Besides She2, six

GTPases (Arf1, Arf3, Arl2, Ypt1, Ypt7, Ypt32; p,1029), a tRNA

guanylyltransferase (Thg1), and a single-stranded DNA-binding

protein (Rim1) also strongly and reproducibly interacted with

E2Bmin (SD.3.5 in replicates). Whether these E2Bmin binders

may be implicated in the regulation of Ash1 mRNA in vivo remains

to be elucidated. At least, these experiments show that specific

RNA-protein interactions can be detected with our experimental

set-up.

Many enzymes may interact with cellular RNAs
To screen for proteins that interact either with total RNA or

mRNAs, we basically used the same experimental set-up as

applied for the E2Bmin experiments. We probed the protein

microarrays with Cy3 labeled ‘total RNA’, which was isolated

from yeast cells grown in different carbon sources, and with Cy5

labeled mRNAs isolated from total RNA via oligo-dT columns (see

Materials and Methods). Because data was less reproducible

compared to the replicate arrays probed with E2Bmin RNA

described above, we assigned each element on the array a

percentile rank based on background subtracted signals, and

calculated median percentile ranks across the five replicates [20]

(raw data is provided in Dataset S2). Thereby, the highly ranked

proteins represent those with highest signals on the array (e.g.

She2p probed with E2Bmin RNA is ranked = 1 in the above

described experiments). The analysis of ranks instead of Z-scores

has been previously applied to analyze chromatin immunoprecip-

itation-chip data and performs well when magnitude and scale of

Figure 1. Identification of RNA-binding proteins with protein microarrays. Protein microarrays (Protoarrays) contained 4,088 different yeast
proteins (,70% of the proteome) individually spotted in duplicates onto a modified glass slide. The arrays were probed with a mixture of
fluorescently labeled RNAs. After washing, the arrays were scanned and analyzed for proteins that bound either labeled RNAs.
doi:10.1371/journal.pone.0015499.g001

Proteinarray Screen for RNA-Binding Proteins

PLoS ONE | www.plosone.org 2 November 2010 | Volume 5 | Issue 11 | e15499



the actual signals varies between replicates [20]. If there are

features that are consistently highly ranked across multiple

replicates, the distribution of the median percentile ranks of all

features will form a bimodal curve; and the median percentile rank

at the trough of this bimodal distribution can be selected as a

conservative cut-off to define targets [20]. A histogram of the

median ranks across the five replicate protein arrays showed a

bimodal distribution, which we assumed to represent non-binders

and binders, the latter ones to be consistently highly ranked across

replicate experiments (Figure 2). We have therefore chosen the

trough of the distribution as a conservative cut-off to define

proteins that reproducibly interacted with either total RNA or

mRNAs; selecting 67 total RNA and 173 mRNA binders,

respectively (a list of the total 180 proteins selected from this

analysis is provided in Table S1). 90% of total RNA binders were

also found in the pool of mRNA binders, but most of the mRNA

binders did not strongly bind total RNA (113; 65%). These

proteins may preferentially interact with mRNAs, which are

underrepresented in the total RNA fraction. However, we wish to

note that this selection procedure was designed to go for a robust

list of potential RNA binders. It may thus not provide a

comprehensive list of all RNA-binders, and further inspection of

the data may reveal additional RNA-binders.

We categorized the selected 180 proteins that either interacted

with total RNA or mRNA based on Gene Ontologies (GO)

retrieved from the Princeton GO server. 132 out of the 180

proteins (73%) had at least one known function annotated with

GO. 28 proteins were annotated with the GO term ‘RNA-

binding’, which is therefore over-represented among the group of

all 180 selected proteins (p,1023, Figure 3; a detailed list of GO

terms is provided in Table S2). Further manual inspection of the

180 proteins revealed 18 additional proteins with RNA related

functions – adding-up to 46 proteins that act in RNA metabolism

(25% of all selected proteins; 35% of proteins with assigned

functions; marked in blue in Table S1). In contrast, DNA binding

proteins including transcription factors (TFs; 13 proteins, 7%)

were not over-represented suggesting that our assay discriminates

between DNA and RNA-binders. Moreover, only four of the 180

proteins (Bcy1p, Deg1p, Pfk26p, Yer087p) were among 208

proteins selected in a similar screen applying protein microarrays

to identify single- or double-stranded DNA binding proteins [21].

In conclusion, our list of selected proteins bears a substantial

fraction of previously known RNA-binders or proteins with RNA-

related functions, indicating that our assay likely selected proteins

that have RNA-binding properties. However, as outlined above,

our stringent cut-off is not expected to identify all of the RNA-

binders. Moreover, there are many reasons why diverse known

RBPs, which are present on the array did not give reproducible

signals across replicates. This includes inactivation of proteins on

the slide surface, mis-folding or RNA cross-hybridization in

solution, and finally, many annotated RBPs act in protein

complexes (e.g. ribosomal proteins) and thus may not specifically

interact with RNAs on their own.

Regarding the assigned functions among our list of selected

RNA-binders, we were intrigued that many of them have catalytic

functions, including oxidoreductases, hydrolases, lyases and

transferases (total 94 proteins; 52%, p,0.003) (Figure 3, Table

S2). Whereas 17 of these enzymes have been previously linked to

RNA related processes, the remaining ones act in unrelated

processes such as fatty acid metabolism (p,0.007) or lipid

oxidation (p,0.008). Moreover, 25 of these enzymes can be

mapped to the yeast metabolic network [22], which are therefore

significantly overrepresented compared to all of the metabolic

enzymes in this network present on the protein microarray (397

proteins, p,0.016). In agreement with this bias for enzymes, most

of the herein identified potential RBPs are cytoplasmic (141

proteins, p,1026), membrane-associated (p,0.003), and some of

them located to peroxisomes (p,261025)(Figure 3). These results

indicate that many cytoplasmic enzymes could interact with RNA.

In principle, this could provide opportunities to directly connect

intermediary metabolism with posttranscriptional gene regulation.

We further analyzed our experimentally defined set of 180

RBPs for the occurrence of protein domains annotated by the

Pfam database [23]. 4,049 proteins in S. cerevisiae were annotated

Figure 2. Selection of mRNA and total RNA-binding proteins.
(A) Distribution of ranked median signal intensities resulting from
protein microarrays probed with mRNAs. The trough at 0.9 was taken as
cut-off and all proteins with greater ranks were selected as mRNA
binders. (B) Distribution of ranked median signal intensities resulting
from arrays probed with total RNA. The trough at 0.95 was taken as cut-
off and all proteins with greater ranks were considered as total RNA
binders. (C) Venn Diagram representing overlap between proteins
binding to total RNA and mRNAs.
doi:10.1371/journal.pone.0015499.g002
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with 6,119 domains in Pfam, and we analyzed whether some of

these domains were over-represented among the 150 proteins (out

of 180) that contained at least one Pfam domain (Pfam domains

are annotated in Table S1). As expected, most prevalent were

known RNA-binding domains such as the K homology (KH_1)

domain, the RNA recognition motif (RRM_1) and a subtype of

the zinc finger motif, zf-CCHC, which were all significantly

enriched (Table 1). Interestingly, several domains were enriched

that have not been previously related to RNA function (p,1023,

hypergeometric) and occur in proteins devoid of other known

RNA-binding motifs. This includes the ubiquitin motif or the

weakly conserved repeat module PC_rep, which are found in

several proteins involved in protein degradation control [24]. It

also includes the WW motif and the TPR_1 (tetratricopeptide

repeat), which mediate protein-protein interactions and the

assembly of multiprotein complexes [25], and several enzymatic

domains contained in metabolic enzymes. Whether any of these

domains directly or indirectly mediate RNA-binding has yet to be

investigated, but their significant overrepresentation makes them

prime candidates for further analysis.

Potential RBPs come from different expression regimes
We next asked how the expression of our selected RNA-binders

varies across different growth conditions to see whether our

selection is biased to any kind of expression characteristics. We

therefore compiled a large collection of microarray data available

for a wide range of experimental conditions for S. cerevisiae from the

M3D database [26] (experimental conditions are indicated in the

Table S3). Because this data is available in Robust MultiArray

(RMA) normalized format [27], it enables direct comparison of

expression levels (see Materials and Methods). Expression profiles

could be obtained for 164 of the 180 RBPs identified in this study,

and we performed K-means clustering with 10 groups to identify

subsets of genes that exhibited similar expression patterns. This

analysis revealed that the genes followed very heterogeneous

expression patterns; genes clustered into different expression

regimes namely ubiquitously highly expressed, ubiquitously poorly

expressed and specific to conditions (a heatmap cluster of this

analysis is shown in the Figure S1).

We further compared the expression levels of the potential RBPs

identified in this study with previously annotated RBPs (see Material

and Methods). We found no general difference (p,0.64, Wilcoxon

test). However, our herein identified RBPs are generally higher

expressed than non-RBPs (p,261026, Wilcoxon test); an observa-

tion that has been made previously for conventional RBPs as well

[28]. We therefore speculate that in particular the highly expressed

unconventional RBPs may give good leads for future experiments as

they have the potential to control many RNA targets [28].

Figure 3. Significantly shared GO terms among mRNA binders. The 173 m RNA binders were searched for significantly enriched GO terms as
compared to all the 4,088 proteins present on the protein microarray. Bar diagrams indicate relative amount of genes of the respective GO term
among all proteins on the array or among the selected mRNA binders, respectively.
doi:10.1371/journal.pone.0015499.g003

Proteinarray Screen for RNA-Binding Proteins

PLoS ONE | www.plosone.org 4 November 2010 | Volume 5 | Issue 11 | e15499



Selected novel RBPs associate with distinct sets of
mRNAs

To examine whether some novel potential RBPs in our selected

list of RNA-binders associate with RNA in vivo, we purified

endogenously expressed tandem-affinity purification (TAP)-tagged

proteins from cells grown in rich media, and identified co-

purifying RNAs with yeast DNA oligo arrays. From our list of 180

RBPs, we selected 13 proteins that are expressed at different levels,

and for which respective mRNA expression patterns are different

across a variety of conditions, providing a representative sample of

differentially expressed putative RBPs (marked in Figure S1).

Besides a transcriptional regulator (Lap3p) and a co-chaperone

(Sti1p), we selected eleven proteins with catalytic activities (Dfr1p,

Gre3p, Map1p, Mdh1p, Mdh3p, Meu1p, Pfk2p, Phr1p, Pot1p,

Pre10p, Ymr1p), some of them acting in intermediary metabolism,

reflecting the fact that many candidate RBPs are enzymes. Seven

of the proteins are cytoplasmic, two are peroxisomal, and one

representative each are from the nuclear, mitochondrial, ribo-

somal and proteasome compartment.

We performed three independent affinity isolations with each of

the 13 potential RBPs and five independent mock isolations with

untagged control cells ( = mock isolates). To identify RNA that

were significantly associated with the proteins we selected those

features that were on average at least 3-fold enriched in the affinity

isolates compared to the mock controls with a p-value of less than

0.01 (see Materials and Methods). This analysis revealed that all

proteins were associated with unique sets, comprised of a few to

dozens of different RNAs (Figure 4; raw data from RIP-Chip

experiments and a list of selected features is given in the Dataset

S3). Notably, the proteins were almost entirely associated with

mRNAs, excluding highly expressed ncRNAs such as rRNAs,

tRNAs and snoRNAs. This indicates that these candidate RBPs

primarily target mRNAs for potential gene expression control. It

also substantiates the specificity of our assays as there is no

apparent bias for selection of highly expressed ncRNAs. We also

found no correlation between the expression level of these proteins

[29] and the number of selected targets (Pearson correlation

r = 0.04), further substantiating that the observed associations are

selective and not merely driven by expression.

Four of the 13 proteins (30%) were associated with their own

mRNA (Pfk2, Pre2, Map1, Meu1). Binding to the own mRNA

offers the possibility for auto-regulation through the formation of

positive or negative feedback loops [30]. This fraction is therefore

similar to previous finding with canonical RBPs, where 18 of 46

RBPs (40%) were associated with their own RNA [6]. Remark-

ably, this fraction is considerably larger compared to TFs, where

10% bound to their own promoter sequences in a global TF-

binding site analysis for 106 TFs [30].

Because many RBPs bind to mRNAs coding for functionally

related proteins, we searched for common themes among the

messages that were associated with the 13 proteins. For six

proteins (Map1, Mdh3, Pot1, Pre10, Sti1, and Ymr1) we found

Table 1. Pfam domains enriched in the list of putative RBPs.

Domain Occurrence (RBPs) Occurence (Genome) Occurrence (Protoarray) P-value (Hypergeometric)

KH_1 10 18 16 5.44E-09

zf-CCHC 8 23 15 1.06E-06

RRM_1 12 78 41 4.75E-06

ubiquitin 6 15 15 0.00018

PC_rep 4 7 7 0.00048

TPR_1 6 27 19 0.00077

WW 4 8 8 0.00089

adh_short 4 13 9 0.0015

S1 3 6 5 0.0023

TYA 5 81 18 0.0038

Ldh_1_C 2 3 2 0.0041

TBP 2 2 2 0.0041

cNMP_binding 2 5 2 0.0041

Acyl_CoA_thio 2 2 2 0.0041

Ldh_1_N 2 3 2 0.0041

PseudoU_synth_1 2 6 2 0.0041

doi:10.1371/journal.pone.0015499.t001

Figure 4. Selected novel RNA-binding proteins bind to distinct
sets of mRNAs. (A) Heat map of mRNAs associated with indicated
proteins. The color code (orange-blue) indicates the fold-change (log2

ratio scale) of the respective feature in the affinity isolation compared to
mock control microarray data. The number of mRNA targest for each
protein is indicated next to the name of the protein. A star (*) denotes
association with own mRNA. ‘GO’ indicates that GO terms are
significantly enriched among targets (see Table 2).
doi:10.1371/journal.pone.0015499.g004
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significantly enriched GO groups among associated messages,

offering the potential to coordinate expression of functionally

related groups of messages or ‘RNA regulons’ (Table 2; a more

comprehensive list of GO terms is provided in the Table S4).

Noteworthy, proteins associated with only a few messages may be

less prone for this analysis as the number of the associated mRNAs

might be too small to achieve statistically sound data. Although

every protein assembled with unique GO terms (e.g. Sti1p bound

mRNAs code preferentially for proteins acting in telomere

maintenance and DNA recombination), some of the enriched

GO terms appeared with more than one protein. For instance,

messages associated with Map1p, Pot1p, and Ymr1p are

commonly related to translation. However, the particular

messages that added to this term were mostly different and only

one message (Rps9b) was shared among the targets for the three

proteins. Likewise, three proteins (Map1, Mdh3, Sti1) were

preferentially associated with messages coding for proteins

annotated with pyrophosphatase activity. Among the many targets

for these proteins, only eight mRNA targets are shared, which do

not link to pyrophosphatase activity (two pyruvate decarboxylases

[Pdc1, Pdc5] were commonly enriched; p,261024). Therefore, it

appears that although some GO terms were enriched with more

than one of the proteins, it is not because these proteins bound to a

common set of messages that connects to one particular GO term,

but rather that they were associated with different messages that

belong to the same functional class.

Map1p negatively affects gene expression of mRNA
targets

To investigate how one of the selected candidate enzymes could

affect gene expression of targets, we measured the relative changes

of mRNA levels of cells overexpressing MAP1 compared to control

cells with DNA microarrays. Map1p is a methionine aminopepti-

dase (MetAP) that catalyzes the co-translational removal of N-

terminal methionine from nascent polypeptides, and it is function-

ally redundant with Map2p [31,32]. Notably, Map1p contains two

zinc-finger motifs, one CCCC-type and the other of the CCHH-

type [33], which occur in DNA-binding proteins and in some RBPs

[34] – however these domains were not thought to provide selective

RNA-binding but rather to confer interaction of Map1p with the

ribosome [35]. Yeast cells bearing a plasmid with MAP1 under the

control of galactose inducible promoter, and control cells containing

an empty plasmid, were grown to mid-log phase and expression was

induced with 2% galactose for 1.5 hours. Noteworthy, inducible

short-time overexpression of RBPs could be beneficial to measure

direct effects of proteins on gene expression by minimizing

secondary effects that may raise after prolonged alterations of

expression levels (Scherrer et al., submitted). We obtained mRNA

expression profiles for 6,851 features representing 5,889 yeast genes

(raw data is provided in Dataset S4). MAP1 expression was increased

4.2-fold being the most changed mRNA of all analyzed features.

The relative expressions levels of Map1p target mRNAs were very

slightly (mean fold change = 0.925) but significantly decreased

compared to all non-targets (p,1025, Mann-Whitney U test)

(Figure 5). Of note, only 44 genes changed at least 1.5 fold with

p,0.05 (one sample t-test); and seven Map1p targets were

overrepresented among the 36 down-regulated messages

(p = 761025, Fisher’s exact test). The same analysis with microarray

data obtained from cells overexpressing GIS2 (another ZnF protein

among the selected RNA-binders) did not reveal reduced expression

of Map1p targets (TS and APG, unpublished results), indicating that

the observed shift in the distribution of Map1p targets was not a

general effect due to protein overexpression. In conclusion, these

results suggest that Map1p could negatively affect mRNA

expression of selected mRNA targets.

Discussion

Protein microarrays have been applied to detect protein-

protein, protein-lipid, protein-DNA and protein-viral RNA

interactions [17,21,36,37]. Here, we describe the use of protein

microarrays for the detection of protein-RNA interactions. We

identified dozens of potentially ‘‘novel’’ RBPs that either

interacted with mRNA or total RNA on protein microarrays.

Strikingly, among these were many enzymes with well-established

cellular functions. For some of them, we have shown significant

association with functionally related messages, possibly allowing

coordination of the expression of ‘RNA regulons’ as seen for bona

fide RBPs. This was further initially demonstrated for Map1p, for

which we observed subtle coordinated down-regulation of target

mRNAs upon MAP1 overexpression, indicating that Map1p

preferentially negatively affects gene expression of target messages.

This study therefore expands our understanding of post-transcrip-

tional gene networks suggesting regulatory functions to a variety of

proteins not connected to gene expression regulation so far.

Table 2. Selected list of GO terms enriched among mRNA targets.

Protein Category GO term (p-value)

Map1 Process translation elongation (1027), small molecule metabolic process (1025)

Function catalytic activity (10211), pyrophosphatase activity (261027)

Compartment plasma membrane enriched fraction (10210), ribosome (461026)

Pre10 Function hydrolase activity (0.007)

Sti1 Process telomere maintenance via recombination (561025)

Function helicase activity (10214), pyrophosphatase activity (10210)

Ymr1 Process translation (3610211)

Function structural constituent of ribosome (10210)

Compartment ribosome (6610214)

Mdh3 Function nucleoside-triphosphatase activity (1023), helicase activity (261023)

Pot1 Process translation (8610210)

Function structural constituent of ribosome (8610212)

doi:10.1371/journal.pone.0015499.t002
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Our observations that many proteins with enzymatic activities

bind to RNAs and potentially participate in RNA regulation are

reminiscent to previous observations stating RNA-binding func-

tions for several mammalian enzymes (reviewed in [12,13]). These

mammalian enzymes revealed a striking common denominator –

they catalyze reactions that often involve mono- or dinucleotides

as substrates or co-factors [14]. Similarly, we found that a large

fraction (41 proteins) of the ‘‘novel’’ RBPs with assigned catalytic

activities (total 95 proteins) require nucleotide related cofactors/

substrates (Table S1): 14 proteins require ATP/AMP as substrate

(e.g. kinases), 13 need nicotinamide adenine dinucleotides (NAD)

or its 5-phosphate derivate (NADP) as a cofactor, seven employ

Coenzyme-A (CoA) found in many enzymes acting in the sterol/

fatty acid metabolism, and nine use others such as GTP/GMP or

S-adenosyl-methionine. In this regard, the protein binding site for

NAD or NADP has been postulated to have occasionally evolved

to a binding surface for polyribonucleotides in some mammalian

enzymes (e.g. thymidylate synthase (TS) and dihydrofolate

reductase (DHFR), as well as glyceraldehyde-3-phosphate, isocit-

rate, and lactate dehydrogenases) [14]. We tested four (Gre3, Dfr1,

Mdh1, Mdh3) NAD binding proteins for association with cellular

RNA with RIP-Chip and found that all of them were reproducibly

associated with mRNAs, proposing that their NAD binding sites

could also have evolved to conduct some RNA regulatory

functions. Interestingly, the strong prevalence for nucleotide

binding sites among the putatively novel RBPs is also in analogy

to recent observations suggesting the existence of transcription

regulators that are metabolic enzymes [38]. This raises the

possibility that both TFs as well as RBPs might function as direct

sensors of the metabolic state of the cell suggesting novel circuits

for gene regulation. In this scenario, the binding of metabolic

cofactors in the reduced or oxidized form (e.g. NAD/NADH+)

could differentially regulate the activity of responding RBPs, either

through impacting RNA-binding or modulating interaction with

other RNP components. Therefore, careful evaluation of the

redox state and of the substrate availability will be of further need

to decipher the molecular roles of enzymatic RBPs. In addition,

modulation of RNA-binding function may result from direct

competition between RNA and substrates/cofactors as seen with

mammalian IRPs, TS and DHFR [15,16]. In that case, RNA

binding can only occur when substrates are limiting and/or

enzymes are in excess and thus, this could possibly contribute to

some of the weaker associations seen between RNA and some of

the enzyme-related RBPs in our RIP-Chip experiments.

Our screen also proposes RNA binding properties for enzymes

that act independently of nucleotides or other cofactors such as

peptidases and phosphatases (e.g. Map1, Ymr1). Moreover, our

analysis for the enrichment of Pfam domains among our selection

of RNA-binders revealed several unexpected domains to be

associated with proteins identified in our screen, namely protein-

protein interaction domains such as the tetratricopeptide repeat

superfamily, which includes the PC_rep and TPR1_domains [23].

We confirmed association of a substantial set of mRNAs with one

of the representatives of this family, Sti1p, which contains four

TPR1 domains. Although we do not know whether the measured

interactions occur directly, it is feasible that some TPR domains

could have acquired (or lost) RNA binding functions during

evolution: The TPR motif consists of three to 16 tandem-repeats

of 35 amino acids that fold into a helix-turn-helix structure and

hence, the motif is thought to be closely related to pentatricopep-

tide repeats (PPR) [39]. The PPR domains rapidly expanded in

plants (100–500 genes) where proteins bearing these domains have

well established functions in RNA binding, making it reasonable to

speculate that some closely related TPR motifs might also have

RNA-binding properties.

Nevertheless, the RNA-binding site may also be distinct from

the enzymatic site. Diverse examples for shuffling of enzymatic

domains next to RNA-binding domains are known such as

adenosine deaminases acting on RNA or RNA helicases [40].

Some proteins also retained enzymatic functions in metabolism

such as Rib2p in yeast [41]. We analyzed the RNA regulatory

potential for Map1p (a methionine aminopeptidase), for which the

catalytic domain (peptidase) may be well separated from the RNA-

binding sites. The protein contains two Zn-finger domains, which

are essential for the normal processing function of MetAP in vivo

[33] and were thought to provide interaction with the ribosome

[35]. However, Zn-finger domains have been widely seen to

mediate protein-DNA or protein-RNA interactions [34] and

hence, they may act as RNA-binding motifs in Map1p as well.

Howsoever, based on your results it appears that Map1p is a dual

function enzyme that can negatively affect the expression of some

mRNAs targets, including messages coding for proteins that act in

translation – in particular translational elongation – and which are

therefore in the same process as Map1p.

Several mammalian metabolic enzymes are thought to control

the translation or stability of their own mRNAs [13]. For instance,

Figure 5. Gene expression profiling of yeast cells overexpress-
ing MAP1. Distribution of average Cy5/Cy3 fluorescence ratios from
three microarray hybridizations comparing RNA levels of MAP1 over-
expressing yeast cells with control cells. In the upper panel, the fraction
of transcripts indicated on the y-axis refers to the cumulative fraction of
sequences on the microarray; log2 ratios are plotted on the x-axis. The
lower panel shows a histogram depicting the fraction of transcripts (y-
axis) that are clustred within bins of 0.1 log2 ratios (x-axis). The red line
delineates the distribution of Map1p RNA targets defined from affinity
purifications. The blue line represents non-targets.
doi:10.1371/journal.pone.0015499.g005
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TS binds with high affinity to its own 59-UTR near the initiator

AUG codon and represses translation [15]. Thereby, mRNA

binding sites in TS overlap with the binding sites for its substrates,

methylenetetrahydrofolate and dUMP and therefore, mRNA and

substrate are in direct competition. Likewise, DHFR, a second

enzyme in the thymidylate synthesis pathway also binds to its own

mRNA, which can be competed by the substrate (folate)

antagonist methotrexate [13,15]. Four proteins, for which mRNA

targets were identified with RIP-Chip bound to their own

mRNAs, offering the possibility for auto-regulation (Figure 4).

Among these was also Pfk2p, which is the b-subunit of the hetero-

octameric phosphofructokinase (PFK) involved in glycolysis.

Noteworthy, the specific associations of Pfk2p with its own

message are independent of the PFK complex, as neither our

protein array nor the RIP-Chip analysis revealed significant

associations of RNAs with the other subunit of this complex,

termed Pfk1p (TS and APG, unpublished results). Since glycolysis

is crucial for cell physiology, the activities of enzymes acting in this

pathway must be tightly controlled, which is mainly thought being

accomplished by transcription and/or the regulation of protein

synthesis or degradation [42]. The binding of Pfk2p to its own

message could provide an additional layer of expression regulation

by controlling the translation, localization or the stability of the

message. Such post-transcriptional feedback regulation could add

a sensitive mechanism to adapt PFK levels to changing

environmental conditions. We wish to note that self-controlling

functions among RBPs generally appear to occur more often than

among transcription factors, as about 30–40% of RBPs are

associated with their own messages compared to 10% of

transcription factors that bind to their own promoters [30]. We

speculate that such auto-regulation might be beneficial for RBPs in

some specific circumstances to control their expression in a

temporal and spatial context with respect to other RBPs, and as a

means to fine-tune their levels in the cell for appropriate

combinatorial interplay.

In conclusion, various instances of enzymes that also act in

RNA-metabolism have been previously reported. Our findings put

these specific examples into a more general context indicating that

RNA regulation by enzymes may be far more common than

previously anticipated. A good fraction of (metabolic) enzymes

may therefore have a ‘‘moonlighting’’ role in regulating RNA

metabolism, which could allow establishing various direct

connections between metabolic status and post-transcriptional

gene regulation [12]. Future studies on the regulation of mRNA

targets by both enzyme-related and conventional RBPs in yeast

and other species will help to further shape the RNA-protein

interaction network and its regulatory potential and plasticity, and

to further establish novel connections between different layers of

cellular control.

Materials and Methods

Plasmids, strains and media
TAP-tagged strains [29] and the isogenic wild-type strain

BY4741 (MATa his3D1 leu2D0 met15D0 ura3D0), as well as

plasmid pBG1805-Map1 [44] were obtained from Open Biosys-

tems. Yeast cells were grown in yeast-peptone-dextrose medium

(YPD; 1% yeast extract, 2% bacto-tryptone, 2% glucose) or in

synthetic complete medium (SC) [45]. YPGal and YPG are

identical to YPD except that they contain 2% galactose or 3%

glycerol, respectively, instead of glucose; and SG and SR are

identical to SC but contain 2% galactose or 2% raffinose,

respectively, instead of glucose. SC-Ura corresponds to SC lacking

uracil.

RNA preparation and labeling
20 pmol of forward and reverse complementary oligonucleo-

tides encoding the E2Bmin sequence [18] and the T7 RNA

polymerase promotor were incubated for one minute at 95uC in

20 ml of water and annealed by cooling down the reaction slowly

to room temperature (RT). E2Bmin RNA was synthesized by

transcription of annealed DNA templates with T7 RNA

polymerase (Promega) for two hours at 37uC. The reactions were

treated with DNase I (Roche), and RNA was extracted with

phenol/chloroform and precipitated with ethanol. The integrity of

the RNA fragment was controlled on a 15% polyacrylamide gel

containing 8 M urea. Total RNA was isolated from yeast cells by

hot phenol extraction [46]. Total RNA was isolated from cells

grown either in YPD, SCGal, SD, YPGal, YPG and combined at

the ratio (w/w) 2:2:1:1:1. Messenger RNA was isolated from

pooled total RNA with the Oligotex mRNA Mini Kit (Qiagen)

according to the manufacturer’s protocol. Concentration of RNA

was generally assessed by UV-spectrometry with a Nanodrop

device (Witeg).

RNA was fluorescently labeled with either Cy3 or Cy5 using the

MICROMAX ASAP RNA labeling Kit (Perkin Elmer Cat#
MPS544) according to the manufacturer’s protocol. Labeled RNA

was purified with the RNeasy Micro kit (Qiagen) to remove

unincorporated dyes and immediately used for array analysis.

Protein microarrays and data analysis
We used commercially available protein microarrays containing

duplicate probes of 4,088 yeast proteins and additional control

proteins spotted on a modified glass slide (ProtoArrayTM Yeast

Proteome Microarray mg v.1.0; Invitrogen Cat# PA012106;

http://www.invitrogen.com). The frozen arrays were thawed at

4uC for 15 min and blocked for 2 hours at 4uC in phosphate-

buffered-saline pH 7.4 (PBS; Invitrogen) supplemented with 1%

nuclease/protease-free BSA (Equitech-Bio), 1 mM DTT, 50 mg/

ml E. coli tRNA (Roche), and 50 mg/ml heparin. The arrays were

dried by centrifugation at 300 g for 1 min at 4uC and immediately

probed with fluorescently labeled RNAs. Therefore, Cy3 labeled

total RNA (5–10 mg) were combined with either Cy5 labeled

mRNAs ( = poly(A)+ RNA; 2 mg) or E2Bmin RNA (1.5 mg) and

mixed in 60 ml of RNA-binding buffer (RBB, 20 mM Tris-HCl

pH 7.9, 75 mM NaCl, 2 mM MgCl2, 5% glycerol, 0.05% Triton-

X100, 1% BSA, 1 mM DTT, 0.2 mg/ml E. coli tRNA, 0.02 mg/

ml heparin) supplemented with 6 U of RNaseOUT (Invitrogen,

Cat# 10777-019) and applied on the protein microarray, which

was covered with a lifterslip (22660 mm; Erie Scientific). The

arrays were put into a sealed hybridization chamber to prevent

drying-out, and incubated for 90 min at room temperature in the

dark. The slides were washed twice for 10 min at 4uC with 25 ml

of RBB buffer supplemented with 10 U/ml RNaseOUT, and

twice with 16RBB buffer lacking tRNA. The arrays were dried by

centrifugation at 300 g for 5 min and immediately scanned with

an Axon Scanner 4200 (Molecular Devices). Data was collected

with GenePix Pro 5.1 (Molecular Devices) and imported into

Acuity 4.0, which averages data for duplicated spots (Molecular

Devices). For data analysis, we removed features representing non-

yeast control proteins (e.g. GST) and spots with irregular shapes

(FLAG. = 0). Protein microarray raw data have been deposited at

ArrayExpress via http://www.ebi.ac.uk/miamexpress/(accession

number: E-MEXP-2897; see below).

To select proteins that bind E2Bmin RNA, we retrieved

median signal intensities of background subtracted signals for the

red channel (Cy5) probed with E2Bmin RNA. Proteins, for which

the signal intensities were at least 3.5 standard deviations (Z

score.3.5) above the median of all averaged signals from
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replicate arrays, were considered as RNA binders (raw data is

given in the Dataset S1). To select proteins that interact with total

RNA or mRNAs, we retrieved background subtracted median

signal intensities of both channels from five replicate arrays, and

calculated percentile ranks from 0 to 1 for each channel and array

(raw data is given in Dataset S2). The distribution of the median

percentile ranks across array replicates was plotted as a histogram

and the trough of the bimodal distribution was taken as a

conservative cut-off to select proteins that consistently interacted

with RNAs (0.90 for mRNA, and at 0.95 for total RNA)

(Figure 2).

RNA affinity isolations
Affinity purification of TAP-tagged proteins was carried out as

described previously [4,6], except that yeast cells were broken

mechanically with glass beads in a Tissue Lyser (Qiagen) for

12 min at 300 Hz and 4uC. RNAs from the extract (input) and

from the affinity isolates were purified with the RNeasy Mini or

Micro Kit (Qiagen), respectively.

MAP1 overexpression
100 ml of BY4741 cells bearing plasmid pBG1805-Map1 or the

empty plasmid pBG1805 ( = control) were grown in SR-Ura media

at 30uC to an OD600 of 0.45–0.5 and expression was induced with

2% galactose for 1.5 hours. Cells were generally harvested by

centrifugation and washed twice with 800 ml of ice-cold sterile

water. RNA was isolated by hot-phenol extraction for microarray

analysis as described above [46].

DNA microarrays and data analysis
70-mer oligo arrays representing features for all annotated

nuclear yeast genes (including all ORFs and ncRNAs, introns and

some intergenic regions), the mitochondrial genome and various

control spots were produced at the Center for Integrative

Genomics, University of Lausanne. Arrays were processed and

hybridized with fluorescently labeled cDNAs as described

previously [47]. For RIP-Chip experiments, 5 mg of total RNA

isolated from the extract (input) and up to 50% (,500 ng) of the

affinity purified RNA were reverse transcribed in the presence of

5-(3-aminoallyl)-dUTP and natural dNTPs with a mixture of

randome nonamer and dT(20)V primers, and cDNAs were

covalently linked to Cy3 and Cy5 NHS-monoesters (GE

HealthSciences Cat# RPN5661), respectively, and competitively

hybridized on yeast oligo arrays at 42uC for 14 hours in

formamide-based hybridization buffer. Gene expression changes

upon MAP1 overexpression were obtained by comparative

microarray analysis of Cy3 labeled cDNAs derived from cells

expressing the empty vector (pBG1805) and of Cy5 labeled

cDNAs from MAP1 (pBG1805-Map1) expressing cells. Micro-

arrays were scanned with an Axon Scanner 4200A (Molecular

Devices) and analyzed with GenePix Pro 5.1 (Molecular Devices).

Arrays were deposited and computer normalized at the Stanford

Microarray Database [48]. All DNA microarray data are available

at the Stanford Microarray Database (SMD) or at the Gene

Expression Omnibus at www.ncbi.nlm.nih.gov/geo (accession nos.

GSE21850 and GSE21864).

Log2 median ratios from three independent RBP affinity

isolations and five mock control isolations were retrieved from

SMD and exported into Microsoft Excel after filtering for signal

over background .1.8 in the channel measuring total

RNA derived from the extract. We used the web interface for

Cyber-T (http://cybert.microarray.ics.uci.edu/) to employ sta-

tistical analyses based on regularized t-tests that use a Bayesian

estimate of the variance among gene measurements within an

experiment [49]. Features, for which data was obtained in more

than 60% of the arrays and that were on average 3-fold enriched

with a p-value of less than 0.01 in protein affinity isolates

compared to mock controls were considered as potential RNA

targets (Dataset S3). For MAP1 overexpression profiling, log2

median ratios from three biological replicates were filtered for

regression correlation ,0.6 and signal over background .2.0 in

both channels (Dataset S4).

Microarray data files
Protein microarray raw data are available at the ArrayExpress

database at http://www.ebi.ac.uk/microarray-as/ae/(acession no.

E-MEXP-2897). DNA microarray raw data are available at the

Stanford Microarray Database (SMD) or at the Gene Expression

Omnibus at www.ncbi.nlm.nih.gov/geo (accession nos. GSE21850

and GSE21864). Microarray data is compliant with MIAME

protocol.

Databases and bioinformatics
Significantly shared GO terms among the selected proteins from

the Protoarray screen were identified with the Generic Gene

Ontology (GO) Term Finder at the Lewis-Sigler Institute at

Princeton University (release 27-Jan-2009; http://go.princeton.

edu/cgi-bin/GOTermFinder, [50]) based on annotations in the

Saccharomyces cerevisiae Genome Database (SGD). Commonly

enriched GO terms among mRNAs associated with selected

proteins were retrieved with the GO Term Finder that uses a

hypergeometric distribution with Multiple Hypothesis Correction

to calculate p-values (SGD; www.yeastgenome.org). Thereby, we

used 6,336 features representing ORF probes for which micro-

array data was obtained as the background gene set, and only

terms with p,0.01 (Bonferroni corrected) were considered.

Domain annotations for all S. cerevisiae proteins were retrieved

from the Pfam database (Pfam 24.0) at http://pfam.sanger.ac.uk/

[23]. Significance for enrichment of Pfam domains among RBPs

was calculated based on domain content on the Protoarray by

using hypergeometric distribution available from the R package

for statistical computing.

Expression analysis of selected RNA-binders across
conditions

247 microarray datasets (Affymetrix data) in the form of Robust

Multi Array (RMA) normalized profiles were retrieved from the

M3D database [26] (conditions are indicated in Table S3). K-

means clustering was performed across conditions with the

Euclidean distance metric and added into 10 groups. To compare

the expression level of novel RBPs against previously documented

RBPs [6] and non-RBPs, the latter defined as those which do not

encode for documented or novel RBPs, we calculated the median

expression level of a gene across the conditions in the M3D dataset

and compared the populations using Wilcoxon rank-sum test or

Mann-Whitney U test available in the R statistical package [28].

Supporting Information

Figure S1 Heatmap of expression profiles for 164
potential RBPs across 247 conditions. RBPs are clustered

with k-means (10 groups) by employing the Euclidean distance as

the distance metric to group similarly expressed genes across

conditions (see Materials and Methods). Red means high

expression and green reflects low expression after the microarray

data has been RMA normalized across all experiments. General

expression characteristics and the 13 proteins selected for RIP-
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chip experiments are marked next to the gene cluster. The

experimental conditions are described in the Table S3. (TIF)
Table S1 List of 180 selected proteins interacting with
total RNA or mRNA on protein microarrays. Columns

indicate the following (from left to right): YORF, gene name,

GO annotations, protein interacted with respective RNA on

protein microarrays, classified as metabolic enzyme, number of

proteins per cell [28], Pfam domains. Proteins used for affinity

isolations are labeled in red. Proteins interacting with mRNAs

are marked with red-filled boxes; proteins selected with total

RNA are in green; yellow are the ones that interacted with both

types ofRNA.     (XLS)

Table S2 Significantly enriched GO terms among
proteins interacting with total RNA or mRNA.
Table S3 List of conditions for microarray data re-
trieved from the M3D database.
Table S4 A selection of significantly enriched GO terms
among messages associated with proteins. Terms that

belong to the GO category ‘Process’ are written in black; GO

terms for ‘Function’ are in red, and the ones for ‘Compartment’

are in blue. (XLS)
Dataset S1 Raw data for protein arrays probed with
E2Bmin RNA. Columns indicate the following (from left to

right): YORF, gene name, Z-scores of two protein arrays probed

with E2Bmin, mean of Z-scores, Z-scores of heat-treated protein

microarray, GO process, function, S. cerevisiae Genome Database

Identifier. (XLS)
Dataset S2 Raw data of protein arrays probed with total

RNA and mRNA. Background substracted median fluorescent
signals are shown for both channel, and the percentile ranks and

selected proteins preferentially interacting either with mRNA or

total RNA are also shown. A key describes different worksheets. 

Dataset S3 RIP-Chip data for 13 potential RBPs.
Features/ORFs that were at least 3-fold enriched compared to

mock isolates with p,0.01 are indicated in a separate worksheets.

Therein, fold changes (log ratios) are in black,2 p-values are shown

in red. (XLS)

Dataset S4 Microarray raw data of MAP1 overexpress-
ing compared to control cells. Columns indicate the following

(from left to right): Spot ID (SMD); YORF; Gene name; log ratio
2

for triplicate experiments (MAP1/control); average log ratio;
2

average fold-change; standard deviation; p-value; Map1 target

(1 = target, 0 = non-target). (XLS)
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