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Summary
Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling
multivariate categorical outcomes in social science and biomedical studies. Standard analyses
assume data of different respondents to be mutually independent, excluding application of the
methods to familial and other designs in which participants are clustered. In this paper, we
consider multilevel latent class models, in which subpopulation mixing probabilities are treated as
random effects that vary among clusters according to a common Dirichlet distribution. We apply
the Expectation-Maximization (EM) algorithm for model fitting by maximum likelihood (ML).
This approach works well, but is computationally intensive when either the number of classes or
the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a
modified EM algorithm for this case. We also show that a simple latent class analysis, combined
with robust standard errors, provides another consistent, robust, but less efficient inferential
procedure. Simulation studies suggest that the three methods work well in finite samples, and that
the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods
to the analysis of comorbid symptoms in the Obsessive Compulsive Disorder study. Our models'
random effects structure has more straightforward interpretation than those of competing methods,
thus should usefully augment tools available for latent class analysis of multilevel data.
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1. Introduction
Latent class analysis (LCA; Clogg, 1995) and regression (LCR; Bandeen-Roche et al., 1997)
are widely used in psychosocial, educational, and health research. These models treat a
population of interest as being composed of several subpopulations, 1,…, M, to which
subjects belong with probabilities π1, …, πM. They also assume that responses of different
subjects are independent of each other. However, this independence assumption may not be
valid for commonly employed designs: for instance, in family studies, relatives may be more
likely to fall into the same subpopulation, or ‘class,’ than members of different families.
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Application of the models to studies involving clustered participants has been limited as a
result.

In standard latent class models, the mixing probabilities π = (π1, π2, …, πM) are considered
as fixed parameters. Allowing these to vary among clusters provides one mechanism for
introducing intra-cluster dependence, if clustering may reasonably be thought to induce
exchangeable association. Vermunt (2003, 2008) proposed multilevel latent class (MLC)
models with cluster specific class mixing probabilities ṵi = (ui1, …, uiM) as random effects
for cluster i. A first model proposed (henceforth denoted as “MLC-V1”) assumes that ṵi
vary according to a normal random effect vi,

(1)

where γm, λm and σ2 are unknown parameters and one typically assumes λ2 = 1 for
identifiability. Maximum likelihood estimation for this model involves numerical integration
over vi, and the unidimensionality of vi makes the approach computationally convenient.
However, the random effects have a latent factor interpretation that is contingent on
‘loadings’ λ and may therefore be somewhat obscure. Moreover, the model (1) forces
restrictions on the joint distribution of the random effects that may not be realistic (Web
Appendix A). Vermunt (2003) also introduced a more flexible model with vector v̰i that
assumes that the (M − 1) generalized logits follow a multivariate normal distribution
(denoted as “MLC-V2”), i.e.,

(2)

where the γm's and Σ ∈ R(M−1)×(M−1) are unknown parameters; however, the computational
burden of this model grows exponentially with M. Alternatively, a “nonparametric” MLC
model (henceforth denoted as “MLC-VN”) assumes the existence of higher level latent
classes such that there are S hidden types of clusters with prevalences (τ1, ⋯, τS) and

(3)

Parameters τs and ψsm need to be estimated from the data. Vermunt (2003) noted that the
MLC-VN model is nonparametric and flexible. However, model interpretation,
identifiability, and selection are complicated by the additional level of latent classes, and
these issues were not well understood.

This paper alternatively considers MLC models assuming Dirichlet distributed mixing
probabilities ṵi (henceforth denoted as “MLC-D”). The Dirichlet distribution has
implications for analytic interpretation; however, we believe its direct linking to the
probability scale and freedom from loadings make it natural and interpretable relative to
alternatives. The proposed model allows simple formulas for marginal class prevalences
(MCPs) and intra-cluster correlations (ICCs), and is convenient to interpret. Moreover, as
we shall demonstrate, conjugacy between the Dirichlet and multinomial distributions eases
computation burden.
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We were motivated to the present research by our collaboration in the Obsessive-
Compulsive Disorder (OCD) study, a family-based study aiming to understand the
comorbidity of OCD with other disorders. Obsessive-Compulsive Disorder is an anxiety
disorder characterized by recurrent thoughts (obsessions) or repetitive behaviors
(compulsions) which attempt to neutralize the obsessions (see, e.g, Jenike et al. 1990). A
total of 999 subjects in 238 families were enrolled into this study, among which 706 subjects
from 238 families were OCD cases. Diagnosis was made of 8 other disorders including
major depression, generalized anxiety disorder, and panic disorder. It was hypothesized that
there exist subtypes of OCD based on comorbidity with the other disorders (Nestadt et al.,
2003). Latent class analysis is a natural tool for evaluating this hypothesis; however, the
clustering within families must be taken into account if correct and efficient inference is to
be made. It is also of interest to estimate the subtype heritability: in statistical terms, the
intra-cluster correlation among class memberships.

This paper develops MLC models with Dirichlet mixing distribution in Section 2, proposes
model fitting using both maximum likelihood in Section 3 and maximum pairwise
likelihood methods in Section 4. We also investigate the use of simple latent class model by
ignoring clustering in Section 5. We evaluate these methods' performance using simulation
studies in Section 6 and an application to the OCD study in Section 7.

2. Multilevel Latent Class Models
2.1 MLC model with Dirichlet distribution (MLC-D)

Latent class models typically involve vector data per individual, comprising multiple
categorical ‘item’ responses. Though these handle categorical responses in general, for
simplicity of notation we primarily consider binary data. Let Yijk denote the response of the
jth subject of the ith cluster on the kth item; i = 1, 2, …, n; j = 1, 2, …, ni; k = 1, 2, …, K. We
denote the K-vector of a subject's responses by Y ̰ij. Let ηij denote the class membership for
subject j in cluster i, taking values in {1, 2, …, M}, and η ̰i = {ηi1, ηi2, …, ηini}. Standard
latent class models decompose the mass function of a subject's item responses as

(4)

where uim is the prevalence of class m in cluster i and pkm = Pr(Yijk = 1 ∣ ηij = m) is the
conditional probability of positive response for item k given the subject belongs to class m.
These models often impose the “conditional independence” assumption (as revealed in the
equations above) that a subject's responses on the items are independent given his class
membership (Clogg, 1995). The conditional probabilities define the “measurement” part of
the model. They are often parameterized in the logit scale via βkm = logit(pkm) = log{pkm/(1
− pkm)}. The distribution of M classes in the population defines the “mixing” part of the
model, which involves (ui1, ⋯, uiM) ∈ {(u1, ⋯, uM) ∈ [0, 1]M : u1 + ⋯ + uM = 1}.

A simple latent class model that ignores clustering (denoted as “LC-S”) assumes that the
mixing distribution is the same for all clusters, namely,

Di and Bandeen-Roche Page 3

Biometrics. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5)

where πm's are fixed parameters that sum up to 1 and each πm is interpreted as the prevalence
of class m in the population.

To account for potential correlation among response vectors of subjects within the same
cluster, MLC models view class mixing probabilities (ui1, ⋯, uiM) as random effects that
vary from cluster to cluster, arising from a common distribution. Vermunt (2003, 2008)
considered different versions of MLC models with random effects structure (1), (2) or (3). In
this paper, we consider multilevel latent class models with Dirichlet mixing distribution
(henceforth denoted “MLC-D”), formulated as (4) in addition to

(6)

where α̰ = (α1, ⋯, αM) are non-negative parameters for the Dirichlet distribution. For
convenience, we model the conditional probabilities in the logit scale using βkm = logit(pkm)
= log{pkm/(1 − pkm)}, and then the natural parameters in the model are θ = (β ̰, α̰).

We consider there to be between-cluster heterogeneity in the probabilities of underlying
class membership, and not additionally in the item response distribution given class
membership. Clustering is accounted for in the sense that subjects from the same cluster are
more likely to fall into same classes since they share the same cluster specific random
effects. Modeling class membership probabilities as random effects straightforwardly
expresses clusterwise heterogeneity: in the OCD example, probabilities of having each type
of comorbidity may vary from family to family. The Dirichlet distribution is natural for
random effects ṵi = (ui1, ⋯, uiM), since they are non-negative probabilities constrained to
sum to 1. It also explicitly acknowledges classes as competing, such that membership in one
class precludes membership in another. As the following Lemma shows, a few meaningful
quantities have simple forms under the MLC-D model.

Lemma 1. Let . Under the MLC-D model (4) and (6), the following results
hold for any m, q ∈ {1, 2, ⋯, M} and m ≠ q,

1.

2.

3.

Based on Lemma 1, in the population, the marginal class prevalences (MCPs) for M classes
are (α1/α0, α2/α0, ⋯, αM/α0), respectively. The variance of the cluster-specific prevalences ṵi
varies inversely with the scale parameter, α0, such that the correlation in same-class
membership between same-cluster members is
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Here ρmm is the intra-cluster correlation (ICC) coefficient for class m, i.e, heritability in the
family studies setting. The MLC-D model implicitly assumes that the ICCs for same-class
membership are class-invariant, thus we denote it as ρ in the following. The Dirichlet
random effects assumptions induce simple analytic formulas for calculating the MCPs and
ICCs. Web Appendix A provides additional implications of the MLC-D model. In contrast,
other multilevel latent class models such as MLC-V1 do not yield closed form formulas for
MCPs and ICCs.

The measurement part of the MLC-D model is the same as that for the simple latent class
model and other MLC models. The conditional independence assumption is retained, i.e,
responses on different items are assumed to be independent given class membership. The
possible clustering effect is reflected in the mixing part, that is, potential associations among
the class membership indicators {ηij : i = 1, 2, …, n; j = 1, …, ni}. The Dirichlet random
effects structure specifies the joint distribution of the class membership vector η ̰i = {ηi1, ηi2,
…, ηini} for cluster i as

where , the number of subjects from cluster i that belong to class m. This
nice analytic formula is due to the conjugacy between multinomial and Dirichlet
distributions, and eases implementation and interpretation. In models (1)-(3), in contrast,
Pr(η ̰i = z ̰) does not have a closed form. Exchangeable within-cluster association is implied,
meaning the sets of associations among class memberships for any two subjects from the
same cluster are the same.

2.2 Random effects distributions: MLC-D versus MLC-V1
In this subsection, we briefly compare distributional assumptions of random effects ṵi based
on the MLC-D and MLC-V1 models. For illustrative purposes, we consider three-class
models. When M = 3, it suffices to consider the distribution of the pair (ui1, ui2), since ui3 =
1 − ui1 − ui2 is fully determined by ui1 and ui2. Figure 1 displays joint distributions of (ui1,
ui2) under both models, four scenarios per model. In each scenario, the parameters are
chosen so that the marginal class prevalences are fixed as 0.40, 0.27 and 0.33 for three
classes, respectively.

Under the MLC-V1 model (1), the variance parameter σ2 controls the degree of
heterogeneity among clusters. When σ2 = 0, ṵi is constant for all clusters and the model
reduces to a simple latent class model without clustering. When σ2 is large, the ṵi's differ
considerably across clusters, indicating large heterogeneity and high ICCs. The first row of
Figure 1 illustrates distributions of (ui1, ui2) under various σ2 values, with four panels
corresponding to high, medium, low and little ICCs, respectively. The parameter values of
(σ2, λ3, γ1, γ2) are (6400, 1.704, 2.5, −0.3), (60, 1.704, 0.6, −0.3), (2, 1.704, 0, −0.3) and
(0.02, 1.704, −0.3, −0.3) for four scenarios, respectively. They are chosen so that the four
scenarios have the same marginal class prevalences (0.40, 0.27, 0.33), but different σ2's and
ICCs.
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Under the MLC-D model (6), the scale parameter α0 controls the degree of heterogeneity,
similar to the role of 1/σ2 for the MLC-V1 model. When α0 is large, cluster specific random
effects ṵi are close to each other and thus ICCs are close to 0, indicating little heterogeneity.
In the limiting case with α0 → ∞ and αm/α0 → πm for m ∈ {1, ⋯, M}, the MLC-D model
reduces to a simple latent class model without clustering. When α0 is small, ṵi's vary
substantially among clusters and the same-class ICCs are high, reflecting large between
cluster heterogeneity. The second row of Figure 1 illustrates implications of various α0 on
the distribution of (ui1, ui2). In these four scenarios, (α1/α0, α2/α0, α3/α0) are fixed as (0.4,
0.27, 0.33) while α0 varies among values 0.2, 1, 3 and 20.

We note that the natural domain of (ui1, ui2) is Ωu = {(u1, u2) ∈ [0, 1]2 : u1 + u2 ≤ 1}, which
is intrinsically a two-dimensional subspace of [0, 1]2. However, the MLC-V1 model only
allows (ui1, ui2) to take values in a one-dimensional subspace for fixed parameters γm's and
λm's (see Figure 1). In contrast, the MLC-D model allows (ui1, ui2) to take values freely in its
domain Ωu for any fixed parameters αm's. From this perspective, the Dirichlet distributional
assumption specified by the MLC-D model is more natural.

3. Estimation and Inference: Maximum Likelihood
3.1 Estimation: EM algorithm

The EM (Expectation-Maximization) algorithm (Dempster et al., 1977) well suits the
incompletely observed nature of mixture models. Provided a set of regularity conditions
(e.g, in Dempster et al 1977) which are met in our model, it is stable and ensures that the
likelihood monotonely increases over iterations. For these reasons, we propose to use the
EM algorithm for estimation.

For the multilevel latent class model (6), the complete likelihood contributed by cluster i is

For the E step, take the parameter estimates as β(h), α(h) at the hth iteration. Then, we need to
calculate the expected value of the log complete likelihood:

(7)

where Uijm(β) = log Pr(Y ̰ij∣ηij = m; β) = Σk log Pr(Yijk∣ηij = m; β), wijm = Pr(ηij = m∣Y ̰i; β(h),
α(h)),  and cim = E[log(uim)∣Y ̰i; β(h), α(h)]. The current parameter
estimates β(h), α(h) enter the Q function only through wijm's and cim's. To obtain weights wij,
we need the posterior distribution of η ̰i given Yi, which can be calculated by Bayes' rule,
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Here the sum above is taken over all possible class membership combinations for cluster i,
totaling Mni possibilities. To obtain weights c̰i, we use the double expectation technique cim
= E{E[log(uim)∣Y ̰i, η ̰i; β(h), α(h)] ∣Y ̰i; β(h), α(h)}. Here,

where , and , the number of subjects from cluster i
belonging to class m; see Web Appendix B. We then take expectation conditional on Yi to
obtain the vi's, which again involves summing over Mni possible patterns of class
memberships in cluster i.

Once we obtain the Q function as in equation (7), the M step is relatively straightforward.
The β parameters appear only in the first term of (7), and the α parameters appear only in the
second and third terms. Maximization over β is equivalent to fitting a logistic regression
model with weights wij. Thus in practice, we can conveniently call any routine that fits
weighted logistic regression for this part of the M step. The first and second derivatives with
respect to α are:

where . Thus, we can carry out a one or multi-step Newton-Raphson

algorithm for this part of the M step. The cross-derivative  is 0, so the two parts can be
carried out separately.

Finally, we iterate between the E step and M step until a suitable convergence criterion is
met.

3.2 Inference and Prediction
We use the observed Fisher information matrix to estimate the standard errors of the
estimated parameters. The EM algorithm does not directly provide the Hessian matrix of log
likelihood; rather, methods are available to estimate it from EM outputs, e.g. Louis (1982).
For our problem the application of such methods is computationally complex. Instead, we
numerically calculate the observed Fisher information matrix following Oakes (1999). The
technical details can be found in Web Appendix B.
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As a by-product of the EM algorithm, we can easily obtain best predictions of the random
effects given the data, which includes both latent class memberships ηij's and cluster-specific
class prevalence ṵi's. The posterior probabilities of class membership for each subject, Pr(ηij
= m∣Y ̰i; β, α), m = 1, …, M, are calculated as weights in the E-step. As for the cluster-
specific random effect ṵi = (ui1, …, uiM), the best prediction is its posterior mean, whose mth

component is provided by

It can be shown that the inner expectation is , since [ṵi ∣ η ̰i, Ỹi] is

Dirichlet-distributed with parameter . We then marginalize over all
possible patterns of η ̰i to obtain the outer expectation.

There are other important practical issues on MLC models, e.g., dealing with missing data
and selecting the number of classes. Some developments and discussion on these topics are
included in Web Appendex B.

4. Estimation and Inference: Maximum Pairwise Likelihood
In computing weights for the EM Q function (7), the computational burden increases
exponentially, O(n · MJ), with the number of classes M and cluster size J ≔ max{ni, i = 1,
…, n}. Thus, we recommend using EM fitting when both M and ni are relatively small, and
otherwise using the maximum pairwise likelihood approach we now propose.

In clustered data with complex (e.g. spatial) correlation structure, the joint likelihood may be
difficult to specify or computationally complicated, and maximum likelihood inferences
may be sensitive to model assumptions. The pairwise likelihood approach nicely overcomes
these difficulties. Pairwise likelihood falls within the general concept of “composite
likelihood” (Lindsay, 1988), which has been used for a variety of problems (Nott and
Ryden, 1999; Kuk and Nott, 2000; Cox and Reid, 2004; Renard et al., 2004; Varin et al.,
2005).

Applying this concept to the MLC setting, rather than specifying the joint distribution for
each cluster, we specify only pairwise distributions and then take the product over all
possible pairs:

where

and
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The maximum pairwise likelihood estimates are defined as parameter values that maximizes
Lp(β, α). From composite likelihood theory Lindsay (1988), one can obtain the following
asymptotic properties of pairwise likelihood estimation.

Proposition 1. Assume that {Y ̰ij : i = 1, …, n; j = 1, …, ni} are generated from the MLC-D
model (6). Let (β*, α*) denote true parameter values and (β ̂P, α̂P) denote the maximum
pairwise likelihood estimators that maximize lP(θ) = lP(β, α) = log LP(β, α). Under suitable
regularity conditions,

1.
;

2. As ;

3.

, where

.

The asymptotic variance of MPL estimates can be consistently estimated by the “sandwich”
variance estimator (Royall, 1986) that replaces the expectations in the above formula with
empirical estimates.

The pairwise likelihood (MPL) approach has both advantages and disadvantages compared
to the ML approach. MPL relies only on bivariate distributional assumptions rather than
those for the full distribution, thus is more robust than ML. On the other hand, the
asymptotic efficiency of MPL can be no better than for ML, and may be worse if the true
joint distribution is correctly specified.

In terms of computational burden, MPL has an advantage over ML, since each pair contains
at most two subjects. The computational complexity is O(n M2J(J − 1)/2) for MPL, as
opposed to O(n MJ) for ML. When the number of classes is less than 4 or the cluster size is
less than 6, the difference in computational burden may still be acceptable. However, the
improvement of MPL is substantial if the cluster size is greater than 5 and the number of
classes is greater than 3. For instance, ML requires 146 times the computations as MPL does
to fit a 4-class model with cluster size 8. For the OCD example, the cluster sizes range from
1 to 10. It took approximately 3 hours to fit a 3-class model using ML, compared to less than
30 minutes using MPL, on a workstation with Intel Pentium M 725 (1.6 GHz) processor and
512MB memory.

5. Comparison with simple latent class analysis
It is of interest how simple latent class analysis performs when it is incorrectly applied to
multilevel data. To investigate this, we consider a general class of MLC models, i.e. the
semiparametric model
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(8)

where the joint distribution f(η ̰i; π, δ) is unspecified but subject to the constraint that each
subject belongs to class m with probability πm marginally. Both MLC-D and MLC-V1 are
parametric submodels of the general model (8). The following result implies that the
maximum likelihood estimators of the simple latent class model consistently estimate the π
and β parameters.

Proposition 2. Assume that {Y ̰ij : i = 1, …, n; j = 1, …, ni} are generated from the
semiparametric model (8) with true parameter values (β*, π*, δ*). Let lS(θ1) ≔ lS(β, π) ≔ Σi
Σj log f(Y ̰ij) denote the log likelihood function from the simple LC model (4), and let (β ̂S, π̂S)
maximize lS(θ1). Under suitable regularity conditions,

1.
;

2. As ;

3.

, where

.

The proof is given in Web Appendix C. Since the MLC-D model (6) is a parametric
submodel of the general semiparametric model (8), the results of Proposition 2 apply to it as
a corollary.

Proposition 2 suggests an alternative inference procedure if the goal is to understand the
measurement model and marginal class prevalences: one can simply ignore clustering and fit
the simple latent class model. The next step is to fix the standard errors by the sandwich
estimator. This method is simple and fast to implement, compared to the two methods
developed above. However, it may suffer some loss of efficiency when the data follow a
multilevel model with appreciable between-cluster heterogeneity. Moreover it does not
provide a measure of within cluster association.

We also note that there is an important connection between this result and that for marginal
modeling for longitudinal or clustered data. If we ignore the measurement part of the model,
the latent class indicators ηij's are clustered data, correlated within clusters. The simple latent
class model corresponds to a marginal model for ηij's with working independence
correlation, while various MLC models correspond to marginal models with working
exchangeable correlation. Similarly as with generalized estimating equations (GEE, Liang
and Zeger 1986), even if the working correlation is misspecified as independence, the
estimators of marginal parameters πm's are consistent, and their standard errors can be
consistently estimated using the robust variance estimator. Moreover, Proposition 2
indicates that the measurement model parameters (β's) can also be consistently estimated
under such model misspecification.
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If the within cluster association is of interest, or higher efficiency is needed, the simple
latent class model would not be appropriate. Parametric submodels, such as the MLC-V1
and MLC-D, provide alternatives when the parametric assumptions are reasonable, but
robustness no longer holds generally.

6. Simulations
6.1 Setting I

We evaluated the finite sample performance of our procedure in simulation studies. In
Simulation Setting I described below, we aim to assess the performance of our methods
when the MLC-D model is true. Data were generated from the following true settings: n =
200 or 500 clusters, J = 4 subjects per cluster, K = 5 items, M = 2 classes. The true model
was the MLC-D model (4) and (6). The true α parameters were chosen as (α1, α2) = (1.5,
2.3). The log odds of reporting “1” for class 1 members were (β11, β21, β31, β41, β51) =
(−1.21, 0.28, 1.08, −2.35, 0.43) for five items, and the log odds for class 2 members were
(β12, β22, β32, β42, β52) = (0.51, −0.57, −0.55, −0.56, −0.89). We conducted 1000 simulation
runs, and in each run three methods were used to fit the multilevel latent class model,
maximum likelihood for Dirichlet model (ML), maximum pairwise likelihood for Dirichlet
model (MPL), and maximum likelihood for simple latent class model with robust standard
errors (ML-S).

First we consider findings for estimation of the measurement models. The first row of Figure
2 displays boxplots of selected β estimates using n = 200 clusters. The gray solid lines in
each figure represent true parameter values. For each method and parameter, estimator
distributions centered closely around true values, exhibited relatively small dispersion, and
included few outliers. The dispersion of MPL was similar to that of ML, suggesting high
relative efficiency of the MPL estimates. The dispersion of ML-S, however, was larger than
that for ML or MPL, implying loss of efficiency by ignoring the within cluster correlation.
Table 1 confirms the larger standard errors, i.e., the loss in efficiency of ML-S. Simulation
results using n = 500 clusters displayed similar patterns but with narrower confidence
intervals, and these results are omitted. In summary, the β parameters were well estimated
by both ML and MPL methods based on the Dirichlet model, and the simple latent class
model estimators were consistent, but generally less efficient.

Turning to findings relating to the mixing distribution, the distributions of the α parameter
estimates were widely dispersed and exhibited heavy tails (Row 2 and 3 of Figure 2).
Researchers typically will be most interested in conveniently interpreted transformations of
the α parameters, including the marginal class prevalence πm = αm/α0, the scale parameter α0
= α1 + … + αM, and the intra-cluster correlation parameter ρ. Figure 2 shows that the
population-average class prevalences and the intra-cluster correlation were well estimated,
with distributions centering around the true values and having narrow spreads. Estimates of
the scale parameter α0 exhibited substantial variability, as is often the case for variance
components. Finally, MPL estimates for α parameters enjoyed high finite-sample efficiency
compared to ML estimates. For α parameters, MPL estimates even seemed to have slightly
smaller variances than the ML estimates in finite samples. There appeared to be a bias of
roughly 5% when n = 200, but the bias vanishes when n increases to 500. The simple latent
class model (ML-S) did not provide information on the scale parameter α0 or intra-cluster
correlation ρ. It did estimate the marginal class prevalences πm's well.

Table 1 displays standard errors and coverage probabilities of model-based 95% confidence
intervals for the three methods. The simulated standard errors are the sample standard
deviations of estimates across runs, and thus reflect the underlying uncertainty. The
estimated standard errors are the average of model-based standard errors across simulations,
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thus indicate the uncertainty estimated by the model. The two sets of standard errors were
generally close to each other for all methods. Coverage probabilities primarily were close to
the 95% nominal value. Standard error agreement and coverage probabilities were worse for
the α parameters than for the β parameters. Finally, Table 1 confirmed high efficiency of the
MPL estimators. When the MLC-D model is true, our simulation study suggests that both
ML and MPL well accomplish estimation and inference for multilevel latent class models in
finite samples.

6.2 Settings II and III
We also conducted simulation studies to evaluate performance of various MLC models
under more complex settings. To mimic the OCD application, we generated n = 200 clusters,
J subjects per cluster, M = 3 classes and K = 8 items in Settings II and III. In Setting II, the
true model was the MLC-D with true parameter values being the maximum likelihood
estimates from the OCD application (see Table 3). In Setting III, the true model was the
MLC-V1. The true parameter values were chosen as the maximum likelihood estimates
based on MLC-V1 for the OCD example, with pkm's close to those reported in Table 3 and
the remaining parameters as λ2 = 1, λ3 = 1.704, γ2 = 1.542, γ = 0.011 and σ2 = 24.154. These
simulations allow us to evaluate performance of various MLC models under more complex
settings and under model mis-specifications. Here we focus on the comparison between
MLC-D and MLC-V1.

Under each setting, two methods were used to fit simulated data regardless of the underlying
true model: maximum likelihood estimation based on the MLC-D model (denoted as “ML”)
and maximum likelihood estimation based on the MLC-V1 model (denoted as “ML-V1”).
Table 2 shows the bias, standard deviation (SD; square root of variance) and root mean
square error (RMSE) for nine selected parameters under Settings II and III: measurement
parameters (β11, β12, β13), marginal class prevalences (π1, π2, π3) and ICC parameters (ρ11,
ρ22, ρ33).

First, we look at results when the true model is MLC-D, i.e., Setting II. The ML method,
which correctly specifies the underlying model, yield estimates with little bias and relatively
small variance and RMSEs for all parameters. The ML-V1 method, which mis-specifies the
model as MLC-V1, yield estimates with larger RMSEs. More specifically, for βkm and πm
parameters, ML-V1 estimates have small biases but larger variances, and roughly 20%
larger RMSEs than those of ML. For ICC parameters ρmm's, ML-V1 estimates show large
biases and very large SDs, and thus on average more than 200% larger RMSEs than those of
ML. To conclude, when the true model is MLC-D, maximum likelihood estimates based on
MLC-V1 generally have larger biases, variances and RMSEs than those based on MLC-D.

Next, we consider situations when the true model is MLC-V1, i.e., Setting III. The ML-V1
method correctly specifies the underlying model in this case and yields estimates with small
biases and variances. The ML method now mis-specifies the model as MLC-D, and not
surprisingly, ML estimates demonstrate larger biases for many parameters. Variances for
ML estimates are often smaller than or similar to those of ML-V1 estimates. As a result, the
RMSEs of ML are similar to those of ML-V1 for βkm and πm parameters. Regarding ICC
parameters, ML estimates have a much larger RMSE compared to ML-V1 for ρ22, and
similar or smaller RMSEs for ρ11 and ρ33. To summarize, when the true model is MLC-V1,
maximum likelihood estimates for many parameters based on MLC-D may have lower
variances and RMSEs than those based on the MLC-V1, although the former is subject to
large biases especially for certain ICC parameters. More details of simulation results under
Settings II and III can be found in Web Appendix D.
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7. Application: Analysis of Obsessive Compulsive Disorder data
We apply the multilevel latent class model to the OCD data described in the Introduction
Section. Our colleagues identified 8 disorders that often co-occur with OCD: generalized
anxiety disorder (GAD), separation anxiety disorder (SAD), panic disorder (PD), tics
disorder, major depressive disorder (MDD), mania disorder, grooming disorders (GrD;
trichotillomania, pathological skin picking), and body dysmorphic disorder (BDD). The
analytic aim is to identify subtypes of OCD based on comorbidity with the 8 disorders. Data
for 706 OCD cases from 238 families were used for the analysis. The family sizes range
from 1 to 10, and most families contain two to five members.

We began by selecting among models with two, three and four classes. We used an
adaptation of BIC, which repeatedly subsampled single individuals per cluster to aid in
model selection (See Web Appendix B.4). The BICs for two, three and four class models
were 1031, 1062 and 1091, respectively, and thus the two-class model was modestly
preferred. However, it is known that BIC may underestimate the number of classes in
sample sizes like ours (Yang, 2006). Given that the choice was equivocal, we present the
more illustrative three class model. For the three class model, both ML and MPL methods
converged successfully, and they gave similar results, hence we only report the model fitted
by ML (Table 3). Subjects in the first class were characterized by low prevalence of each
comorbid disorder except depression, which was estimated to occur in rougly a quarter of
class members. In the second class there were moderate prevalences of GAD, SAD, tics,
MDD and GrD, in conjunction with low prevalences of panic disorder and mania. Subjects
in the third class were at moderate to high risk for nearly all disorders. The marginal
prevalence of the three classes were estimated as 38%, 32% and 30%, respectively.

The same-class ICC, ρ, was estimated as 0.44 (95% CI: 0.30, 0.59), while estimated
different-class ICCs for same-cluster members were -0.20 on average. This indicates a
moderate level of heritability for OCD subtypes, such that members of the same family are
considerably more likely to have similar types of OCD comorbidity than subjects from
different families.

We compared results from the MLC-D model with those from the MLC-V1 model. The
models gave similar latent class structure for the measurement parameters β's. As to the
mixing parts, these models estimated similar marginal class prevalences but had different
implications on ICCs. For example, MLC-V1 estimated same-class ICCs to be 0.71, 0.31
and 0.61, respectively for three classes. The log-likelihood values from LC-S, MLC-D and
MLC-V1 were −2819.751, −2796.591 and −2791.388, respectively. One could see that the
two MLC models improve substantially over the simple standard latent class model, with 1
and 2 additional parameters for MLC-D and MLC-V1, respectively. As to the distribution of
random effects ṵi's, fitted MLC-D and MLC-V1 models demonstrate similar features as
panels (1, 2) and (2, 2) of Figure 1 (see Web Appendix E for more details), respectively. It is
clear that MLC-V1 restricts (ui1, ui2, ui3) to take values only in a one-dimensional subspace
of its domain Ωu = {(u1, u2, u3) ∈ [0, 1]3 : u1 + u2 + u3 ≤ 1}. In contrast, the Dirichlet model
allows ṵi's to take values freely in Ωu. From this perspective, it seems that the random
effects structure induced by MLC-D is more natural. It is hard to argue which MLC model is
superior, but both imply qualitatively compatible results: similar latent class structures and a
moderate level of heritability on average.

8. Discussion
Latent class models have proven useful for modeling multiple categorical outcomes in the
social sciences and biomedical studies. In such studies multilevel or hierarchical designs are

Di and Bandeen-Roche Page 13

Biometrics. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



increasingly common. This paper considered an alternate model to the ones proposed by
Vermunt (2003, 2008), employing a Dirichlet mixing distribution. Three methods for model
fitting and inference, ML, MPL and ML-S, were developed and compared. We also
investigated the consequences of ignoring clustering with a simple latent class model. Our
models' random effects structure has more straightforward interpretation than those of
competing methods, thus should usefully augment tools available for latent class analysis of
clustered data.

The proposed MLC-D model has limitations due to the Dirichlet distributional assumption.
For example, our model assumes ICCs to be class invariant. Such assumption may
sometimes be questionable, say, in genetic studies where different classes may have
different heritability. If we are concerned about such assumptions, generalized Dirichlet
distributions (Wong, 1998) might serve as an alternative. In contrast, MLC-V1, MLC-V2
and MLC-VN allow the ICCs to differ, but they also impose restrictions from their
parametric assumptions (Web Appendix A.2). We thank a reviewer for pointing out other
options, e.g., multiple factor normal random effect models and models with multivariate
normal mixture distributions.

We point out that MLC models, including MLC-V1 and MLC-D, are appropriate for studies
with many clusters and relatively small cluster size. Asymptotic properties for estimators
generally hold when the number of clusters approaches infinity while the cluster size is fixed
or bounded. Thus, in settings with few large clusters, validity of inferences based on MLC
models is questionable.

There remain other issues that would benefit from further research. First, model selection is
complicated by the multilevel structure. Though marginalization provides a workable
solution, simpler criteria would be useful. Proposing new criteria as well as assessing their
performances need more work. Second, diagnostics and model checking techniques are
needed. Third, the MLC model makes the conditional independence assumption. The
clustering is assumed to affect only the mixing model, not the measurement model. Models
allowing dependence in family members' tendencies to report specific items, and not only
their class memberships, are needed to address this. Finally, it would be of interest to
develop multilevel latent class regression models that incorporate covariates in
subpopulation mixing distribution. Vermunt (2005) considered some models with
covariates, and it would be interesting to extend the MLC-D model to allow covariates as
well.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Distributional assumptions of random effects (ui1, ui2) based on 3-class MLC-V1 and MLC-
D models. The first and second rows correspond to MLC-V1 and MLC-D models,
respectively. In each row, the four figures display four scenarios corresponding to high,
medium, low and little ICCs. Each subfigure displays 200 randomly generated samples of
(ui1, ui2) pairs.
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Figure 2.
Boxplots of β and α estimates under Simulation Setting I. “ML” and “MPL” are maximum
likelihood and maximum pairwise likelihood estimates from the Dirichlet model (4) and (6),
while “ML-S” stands for maximum likelihood estimates from the simple latent class model
(4) and (5). In all subfigures, solid gray lines represent true parameter values. The first row
displays β estimates from simulations with n = 200. Here we show results for (β11, β21, β31,
β41, β51), i.e., the log odds of reporting “1” for five items conditional on class 1, and omit
those for class 2 parameters βk2's. The second and third rows show estimates of α parameters
from simulations with n = 200 and n = 500, respectively. The five columns correspond to α1,
α2, α0 = α1 + α2 (scale parameter), ρ = 1/(1 + α0) (ICC) and π1 = α1/α0 (marginal prevalence
of class 1), respectively.
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