Skip to main content
. Author manuscript; available in PMC: 2012 Mar 1.
Published in final edited form as: Biometrics. 2011 Mar;67(1):86–96. doi: 10.1111/j.1541-0420.2010.01448.x

Table 2.

Comparison of MLC-D versus MLC-V1 under Simulation Settings II and III. Under either setting, “ML” and “ML-V1” correspond to maximum likelihood estimates under models MLC-D and MLC-V1, respectively. “Bias”, “SD” and “RMSE” represent bias, standard deviation and root mean square error of parameter estimates. Results for 9 selected parameters were displayed, measurement parameters (β11, β12, β13), marginal class prevalences (π1, π2, π3) and ICC parameters (ρ11, ρ22, ρ33). The scale for all numbers is 10−2.

Method Quantity β11 β12 β13 π1 π2 π3 ρ11 ρ22 ρ33
Setting II: true model is MLC-D

ML Bias -0.40 0.65 -0.05 -0.16 0.33 -0.17 -0.28 -0.28 -0.28
SD 4.43 7.20 3.92 6.70 7.04 4.03 5.94 5.94 5.94
RMSE 4.45 7.23 3.92 6.70 7.05 4.03 5.94 5.94 5.94

ML-V1 Bias 0.68 -0.84 0.15 0.12 -0.42 0.24 -1.11 5.32 0.75
SD 5.91 9.07 4.19 9.07 9.45 4.30 19.21 29.75 10.72
RMSE 5.95 9.11 4.19 9.07 9.46 4.31 19.24 30.22 10.74

Setting III: true model is MLC-V1

ML Bias 0.57 -1.06 0.97 -1.22 -3.02 4.23 -0.56 38.61 9.11
SD 3.77 7.53 3.52 6.51 6.35 5.00 7.48 7.48 7.48
RMSE 3.81 7.60 3.65 6.63 7.03 6.55 7.50 39.32 11.79

ML-V1 bias -0.70 0.94 0.01 -1.44 -0.83 2.27 -2.42 0.70 -3.63
SD 4.17 7.31 4.03 5.92 5.73 6.09 11.49 12.28 10.45
RMSE 4.23 7.37 4.03 6.09 5.79 6.50 11.74 12.30 11.07