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Abstract Higher complication rates and lower survivorship
are still seen for total elbow arthroplasties compared to total
knee and hip arthroplasties. This is partly due to polyeth-
ylene wear of the articular surface induced by excessive
articular contact stress during elbow motion. The aim of
this study was to dynamically evaluate in vivo three-
dimensional elbow motion after total elbow arthroplasty.
Twelve patients (15 elbows) who underwent operation with
the Osaka University Model Total Elbow System were
analysed using X-ray fluoroscopic imaging and a two-
dimensional/three-dimensional registration technique, which
could accurately estimate the three-dimensional spatial
position of components. Valgus/varus angle and rotation
between humeral and ulnar components showed wide
variations among patients. Elbows with valgus angle and
internal rotation >10° could induce edge-loading of the
articular surface. Component alignment, articular configura-
tion, and soft-tissue balance can affect the kinematics of total
elbow arthroplasty.

Introduction

Total elbow arthroplasty (TEA) is one surgical treatment
option for painful destruction of the elbow joint due to
rheumatoid arthritis. With the introduction of linked semi-
constrained TEA and non-linked resurfacing TEA, favour-
able mid- and long-term outcomes have been reported
[1–8]. However, compared with total knee and total hip
arthroplasties, survivorship remains lower and complication
rates are higher [9, 10]. With a loose-hinged articular
surface, linked semi-constrained TEAs can compensate
for soft-tissue imbalance and are thought to recreate
physiological joint kinematics. Conversely, given the nature
of hinged joints, wear and breakage of the polyethylene
bush may occur due to excessive rotational torque during
flexion/extension of the elbow joint resulting from
positioning-alignment of components [11]. As for non-
linked resurfacing TEAs, although no problem is seen with
the polyethylene bush, dislocation or subluxation is a
matter of concern. To avoid post-operative instability,
resurfacing TEAs are designed to have relatively high
intrinsic constraint that is determined by the articular
configuration of engaging humeral and ulnar components.
However, when soft-tissue imbalance exceeds the intrinsic
constraints of the prosthesis, edge loading or line contact
between components may occur, leading to excessive
polyethylene wear. Furthermore, a common problem with
both semi-constrained and resurfacing TEAs is high contact
stress at the prosthesis–cement interface or prosthesis–bone
interface, resulting from indirect articular rotational torque
that can induce early aseptic loosening. To predict the
likelihood of polyethylene wear and aseptic loosening,
detection of soft tissue imbalances by dynamic evaluation is
very important. However, with regard to resurfacing TEAs,
detailed articular kinematics during flexion/extension have
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never been reported. One reason for this lack of information
may be the absence of suitable techniques for dynamic
analyses. We have reported in vivo three-dimensional (3D)
kinematics for total knee arthroplasty using kinematic
analysis techniques from single-view X-ray images, such as
the ‘2D/3D registration technique’ [12]. Using this technique,
we found that differences in articular design and surgical
technique can lead to vastly different kinematics [12–14].
The unknown in vivo articular kinematics of resurfacing
TEA should be amenable to analysis using this approach.

The purpose of this study was thus to dynamically
evaluate elbow motion after TEA by 3D analysis of in vivo
kinematics between humeral and ulnar components.

Patients and methods

Patients

Between October 1997 and September 2006, 51 patients
(57 elbows) who suffered from rheumatoid arthritis
underwent surgery at our institute using the Osaka
University Model Total Elbow System (OU-Elbow; Fins-
bury Orthopaedics, Surrey, UK) (Fig. 1). Of these, 12
consecutive patients (15 elbows) who agreed to participate
in the investigation were included in the study (Table 1).
All study protocols were approved by the institutional
review board. One senior author (T.T.) performed all TEA
procedures. One patient was male (two elbows) and eleven
were female (13 elbows). Mean age at the time of surgery
was 57.3 years (range, 42–64 years). Mean duration
between operation and fluoroscopic surveillance was
36.7 months (range, 3–117 months). Pre-operative plain
radiography showed that two elbows were Larsen grade III,
nine were grade IV, and two were grade V. According to the

Mayo Elbow Performance Index (MEPI) [15], eight elbows
were excellent and seven elbows were good (Table 1).

Prosthesis

The OU-Elbow, developed at our institute, is a non-linked,
resurfacing type prosthesis (Fig. 1) that was first implanted
in 1997. Articular surfaces of the humeral and ulnar
components have constant radial geometry in the sagittal
plane. The humeral component is made of cobalt-chromium
alloy, with part of the stem porous-coated using a plasma
spray of titanium alloy. The ulnar component is either entirely
polyethylene or metal-backed with a porous-coated stem of
titanium alloy. All patients in the study were treated using
metal-backed components. Each component was designed to
align 5° valgus to the articular surface, to reproduce
physiological alignment. This prosthesis was designed to
provide relatively high valgus/varus and a particularly strong
rotational constraint from the concave articular geometry of
the humeral component in the coronal plane.

Operative technique

All procedures were performed using a posterior approach.
Medial and lateral collateral ligaments were transected and
not reattached. Radial head resection was performed.
Components were fixed with cement when initial fixation
seemed unstable. Triceps tendon and fascial layers were
sutured at 90° elbow flexion and neutral rotational position.
Two elbows had humeral components fixed with cement
and 11 elbows had ulnar components fixed with cement.

In vivo kinematic measurement technique

Under fluoroscopic examination in the sagittal plane, each
patient was in the upright standing position and asked to
bend the elbow from full extension to full flexion at a
comfortable rate. Successive elbow movements were
recorded as serial digital X-ray images (1024×1024×12
bits/pixels, 7.5 Hz; serial spot images saved as digital
imaging and communication in medicine [DICOM] files)
using a 12-inch digital image intensifier system (C-vision
PRO-T; Shimadzu, Kyoto City, Japan) and 1.2–2.0-ms
pulsed X-ray beams. In vivo 3D positions of the humeral
and ulnar components were estimated using the two-
dimensional (2D)/3D registration technique (Figs. 2 and 3)
[12], which uses computer-aided design (CAD) models to
reproduce spatial postures of the humeral and ulnar com-
ponents from calibrated (including distortion correction)
single-view fluoroscopic imaging. The registration algo-
rithm proposed by Zuffi et al. [16] was implemented. This
algorithm uses a feature-based approach tominimise distances
between lines drawn from a contour found in the 2D image to

Fig. 1 Osaka University Model Total Elbow System (OU-Elbow).
This prosthesis is a non-linked type without a radial head component.
Each component is designed to align 5° valgus to the articular surface
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the X-ray source, and a surface CAD model with iterative
computations. Original validation work for the 2D/3D
registration technique for TKA was performed and reported
using phantom experiments [12]. An Optotrak 3020 system
(Northern Digital Inc., Ontario, Canada), which is a 3D
optical localiser that tracks infrared light-emitting diode
(LED)-mounted markers with an accuracy of about 0.1 mm,
was used to determine ‘grand-truth’ positions for comparison
with the 2D/3D registration described. Root-mean-square
errors of the relative position for the femoral component in
the tibial component coordinate system were 0.2°, 0.6°, and
0.6° for rotation in the coronal, axial, and sagittal planes, re-
spectively, and 0.6, 0.3, and 1.0 mm for translation perpen-
dicular to the coronal, axial, and sagittal planes, respectively.

Coordinate systems and kinematic descriptions

In each component, lateral and medial faces of the articular
surfaces in the sagittal plane represented an accurate single-
radius circle. The coordinate system of the humeral compo-
nent was defined with the origin at the midpoint of the centres
of bilateral articular surfaces, the axial plane parallel to the
distal fixation interface, and the coronal and sagittal planes
perpendicular to the axial plane. Similarly, the coordinate
system of the ulnar component was defined with the origin at
the midpoint of the centres of bilateral articular surfaces, the
coronal plane parallel to the dorsal fixation interface, and the
axial and sagittal planes perpendicular to the coronal plane.
The X, Y and Z axes were defined as the axes perpendicular
to the coronal, axial and sagittal planes, respectively.

Magnitudes of rotation about the X, Y and Z axes of the
ulnar component relative to the humeral component were
expressed as varus/valgus, internal/external rotation, and
extension/flexion, respectively, using Euler’s method. All
data are expressed as mean with standard deviation (SD).

Measurement of component alignment

Using post-operative plain AP radiography, angles between
the axis of the shaft of humerus and the stem of the humeral

Fig. 2 Scheme of 2D/3D registration technique. The 2D/3D registra-
tion technique is a 3D kinematic measurement using CAD models to
reproduce spatial postures of the humeral and ulnar components from
calibrated single-view fluoroscopic images. The registration algorithm
uses a feature-based approach to minimise distances between lines
drawn from a contour found on the 2D fluoroscopic image to the X-
ray source and surface of the CAD model with iterative computations

Table 1 Demographic data

Elbow Age (years) Gender Follow-up (months) Larsen grade Mayo elbow performance index

Points Classification

1 53 F 117 NA 95 Excellent

2 54 F 3 IV 100 Excellent

3 55 F 12 IV 85 Good

4 55 F 20 IV 95 Excellent

5 64 F 60 IV 75 Good

6 60 F 56 IV 95 Excellent

7 58 F 35 III 85 Good

8 60 F 8 IV 100 Excellent

9 63 M 3 V 80 Good

10 63 M 44 V 85 Good

11 42 F 94 NA 95 Excellent

12 58 F 23 IV 100 Excellent

13 58 F 52 III 95 Excellent

14 63 F 3 IV 85 Good

15 53 F 21 IV 75 Good

F female, M male, NA not available
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component and between the axis of the shaft of ulna bone
and the stem of the ulnar component were measured
using a goniometer, describing humeral alignment and
ulnar alignment each. Valgus alignment was denoted as
positive.

Evaluation of quasi-contact area of the articular surface

Our kinematic analysis system is able to visualise quasi-
contact areas between two 3D CAD models [17]. Since
position of the radiolucent polyethylene of the ulnar
component can be determined from the estimated position
of the ulnar component, applying this system to the results of
relative positions between humeral and ulnar components
allows a dynamic display of the quasi-contact area of the
articular surface on the polyethylene. Wear of polyethylene
was not assumed. According to the type of articular contact,
all elbows were divided into one of three groups (Fig. 4):

Group 1: Quasi-contact area equally distributed through-
out flexion

Group 2: Quasi-contact area laterally (or medially) loaded
at some time during flexion

Group 3: Quasi-contact area laterally (or medially) loaded
throughout flexion

Nonparametric Mann-Whitney tests were used for compar-
isons of valgus angle, rotation, and component alignment
between groups 1 and 2 and between groups 1 and 3.
Values of p<0.05 were considered statistically significant.

Results

Range of motion

Between the humeral and ulnar components, mean maxi-
mum flexion was 132.1±7.0°. Restriction of elbow exten-
sion was 33.5±13.3° and the arc of the range of elbow
flexion/extension was 98.6±12.4°.

Fig. 3 An example of the
2D/3D registration technique. a
Fluoroscopic image. b After
registration, spatial positions of
components were estimated in a
3D manner

Fig. 4 According to the type of articular contact with the polyethyl-
ene, each elbow was placed into one of three groups. a Group 1,
during flexion, contact area was widely distributed. b Group 2, contact

area was laterally edge-loaded at some time during flexion. c Group 3,
contact area was laterally edge-loaded during flexion
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Valgus/varus angle

Figure 5a shows the transition of valgus/varus angle
between components during flexion. Mean±1 SD values
at any 10° of flexion are shown on the graph. Valgus angle
between components was 6.3±6.6° at full extension, and
7.8±8.4° at full flexion. On average, valgus/varus angle
between components was about 8° throughout flexion,
although inter-patient variation was very large. However,
from 40 to 130° of flexion, the change in amount of valgus/
varus angle was very small in each elbow (1.7±8.4°;
Fig. 5b).

Rotation

Figure 5c shows the transition of rotation between
components during flexion. Internal rotation between
components was 4.1±6.3° at full extension and 6.9±8.3°
at full flexion. Mean internal rotation between components
was about 7° throughout flexion, although inter-patient
variation was very large. However, from 40 to 130° of
flexion, change in amount of rotation was very small in
each elbow (1.6±2.7°, Fig. 5d).

Component AP alignment

Table 2 shows the results of AP alignment of components.
Humeral alignment of all the elbows was 4.0±3.9°, and
ulnar alignment of all the elbows was 5.9±4.3°.

Quasi-contact area of polyethylene

Classification was group 1 in seven of 15 elbows, group 2
in four elbows, and group 3 in four elbows. Valgus angle
and internal rotation of group 1 were between −10° and 10°
throughout flexion. Elbows in group 2 exhibited valgus
angle or internal rotation >10° at some point during elbow
flexion. Elbows in group 3 exhibited valgus and internal
rotation >10° throughout flexion. All through flexion from
40 to 130°, valgus angle was significantly less in group 1
than in group 2 (p<0.01) or group 3 (p<0.001) and internal
rotation was significantly less in group 1 than in group 2
(p<0.01) or group 3 (p<0.001) (Fig. 6).

Humeral alignment in group 3 was significantly larger
than that in group 1. Humeral alignment in group 2 had no
significant difference compared with that in group 1. With
regard to ulnar alignment, there was no significant
difference between group 1 and group 2 and between
group 1 and group 3 (Fig. 7).

Discussion

As a means of achieving in vivo 3D motion analysis of
artificially replaced joints using a single-view X-ray
fluoroscopic image and a computer analysis system, the
2D/3D registration technique offers several advantages over
other methods of measuring relative position between
humeral and ulnar components, such as the surgeon’s

Fig. 5 Relative valgus/varus angle and rotation between components
during flexion. The horizontal scale shows flexion angle between
components and the vertical scale shows valgus/varus angle and

rotation. Positive values represent valgus and internal rotation. a, c
Mean±SD for valgus angles and rotation of 15 elbows. b, d Change in
amount of valgus/varus angle and rotation from that at 40° flexion
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manual tests or 2D plain radiography. Manual tests are not
objective and radiographic measurements can differ
depending on patient position during X-ray examination.
Both evaluation methods show critical problems in accura-
cy. Several reports have described kinematic evaluations of
cadaver elbow joints [15, 18–24]. However, those reports
used kinematic analyses of passive motion under non-
physiological conditions, which may differ substantially
from in vivo kinematics. Ericson et al. used radio-
stereometric analysis (RSA) to examine in vivo variations
in position of the elbow flexion axis after TEA with three
different prostheses; they reported changes in instantaneous
flexion axis between 30°, 60°, 90°, and 120° of elbow
flexion that did not comprise a true successive motion
analysis [25].

The 2D/3D registration technique, in which continuous
joint motion can be analysed three-dimensionally by
extracting silhouettes of the prosthesis from single-view
fluoroscopic images and superimposing CAD models of the
prosthesis components on these silhouettes, has become
mainstream for motion studies after total knee arthroplasty
[12–14, 26, 27]. Our institute has also developed one of the
2D/3D image-matching techniques and has investigated in
vivo 3D kinematics of various types of total knee
arthroplasty [12–14]. Using this technique, we can evaluate
3D relative positions between components under dynamic

Table 2 Components’ valgus alignment into the bones

Elbow Humeral alignment (°) Ulnar alignment (°)

1 9 6

2 1 6

3 1 12

4 5 8

5 2 7

6 12 6

7 2 1

8 12 9

9 4 −5
10 3 5

11 4 13

12 2 7

13 2 2

14 −2 8

15 3 3

Mean 4.0 5.9

SD 3.9 4.3

Valgus alignment was denoted as positive

SD standard deviation

Fig. 6 Valgus/varus angles and
rotation in groups 1–3 during
flexion. There were six elbows
in group 1, four in group 2, and
four in group 3. From 40 to
130°, valgus angle was signifi-
cantly less in group 1 than in
group 2 (p<0.01) or group 3
(p<0.001) and internal rotation
was significantly less in group 1
than in group 2 (p<0.01) or
group 3 (p<0.001)
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conditions. Furthermore, using an improved version of this
technique, quasi-contact areas between components can be
estimated [17].

Our study quantitatively evaluated relative positions of
one of the resurfacing TEAs between humeral and ulnar
components during elbow flexion from full extension to
maximum flexion and visualised this motion. Relative
positions between humeral and ulnar components showed
extremely wide variation among patients throughout flex-
ion. Standard deviation was sometimes >10°. Conversely,
each elbow exhibited relatively constant valgus/varus angle
and rotation between components from full extension to
maximum flexion. That is, an elbow with large valgus angle
at extension maintained that angle to maximum flexion,
while an elbow with small valgus angle at extension kept
that angle to maximum flexion. The same was true for
rotation. We considered that the primary reason for this
kinematic consistency despite large valgus angle and
rotation during flexion is mal-positioning of the compo-
nents in the bones. The results shown in Fig. 7 indicate
that valgus alignment of the components, especially
humeral alignment, can influence the kinematics. The more
valgus humeral alignment, the less was the quasi-contact
area of the polyethylene. The humeral valgus alignment
may widely vary because of the large bone canal relative to
the thin stem of the component. Surgical technique and
instruments for TEA are not as well established as for
TKA; therefore, it is not easy to determine valgus/varus and
rotational alignment of the components intra-operatively.
Mal-positioning of the components leads to loss of
congruent articulation and uneven loading to the joint
surface. TEA is mostly indicated for elbows destroyed by
rheumatoid arthritis, which erodes not only bone and joints,
but also soft tissues, including collateral ligaments. This
damage to soft tissues is one of the reasons why optimising
the intra-operative soft-tissue balance is difficult. Further-

more, intra-operative invasion to soft tissues, such as
release of collateral ligaments and resection of the radial
head, can induce further post-operative soft-tissue imbal-
ances. However, whether such soft-tissue imbalances occur
because of the surgical technique or occur over time post-
operatively remains unclear and should be investigated in
the future. One reason for intra-operative soft-tissue
imbalance probably lies in the design of components. The
prosthesis we used has one size only and the components
themselves may thus be excessively bulky for individuals
with small elbow joints, making accurate soft-tissue balance
difficult to obtain.

Excessive valgus angle and internal rotation between
components can cause edge-loading of the articular surface.
In this study, each elbow was classified into three general
categories according to the type of quasi-contact area of the
articular surface. Elbows in group 2 that had unequally
loaded kinematics and group 3 with linear contact through-
out flexion showed significantly larger valgus and internal
rotation. From the results of this study, valgus and
rotational mal-alignment >10° can cause edge-loading of
the articular surface and pose a risk for early polyethylene
wear. In addition, decreased articular contact area may lead
to decreased articular constraint and increased risk of
dislocation and subluxation. Accurate component position-
ing and soft-tissue balance may reduce excessive articular
contact stress and critical complications such as polyethyl-
ene wear and aseptic loosening. Achieving appropriate
component positioning and accurate intra-operative soft-
tissue balance is thus crucial to achieve better long-term
clinical results with TEA.

In this study, component alignment was measured only
from AP radiography. However, not only valgus/varus
alignment but also rotational alignment can influence the
mal-alignment/rotation between humerus and ulna bones,
one probable cause of soft-tissue imbalance. Therefore,

Fig. 7 Component alignment in group 1–3. Valgus alignment was denoted as positive. Valgus alignment in group 3 was significantly larger than
in group 1 (p<0.05). a Humeral alignment. b Ulnar alignment
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further study will be needed to elucidate the effects of 3D
alignment and position of the components on joint
kinematics.

The results of this study indicate that relative position of
valgus/varus angle and rotation between components might
rely on component alignment and soft-tissue balance.
Development of sophisticated surgical techniques to obtain
appropriate component positioning and accurate soft-tissue
balance would thus allow appropriate articular congruency
and lead to better post-operative clinical results.
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