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Fluctuation Analysis of Tetanic Rundown (Short-Term Depression)
at a Corticothalamic Synapse
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ABSTRACT Hypothetical scenarios for ‘‘tetanic rundown’’ (‘‘short-term depression’’) of synaptic signals evoked by stimulus
trains differ in evolution of quantal amplitude (Q) and covariances between signals. With corticothalamic excitatory postsynaptic
currents (EPSCs) evoked by 2.5- to 20-Hz trains, we found Q (estimated using various corrections of variance/mean ratios) to be
unchanged during rundown and close to the size of stimulus-evoked ‘‘miniatures’’. Except for covariances, results were compat-
ible with a depletion model, according to which incomplete ‘‘refill’’ after probabilistic quantal release entails release-site
‘‘emptying’’. For five neurons with 20 train repetitions at each frequency, there was little between-neuron variation of rundown;
pool-refill rate increased with stimulus frequency and evolved during rundown. Covariances did not fit the depletion model or
theoretical alternatives, being excessively negative for adjacent EPSCs early in trains, absent at equilibrium, and anomalously
positive for some nonadjacent EPSCs. The anomalous covariances were unaltered during pharmacological blockade of receptor
desensitization and saturation. These findings suggest that pool-refill rate and release probability at each release site are contin-
ually modulated by antecedent outputs in its neighborhood, possibly via feedback mechanisms. In all data sets, sampling errors
for between-train variances were much less than theoretical, warranting reconsideration of the probabilistic nature of quantal
transmitter release.
INTRODUCTION

At various synapses, trains of afferent stimuli elicit postsyn-

aptic responses that characteristically grow to a maximum

(facilitate), remain fairly constant, or decline from an early

peak to a plateau (tetanic rundown or short-term depression).

The behavior is developmentally regulated (1) and presum-

ably functions to optimize the transfer of information across

the synapse (2,3).

Tetanic rundown, which is prominent at the curarized skel-

etal neuromuscular junction, has been traditionally explained

by a depletion model (4). According to this model, rundown

results from incomplete refill between stimuli of a presynaptic

store of neurotransmitters from which synaptic responses

(outputs) are evoked. Subsequent studies in the 1960s

provided strong support for a purely presynaptic mechanism

(constant quantal size). The degree of rundown also was

graded with Ca2þ/Mg2þ (presumably governing fractional

release) and stimulation frequency (governing refill), all in

good agreement with the depletion model (5–7).

Negative correlation between the amplitudes of the first

two responses in trains (5,8) was shown by Vere-Jones (9)

to arise from the stochastic nature of release and site

‘‘emptying’’ in the depletion model, which also gives a bino-

mial distribution of outputs. An important implication is that

reasonable estimates of quantal amplitude can be obtained

from means, variances, and correlations (covariances) of
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synaptic responses evoked by repetitive trains of stimuli.

In addition, because the model makes testable predictions

with regard to the evolution of covariances (9,10), it is theo-

retically possible to determine whether data from a synapse

undergoing tetanic rundown indeed fit the model.

The experiments presented were prompted by the report of

Scheuss and Neher (11) that appropriate covariances exist at

the calyx of Held, allowing correction of variance/mean ratios

to obtain putative quantal size at all stimulation numbers

in repeated excitatory postsynaptic current (EPSC) trains

(12,13). These studies found that (postsynaptic) reduction

of quantal size contributes to tetanic rundown. However,

others have reported an absence of negative correlation

between pairs of synaptic signals, despite clear rundown

(14,15), suggesting that the depletion model might not

be generally applicable. Consideration of other models/

scenarios using Monte Carlo simulations (see Theory) sug-

gested to us that analysis using covariances as well as vari-

ances might be achieved for any type of synapse where it is

practical to record for more than a few minutes. That is, infor-

mation from different cells could be pooled, and there was no

reason to restrict the methodology to giant synapses that are

particularly amenable to recording.

Here, we have used corticothalamic (glutamatergic)

synapses where tetanic rundown is known to be prominent

(16–18) and similar, in terms of dependence on stimulus

frequency, to that seen at two giant synapses (the calyx of

Held and the neuromuscular junction). For EPSCs evoked

by stimulation at 2.5, 5, 10, and 20 Hz, our data analysis

employs some novel methods suggested by theoretical consid-

erations that are described in detail in the Theory section.
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Our results differ from those reported for the calyx of Held

(12) in that we find no postsynaptic contribution to rundown.

That is, putative quantal amplitude was invariant within trains

and independent of stimulation frequency. There was a super-

ficial fit to the depletion model in that there were clear nega-

tive covariances between the first two signals in trains.

However, covariances did not fit the model with regard to

magnitude or evolution within trains. Instead, the data consis-

tently gave either overly negative covariances, or positive or

zero covariances where negative ones should exist. These

conform to none of the theoretical models that we had consid-

ered. There was another major anomaly: between-stimulus

number variances consistently varied much less than expected

with binomial (or Gaussian or Poisson) distribution of

outputs. It remains unclear how or whether this low variation

can be reconciled with the stochastic/probabilistic nature of

quantal release (19) otherwise supported by the correspon-

dence of estimated quantal amplitude and the size of spike-

triggered ‘‘miniature’’ events, sampled immediately after the

stimulus trains.

THEORY

With the fluctuation/quantal analysis using covariances as

well as variances and means, introduced by Scheuss and

Neher (11), it became possible to obtain estimates of quantal

size at each stimulus in iterated trains of EPSCs that showed

‘‘tetanic rundown’’ (‘‘short-term depression’’), but on the

assumption of equations derived for a simple binomial-deple-

tion model (9–11), which omitted the possibility of postsyn-

aptic contribution to the fall in EPSC amplitude. Here, we

amplify and extend the theoretical basis for this approach

by considering this and alternative scenarios to obtain

expected evolution of means, variances, and covariances of

signals, and consequent estimates of quantal amplitude(s).

These, and sampling errors, have been found using Monte

Carlo simulation (see Appendix), and/or mathematically

derived equations. We assume that an experimenter wishes

to obtain from data quantal amplitude(s) (Q) and quantal

content (m), number of release sites (N), whether Q changes

in the train, a characterization of the rundown of signals,

and which scenario is most consistent with the data.

Scenarios

Possible mechanisms underlying rundown of synaptic signals

during a train can be grouped into two categories: release-

dependent, including 1), presynaptic depletion of available

quanta, and/or 2), depression of postsynaptic sensitivity (de-

sens) or reduction of the amount of transmitter per quantum;

and release-independent, which could occur because of

1), graded reduction of output probability (p) (Pdown) and/

or 2), inactivation of release sites (Ndown).

Under release-dependent presynaptic depletion, we

include any process by which release sites become tempo-

rarily nonfunctional as a consequence of release, since
Biophysical Journal 96(6) 2505–2531
each process yields the same equations, loss of available

quanta being a plausible mechanism. In release-dependent

desens, we include any process (post- or presynaptic) that

produces reduction of postsynaptic response per quantum;

a combination of such processes would require more than

the one recovery rate used in the equations below.

In Pdown scenarios, output probability falls progressively

to its equilibrium value, perhaps reflecting decreased presyn-

aptic Ca2þ current per action potential, and shows kinetics

that can mimic depletion. This produces sequences of signals

and variances indistinguishable from depletion.

With Ndown scenarios, Monte Carlo simulations show that

we must distinguish between at least three possibilities. In

Ndown1, release sites become probabilistically and reversibly

nonfunctional. This is the same as depletion, except that site

inactivation is independent of whether release has occurred.

In Ndown2, release sites differ in their probability of

becoming inactivated and do not recover until after the train.

To account for eventual nonzero equilibrium (final) outputs,

we assume that the probability of site elimination diminishes

with stimulation number. Ndown3 is the same, except that the

sequence of site inactivation is repeated at each train iteration.

The above scenarios represent two extremes; a variety of other

rules for site loss gave intermediate results.

The computer subroutine in the Appendix, used for simu-

lations, makes explicit all the underlying assumptions for

each model.

Means, variances, and covariances

In general, covariances give information regarding the mutual

dependence of values in subsets of data. Consider a number of

train iterations with EPSC amplitudes S1, S2, etc. If the

average (S1 � hS1i)(S2 � hS2i;) is less than zero (i.e.,

cov(S1,S2) is negative), the implication is that whatever

made S1 larger or smaller than average, in a particular train,

had (on average) the opposite effect on S2 in that train, unless

the negative covariance arose by chance. Generally speaking,

with later signals, the interpretation of covariances is inher-

ently ambiguous: covariances can arise from correlations of

both signals with antecedents. Note that for signals from

voltage-clamped neurons no covariances can arise from feed-

back via action-potential outputs to interneurons.

With the above scenarios for rundown of S in trains, nega-

tive covariances are characteristic of any release-dependent

process, depletion and/or desens. In the absence of desens,

Pdown and Ndown3 give zero covariances, whereas with

Ndown1 and, especially, Ndown2, positive covariances occur

that grow within the train, resulting from the ‘‘random walk’’

implicit in each model. Here, cov(S1,S2) is zero, but with

desens the net covariances are negative for all these scenarios,

except the covariances for late signals with Ndown2.

The evolution of average outputs can be the same for any

model. A Pdown model with an appropriate set of output

probabilities, or Ndown with an appropriate set of inactivation
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probabilities, can always mimic a depletion model with a set

of pjs (output probabilities if a quantum is ‘‘available’’ for

release) and ajs (probabilities of refill between stimuli). The

evolution of variances also does not distinguish between

models, apart from Ndown3, which produces constant vari-

ance to mean ratios if output probability is constant.

Basic assumptions and derived equations

The relevant equations for synaptic signals for some scenarios

can be deduced ab initio from basic principles. We begin by

assuming that at any single release site only one quantum of

transmitter can be released when it is stimulated, and that

this occurs probabilistically. This, by definition, implies

a binomial distribution of quantal outputs. Counting any

response more than zero as 1, whatever its height (h), a record

from such a site, consisting in a series of 0s (failures) and 1s

(successes), will have a mean quantal content, hmi, the

number of successes divided by the number of stimuli, with

an expected value of p, the release probability. Since the

square of 1 is also 1, the mean-square is also hmi. The variance

(mean-square � square of mean) is therefore hmi(1 � hmi)
with an expected value p(1 � p). It makes no difference

whether p is constant or fluctuating. The formulae are

unchanged, although the parameter p can represent an

average. If we were to count 0s as responses with h ¼ 0, as

might arise with desens, the series of 0s and 1s is then inter-

preted as hmi ¼ 1, var(m) ¼ 0, hhi ¼ fraction of successes,

and var(h) ¼ hhi(1 � hhi).
For the depletion model, we postulate that release of

a quantum can occur only if the presynaptic state is full

(9,10). We also assume full recovery between repetitions

of stimulus trains. At any stimulus j, there is a pj (output

probability if a site is full) and an fj (probability that a site

is full). The mean quantal content, hmji, has an expected

value of pjfj; the net probability of release. The variance is

hmji(1 � hmji) ¼ hmji(1 � pjfj). The outputs are binomially

distributed with parameters N ¼ 1 and Pj ¼ pjfj, with Pj

evolving in the train as fj evolves (see below), even if pj is

constant, to equilibrium or final values, indicated by

a subscript f. At equilibrium, hmfi ¼ pf ff and var(mf) ¼
hmfi(1 � pf ff), within trains as well as between trains.

The amplitude of responses at each j must have an

average, hQji. If amplitude changes with stimulus number

(desens), this is more conveniently expressed as hQihhji,
where hhji is the mean fraction of the initial Q value. The

mean unit signal (huji) has the expected value hQihjhmji.
The coefficients of variation in transmitter per quantum

(cvwj) and postsynaptic kindliness (cvhj) contribute to

hmjihQ2ihhj
2i ¼ hmjihQi2hhji2(1þ cvw

2)(1þ cvh
2), in which

the j subscript has been dropped, for brevity, from the cvs.

We include variation in response per quantum due to

stochastic components (appreciable if there are few channels

per unit response) in cvw.

Equating means and expected values,
�
uj

�
¼
�
Q
��

hj

��
mj

�
¼
�
Qj

�
pjfj

var
�
uj

�
¼
�
uj

��
Qj

��
1 þ cv2

w

��
1 þ cv2

h

�
�
�
uji2

¼
�
uj

��
Qj

���
1 þ cv2

w

��
1 þ cv2

h

�
� pjfj

�
:

If release of a quantum of transmitter causes an ‘‘empty’’

presynaptic state (depletion), a response at stimulus j in a train

implies no response at j þ 1 if there is no ‘‘refill’’; the first

covariance (mean product ¼ 0, minus product of means) is

cov(uj,ujþ1) ¼ �hujihujþ1i. Total desensitization gives the

same result, because a zero response to a quantum is

indistinguishable from the absence of a response. By the

same logic, hujþ1i and var(ujþ1) must also be the same

as for the depletion model—hjþ1 becomes <1 and cvh

becomes >0, because null responses are included in both.

Realistically, there must be some probability (aj) of refill

and/or a rate of recovery from desensitization (aH). The

only case in which desens produces fairly simple equations

is when there is always the same h, call it d1, when the ante-

cedent stimulus elicited release. If desensitization is total,

and desensitized receptors produce no response, d1 ¼ aH.

Whenever there is a response at j, the probability of

a quantum being released at j þ 1 is the product of proba-

bility of refill and probability of release, i.e., pjþ1aj.

Therefore, for depletion and/or desens,

cov
�
uj; ujþ 1

�
¼
�
uj

��
Q
�
pjþ 1ajdl �

�
uj

��
ujþ 1

�

¼ �
�
uj

��
ujþ 1

��
1� ajdl=hjþ 1=fjþ 1

�
:

Similarly, cov(uj,ujþ2), cov(uj,ujþ2), etc., can be found by

considering the overall probability of a quantum appearing

at j þ 2, j þ 3, etc. if there is one at j, and its expected

amplitude. However, the resulting equations are unwieldy

and give little insight.

Average signals

Immediately after release, the average fraction of sites with

an available quantum is reduced from fj to fj(1� pj). A subse-

quent refill adds aj(1� fj(1� pj)). Therefore, one has a recur-

rent relationship, starting with f1 ¼ 1:

fjþ 1 ¼ aj þ fj

�
1� pj

��
1� aj

�
: (1)

Eventually, p and a go to equilibrium (final) values pf and af ;

The final ff ¼ fj ¼ fjþ1 is

ff ¼ af=
�
af þ pf � af pf

�
: (1a)

If a and p are constant, defining g h (1 � a)(1 � p), (fj� ff)
falls geometrically with parameter g for each increment in

j (9). Average signals parallel fj if there is no desens. Note

that a pure depletion model corresponds to d1 ¼ aH ¼ 1,

whereas setting all aj equal to 1 gives pure desens with all

fj equal to 1.
Biophysical Journal 96(6) 2505–2531
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Two finite summations (nominally of all values), using fj,
give relationships that are potentially useful for determining

the number of release sites:

S
�
fj � ff

�
¼
�
1� ff

�
ð1� gÞ (1b)

S
�
fjc

j�1
�
¼
�
1� ff

�
=ð1� cgÞ þ fj=ð1� cÞ;

for any c < 1; e:g:; g:
(1c)

Signals from N sites

Real signals will generally arise from a set of N sites, each

with a hQi. If all sites are the same with regard to p, a,

and aH, then means, variances, and covariances are simply

multiplied by N, and wherever hQ2i occurs in the above

equations, with hui fully expressed, there is multiplication

by (1 þ cvb
2), where cvb is the between-site coefficient of

variation of Q. Extra terms are generated by any nonstatio-

narity between trains, e.g., if hQi gradually falls as stimulus

trains are repeated. Thus, given a certain homogeneity, and

assuming that release of transmitter at different sites is

such that their signals add linearly, Eqs. 1a–1c apply, and

the above equations for uj become

�
Sj

�
¼ N

�
Qj

�
pjfj (2)

sjh
�
Sj > =

�
Sl

�
¼
�
hj

�
pjfj=pl (2a)

var
�
Sj

�
¼ ð1 þ cv2

bÞ
�
1 þ d2

��
Sj

�

��
Qj

�
ð1 þ cv2

wÞð1 þ cv2
hÞ

�
�
Sj

�
=N
�
þ d2

�
Sji2

(3)

cov
�
Sj; Sjþ 1

�
¼ ð1 þ cv2

bÞ
�
1 þ d2

��
Sj

�

��
Q
�
pjþ 1 ajdl �

�
Sjþ 1

�
=N
�

þ d2
�
Sj

��
Sjþ 1

�
:

(4)

Here, d2 is the square of the coefficient of variation, corre-

sponding to any nonstationarity. For example, if hQi falls

by a factor of 1.5 over 20 trains, d2 will be 0.0155, which

is not negligible if N ¼ 100. An important point is that for

all k, cov(Sj,Sjþk) contains the extra term d2hSjihSjþki,
whereas otherwise all covariances decline with k. This makes

it possible (with caveats) to find d2(see below). In contrast, it

is in principle not possible to find cvb, cvw, or cvh. Below, we

assume d2 to be negligible, or dealt with, until returning to

the problem it presents.

With partial desens, the equations remain valid, but with

d1 > aH and a function of j, pj, and aj. It is worth noting

that a little algebra shows that the slope of a scatter graph

of Sjþ1 versus Sj, cov(Sj,Sjþ1)/var(Sj), is independent of

(1 þ cvb
2), hQi, and N. Without desens, and with negligible

cvw
2 and a1, cov(S1,S2)/var(S1) ¼ �p2.
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If all sites do not have the same p, a, and aH, the evolution

of fj is different at each site, resulting in mean equilibrium

signals (Sf) that are dominated by sites with the highest

ff (and/or aH). If these have Q higher or lower than average,

estimates of the final Q will reflect these Q values, but it must

be borne in mind that in such cases cvb is not negligible. The

equations for var and cov also become more complicated

(see (10)).

Without desens, d1 ¼ hj ¼ 1. Using hSjþ1i ¼
N hQipjþ1fjþ1,

cov
�
Sj; Sjþ 1

�
=ð1 þ cv2

bÞ=
�
Sj

�
¼
�
Q
�
pjþ 1aj �

�
Sjþ 1

�
=N

¼ �
�
1� aj=fjþ 1

��
Sjþ 1

�
=N;

and with gj h (1 � pj)(1 � aj), fjþ1 is ajþfj gj. Hence,

cov
�
Sj; Sjþ 1

�
=ð1 þ cv2

bÞ=
�
Sj

�
¼ �

�
Q
�
pjþ 1 fj gj

¼ �gj

�
fj=fjþ 1

��
Sjþ 1

�
=N: (4a)

Following the same logic, we obtain

cov
�
SjSj; Sjþ 2

�
=ð1 þ cv2

bÞ=
�
Sj

�
¼ �

�
Q
�
pjþ 2 fj gj gjþ 1

cov
�
Sj; Sjþ 3

�
=ð1 þ cv2

bÞ=
�
Sj

�

¼ �
�
Q
�
pjþ 3 fj gj gjþ 1 gjþ 2;

etc.

At equilibrium, for any k,

cov
�
Sj; Sjþ k

�
=ð1 þ cv2

bÞ ¼ �gk
f S2

f =N:

Thus, all covariances are negative. With no desens, constant

a and p, and g h (1 � p)(1 � a), the covariances fall

geometrically to the equilibrium with parameter g for each

increment in j (9). Exclusively negative covariances are

also produced by desens.

Estimation of p and a assuming constant values

Any train in which signals run down smoothly to an equilib-

rium can be characterized by a p and a corresponding to

a depletion model with no desens and unchanging parameters.

Then, every fj¼ sj¼hSji/hS1i and, from Eq. 1a, at equilibrium

fj is ff ¼ a/(a þ p � ap); for any arbitrary p, there is a corre-

sponding a ¼ pff/(1 � ff þ pff), and a unique predicted set of

sj—there must exist a p/a pair that gives a least-squares best fit

to the observed sj series. The apparent p and a (pA and aA,

respectively) are of course merely descriptive parameters

unless the assumptions are valid and deviations of real sj

from theoretical fj may be of interest. However, simulations

show that goodness of fit may not be much affected by deple-

tion and/or p and a increasing or decreasing in the train. This

arises because changing p and a do not necessarily entail

much change in ff. Conversely, poor fits of real sj to theoretical

fj do not distinguish between depletion, with changing
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p and/or a, and alternative scenarios (Pdown or Ndown).

Because desens causes exaggeration of the signal fall early

in the train, it produces a pA greater than the p, corresponding

to decline of quantal contents in the train. Simple depletion

with a compound binomial (p varying between sites (10))

yields pA y hpi(1 þ cvp
2), and poor fits of sj to theoretical

fj, for the first few j.
Monte Carlo simulation gives (for 20 trains and 10 equilib-

rium signals) sampling errors (SE) of ~9% of (1� pA) for pA

and ~5% for aA, unless sf is>~0.6 and/or pA is<~0.3, which

raises the SE. For any set of data, the SE can be estimated by

making ~100 pseudotrains with Sj constructed from true hSji
and random Gaussians scaled by the standard deviations at

each j and going through the same computer subroutine

with each train. As described below, having pA allows estima-

tion of apparent N (NA) and hQi (QA) and their SEs can be esti-

mated at the same time.

Correction for nonstationarity: finding d2

Of course, the best method of dealing with nonstationarity is

to minimize d2 which can be done if there is a slow trend in Q,

by calculating var and cov between adjacent trains (11), with

little increase in SE.

A value of d2 (actually d2 plus terms involving hQi and N)

can readily be found, since, if 1/N is negligible, it is the sum of

all cov between signals divided by the sum of all cross prod-

ucts of signals (hS1ihS2i, hS2ihS1i, hS2ihS3i, etc.). Summing

all amplitudes in each train, the variance of these sums

(varT) is the sum of var (Svar) plus the sum of all covariance

between signals. The square of the mean sum of all S (hSSji2)

is S(Sj)
2 plus the sum of all cross products. Thus, ignoring

complications,

d2 ¼ ðvarT � SvarÞ=
��

SSji2 � S
�
Sj

�2�
:

For true d2 ¼ 0, this gives zero values when there is zero

covariance (Pdown and Ndown3 scenarios), and positive

values with true positive covariance (Ndown1 and, espe-

cially, Ndown2). With depletion, apparent d2 is negative,

but much smaller than �1/N, (e.g. �0.003 for N ¼ 50,

p ¼ 0.4, ff ¼ 0.25), because most covariances are much

smaller than �hSj,ihSjþ1i/N; for any particular pA and aA

given by data, the expected value of d2 can be calculated.

Because desens introduces or exaggerates negative covari-

ance, it shifts the apparent d2 in the negative direction. The

SE of apparent d2 is very low and its difference from the

expected value is by far the most sensitive indicator of

desens plus depletion (e.g., –0.0020 � 0.0006 for hQfi/
hQ1i ¼ 0.65). However, even small nonstationarity erases

this measure and true desens also erases much of the distinc-

tion between scenarios.

Given putative d2, all variances and covariances can be

corrected by subtracting hSji2d2 from variances and

hSjihSjþ1id2 from covariances, and dividing variances by
1 þ d2. This poses a problem. Should one use apparent d2

even if it is negative, d2 only if it is positive (correcting for

nonstationarity), or use d2 minus the expected value? The

answer is that none of these options is appropriate for all

scenarios, but simulations show that the choice makes little

difference. Each option gives variances and covariances

that are virtually the same as in the absence of nonstationar-

ity (except for a fairly small increase in SE). However, using

negative values of d2 shifts true negative covariances in the

positive direction (theoretically visible in cov(Sj,Sjþk), with

k > 4 or so) and where there are true positive covariances

(Ndown1 and Ndown2), the correction with d2 reduces or

reverses the covariances. In Ndown2 scenarios, where

growing positive covariances produce a false positive d2,

the correction produces a large negative cov(S1,S2).

Eliminating covariances arising from mutual
correlation with other signals

An alternative method for dealing with nonstationarity is to

correlate each Sj in a train with the sum of the others, subtract

from each Sj the amount given by this correlation, and calcu-

late the variances of the residuals. For covariances, the corre-

lations are with all points except the two being correlated. By

and large, this gives less complete correction for nonstatio-

narity than using apparent d2. However, with low-level or

no nonstationarity, it has the advantage of giving true vari-

ances and covariances, with the notable exception of Ndown2,

for which the positive covariances are reduced to near 0 and

variances are altered to make var(Sj)/hSji constant.

Estimates of quantal amplitude

In the absence of nonstationarity (and without correction for

putative d2), derived values that approximate hQji at each

j are

vmjhvar
�
Sj

�
=
�
Sj

�
¼ ð1 þ cv2

bÞ
��

Qj

�
ð1 þ cv2

wÞ
� ð1 þ cv2

hÞ �
�
Sj

�
=N
� (5)

and various ‘‘corrected’’ vmjs,

cvmjhvmj þ
�
Sj

�
=N0; with N0 ¼ N=ð1 þ cv2

bÞ=
ð1 þ cv2

wÞ=ð1 þ cv2
hÞ

¼ vmj=ð1� P
0
jÞ; with P

0
j ¼ pjfj=ð1 þ cv2

bÞ=
ð1 þ cv2

wÞ=ð1 þ cv2
hÞ

¼
�
Qj

�
ð1 þ cv2

bÞð1 þ cv2
wÞð1 þ cv2

hÞ

(6)

Qajhvmj=
�
1� pAsj

�
¼ vmj=

�
1� pjfj

�
hj

�
pA=pl

�
(6a)

cvm
0

jhvmj þ
�
Sj

�
=Ncov; with 1=Ncov

¼ �covðS1; S2Þ=
�
S1

�
=
�
S2

�
(7)
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Qcjhvmj � cov
�
Sj; Sjþ 1

�
=
�
Sjþ 1

�
¼ vmj

þ
�
Sj

�
=N

0

j ; with 1=N
0

j

¼ ð1 þ cv2
bÞ
�
1� ajdl=hjþ 1=fjþ 1

�
=N:

(8)

Note that every vmj and corrected vmj is multiplied by

(1 þ cvb
2) and, correspondingly, N0, Pj

0, Ncov, and Nj
0 are

divided by (1 þ cvb
2). The diversity of estimators is useful

for determining which model best corresponds to the ob-

served data (see below).

We have phrased Eq. 6 in terms of N0, because all methods

of finding N use vm that is intrinsically biased by the coeffi-

cients of variation that go with hQji. The variant cvmj ¼ vmj/

(1 � Pj
0) merely rephrases the problem of how to find N0 in

terms of finding appropriate Pj
0 values. Equation 6a circum-

vents this problem with the assumption that hhjipA/p1 is 1,

and, if this is so, gives Qaj ¼ hQji(1 þ cvb
2)[1 þ (1 þ

cvw
2)(1 þ cvh

2)/(1 � pjfj)]. Continuing with the simplifying

assumptions, that pj is constant and equal to pA, the equilib-

rium value of Qaj (call it QA rather than Qaf), which is vmf/(1

� pAsf) also provides an estimate of N0 (call it NA) as hS1i/pA/

QA (which is (hS1i/pA� Sf)/vmf), since hS1i ¼ phQiN. Using

NA for N0 and then averaging equilibrium values of cvmj, or

using cvmf¼ vmfþ Sf/NA, gives cvmf the same as QA. For 20

trains and 10 available equilibrium values of hSJi (j > 4), the

SE of QA came close to �10%, whereas the SE of NA was

~�11%, unless sf was made >~0.6 and/or pA <~0.25,

producing larger SEs. Individual values of cvmj and Qaj

had SE ~ �30% (for 20 trains). With the single exception

of Ndown3, characterized by depletion with constant p and

a, or a series of hSi mimicking depletion, QA and NA were

found correctly; the error with Ndown3 arises from vmf not

approximating hQi, etc. With the depletion model, an

initially high a, falling to half its final value, produced negli-

gible error in QA but an NA of 135% of the true value, arising

from an underestimate of pA. In general, errors in pA arise

from a decline of early signals not conforming to the deple-

tion model with constant a and p, or because QA is lower

than the initial hQi (desens).

Equation 7 is an example of correcting vmj using a constant

putative N, Ncov. Note that 1/Ncov may be zero (Pdown, and

Ndown, without desens), in which case cvm0 j is the same as

vmj. With between-train nonstationarity, 1/Ncov can be

negative, but cvm0 j is the same as without nonstationarity.

Equation 8 differs from Eqs. 6 and 7 in that it uses, for

putative N, a value Nj
0 obtained from cov(Sj,Sjþ1)/hSjþ1i at

each j, rather than a constant (11,12); positive covariances

(Ndown1 and Ndown2) produce Qcj < vmj. Allowing, in

effect, negative N, results in Qcj being unaffected by nonsta-

tionarity. SEs of Qcj are ~1.2 times those of cvmj, and equi-

librium values are about halfway between cvmj and vmj for

the depletion model. A variant of Eq. 8 is to use vmj �
cov(Sj,Sj-1)/hSj-1i, but this is nearly the same as Qcj and is

unavailable for j ¼ 1, which is of particular interest.
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Clearly, for estimates of hQji better than vmj, using Eq. 6

is preferable to using Eq. 8 to obtain Qcj, since each

cov(Sj,Sjþ1) is prone to sampling error and the resulting

1/Nj
0 is also intrinsically subject to bias that is not indepen-

dent of j. The validity of Eq. 6 also does not depend on

covariances fitting the depletion model. However, using

NA for N0 is as open to question as are the underlying

assumptions. Nevertheless, it turns out that cvm is rather

insensitive to error in putative N0 if sj is <~0.5. Without

desens and pj ¼ p1, making fj ¼ sj, if sj ¼ 0.4, a guess of

p1 ¼ 0.4 gives cvmj ¼ 1.19 vmj, whereas p1 ¼ 0.6 gives

cvmj ¼ 1.32 vmj. The first guess corresponds to an

N0 that is 1.66 times the N0 of the second guess. In other

words, systematic error in the estimate of N0 as NA, as arises

with desens, hardly affects QA.

Note that the (1 þ cvh
2) in Eqs. 5–8 cannot be omitted,

since otherwise one could distinguish, if recording at a single

site, between signals of zero amplitude and absence of

signals. Monte Carlo simulations show that with pure desens,

hhji(1 þ cvh
2) tends to remain close to 1 early in trains. That

is, desens implies high variance of quantal amplitude after

the first signal. As a result, vmj (and notably Qcj) does not

parallel hhji. This effect is mitigated if there is also depletion

so that sites with antecedent responses contribute less to

signals. At equilibrium, cvh
2 becomes relatively low

(~0.1–0.2), but not negligible.

Quantal size from variances within trains

Implicitly cov-corrected estimates of hQihhfi are obtainable

without using variances or covariances between trains.

This arises because when signals have run down to (or

near) equilibrium, the expected values of h2Sj � Sj�1 �
Sjþ1i is 0, but the expected value of the mean-square of

(2Sj � Sj-1 � Sjþ1) is

��
2Sj � Sj�1 � Sjþ 1

�2� ¼ 4 var
�
Sj

�
þ var

�
Sj�1

�

þ var
�
Sjþ 1

�
� 2
�
2 cov

�
Sj; Sj�1

�

þ 2 cov
�
Sj; Sjþ 1

�

� cov
�
Sj�1; Sjþ 1

��
:

Since the expected values of means and variances are nearly

the same for the three signals, and the covariances are nearly

the same, one has for each trio of signals in each iterated train

an estimate of quantal size (Q3). One can make averages

between and/or within trains:

Q3h
�
2Sj � Sj�1 � Sjþ 1

�2
=2=
�
Sj þ Sj�1 þ Sjþ 1

�

yvmj � cov
�
Sj; Sjþ 1

�
=
�
Sj

�
¼ Qcj

(9)

QthhQ3i: (9a)

The calculation is identical to obtaining variance within

groups of three with correction for linear regression (cf.
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(5)), where groups of five were used, producing less appro-

priate subtraction of covariances). Averaging the squares

and then dividing by 6hSji or 6Sf or 2(hSji þ hSj�1i þ hSjþ1i)
makes a negligible difference, and any of these is preferable

when quantal contents are so low as to produce failures. Using

mean values of Q3 at each j from each train, and then aver-

aging to obtain overall Qt, the SE is ~1.2 times the SE of

Qcf . Simulations show that Qt is indistinguishable from

Qcf. The between-train variance of hQ3i or its regression

with sums of signals in trains are both of negligible value in

finding between-train nonstationarity.

With Ndown1, because it produces positive covariances,

Qt and Qcf are both less than vmf by ~15�20%; with

Ndown2, because the positive covariances are relatively

large for equilibrium signals, Qt and Qcf can be as little as

half of vmf. These differences from vmf are much reduced

if there is also desens.

Alternatives for finding N

Evidently, NA and QA are biased (see above), even if p is pA

and ff ¼ sf. From Eq. 5, vmf is actually hQi(1 þ cvb
2)(1 þ

cvw
2)(1 � Sf/N/(1 þ cvw

2)); cvmf (QA) turns out higher

than true hQi by a factor of a little more than (1 þ cvb
2)

(1 þ cvw
2), and NA < N by the same factor. With desens,

QA approximates hQfi(1 þ cvh
2)(1 þ cvb

2)(1 þ cvw
2),

with various biases tending to cancel, except in the case

of Ndown3 (where vmj is constant if pj is constant). With desens

or depletion, NA is biased upward and cvm1<Qa1. Moreover,

models in which a is not constant but rises or falls from

an initial value show a systematic bias in pA (high with

falling a), and since NA is calculated as hS1i/pA/QA, the

same bias appears in it. It would therefore be desirable to

have an alternative estimate of N or N0 . However, it should

be recognized that without assumptions as to the evolution

(or constancy) of hQi, p, and a, there is no valid way of

obtaining N.

The method of plotting hSjis versus their accumulated sum

(5) can immediately be ruled out: as with NA, it depends on

the assumption of unchanging hQi but also completely

neglects a; it consistently overestimates N and fails when

sf > ~0.15.

The relationships in Eqs. 1b and 1c give alternatives for

finding N, but again with the assumption of constant p ¼
pA, hQi ¼ QA, and a ¼ aA. Since each hSji ¼ NphQifj, it

follows from Eq. 1b that S(hSji � Sf) ¼ NpAhQAi(1 � sf)/

(1 � g), and from Eq. 1c that S(hSji gj�1) ¼ NpAhQAi(1
þ gsf)/(1 � g2). Excluding hS1i from each summation, the

multiplying terms are the same minus (1 � sf) and minus

1, respectively. In simulations, with simple constant p and

a, all four options give values for N nearly the same as those

for NA with, perhaps surprisingly, much the same SE. Mutual

ratios, in particular NC2/NB2, showed high sensitivity to even

small deviations from constant p/a behavior, as occurs with

desens as well as evolving p and/or a.
Correlation of vmj and hSji

In the absence of desens (and nonstationarity), Eq. 5 gives

vmj ¼ (1 þ cvb
2) (hQi(1 þ cvw

2) � hSji/N). Plots of vari-

ance/mean versus mean (cf. (7)), (with noise variance sub-

tracted from var) yield a linear regression (y ¼ a þ bx) with

least-squares best fits for ‘‘1/Nx’’¼ putative 1/N (b¼ �(1þ
cvb

2)/N) and ‘‘Qx’’ (extrapolated vm at hSji ¼ 0) ¼ hQi(1 þ
cvb

2)(1 þ cvw
2). Plots of var(Sj) versus hSji (quadratic)

produce identical numbers given appropriate weighting and

treatment of noise variance.

Simulations show that Qx has the advantage of being

unaffected by nonstationarity, and has an SE only ~1.1 times

the SE for QA. Moreover, the method depends on no

assumptions regarding p and a, although the assumption of

a depletion model (or mimicking Pdown) with no desens is

implicit. At worst, with desens, Qx is close to vmf.

A high SE of 1/Nx—Nx can be approximately infinite—

makes Nx scarcely useful as a substitute for NA as ‘‘true’’

N, unless a large number of trains are available, and

between-train nonstationarity can be ruled out or eliminated

using d2. Uncorrected nonstationarity, which can produce

vm1 > vmf, makes 1/Nx too small, 0, or negative.

Otherwise, 1/Nx is of interest as an indicator of which

scenario best fits the data. Without desens the nominal NA/

Nx (product of NA and 1/Nx) has a value close to 1, with

SE ~0.6 (again with 20 trains), except in the case of Ndown3

(vm is constant with no nonstationarity or d2-corrected),

where it is 0. Correcting vm using apparent d2 gives an unde-

tectably small reduction of NA/Nx with depletion (e.g., to

0.8), but a large increase with Ndown2 to 2 or more. In other

words, Ndown2 and Ndown3 can be identified in this way.

With desens, NA/Nx becomes negative with all scenarios,

about �0.3 with depletion, Pdown, and Ndown1, about �1

and�2 for Ndown2 and Ndown3 (with higher SE); the nega-

tivity is exaggerated with d2-corrected vm (except Ndown2).

That is, although the distinction between scenarios is largely

lost, at least desens can be seen.

Correcting vm for putative mutual covariance with other

signals in the train (see above) uniquely changes NA/Nx
with Ndown2, to near 0 (except with desens, where values

are near �1). It also uniquely leaves positive NA/Nx with

desens/depletion (values of ~0.5, SE ~ 0.7).

Distinguishing between scenarios and validity
of estimates

It is evident that whether any set of real data agrees with one or

another model is easily ascertained if there is no desens. In this

regard, only depletion produces negative covariances, and

positive covariances (except at j¼ 1) are large with Ndown2

and small but visible (Qcf ¼ Qt < vmf) with Ndown1. Zero

covariances occur with both Ndown3 and Pdown, but the

former contrasts with the latter in that vmj does not rise as

hSji falls, yielding 1/Nx ¼ 0. One also has the differences in

NA/Nx produced by the alternative corrections for
Biophysical Journal 96(6) 2505–2531
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nonstationarity described in the previous section. A decline in

Qa to the equilibrium value, QA, signals desens. However, de-

sens in conjunction with any of the models confuses matters,

because the covariances that are the major discriminants

between scenarios become negative. Therefore, it is essential

to determine whether there is desens before concluding that

negative covariances indicate the depletion model. There

may also be modification of data and derived values arising

from nonlinear summation in signals. The latter must be

considered when deciding how data may be used to distin-

guish between models, and therefore, implicitly, what validity

can be attributed to estimates of quantal amplitude.

Nonlinear summation

With excitatory or inhibitory postsynaptic potentials (EPSPs

or IPSPs, respectively), all signals are subject to nonlinear

summation (20,21), and this also applies to EPSCs or IPSCs

if the voltage clamp is imperfect. This is always the case,

because synaptic cleft voltage cannot be clamped, but it is

especially the case if signals are generated at some distance

from the recording point, on dendrites or muscle fibers with

spatially distributed release sites (frogs, crustaceans). The

functions involved are complex, because current flow causes

voltage change, which modifies channel kinetics as well as

current flow through channels. However, going through the

calculations for various possibilities gives, as a generally

useful approximation, measured Sj close to true Sj/(1 þ
trueSj/c), where c is a maximum possible S, for measure-

ments of either signal height or area, provided that S < ~c/2.

If maximum S < ~c/4 effects on signal configuration are

invisible. True variances and covariances are close to the

variances and covariances using measured values divided

by (1 � hSi/c)4 (derived by Vere-Jones (22)), whereas true

means are close to hSi/(1 � hSi/c). The net result is a major

underestimate of vm for the largest signals (S1); e.g., with c¼
10hS1i, vm1 (and cov(S1,S2)) will be underestimated by

~27%; with c¼ 5hS1i, the underestimate is ~50%. However,

when signals run down, the errors in vm and covariance

become much less, and there is very little error in Sf that is

very small. The net result is only a modest underestimate

of QA and pA and an overestimate of NA, and signaling of

nonlinear summation by Qa1 < QA (cvm1 is less reduced),

provided sf < ~0.4.

The smaller error in smaller signals results in plots of vmj

versus hSji yielding down-biased estimates of Nx. Indeed, an

infinite N (Poisson release) will look like binomial release

with spurious N roughly equal to c/Q. However, the high

SE of NA/Nx and up-bias of NA makes this a poor indicator

of nonlinear summation.

Given that the net effects on NA and QA are not large, and

there is no doubt as to whether covariances are present, there

would seem to be little reason to attempt correction for

nonlinear summation, except with regard to EPSPs and

IPSPs where c can be guessed as the difference between
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membrane potential and equilibrium potential for the trans-

mitter (20,21). However, there is a basic problem in that

the effect of nonlinear summation (Nonlin) is almost exactly

the converse of desens, and with both Nonlin and desens, the

two effects can effectively cancel. In general, the possibility

of nonstationarity in conjunction with desens excludes the

unambiguous interpretation of negative covariances as indi-

cating depletion, and with Nonlin, one loses the decline in

Qa (or cvm) values that otherwise characterizes desens.

The one case where the coexistence of Nonlin and desens

is detectable is when there is no nonstationarity (true d2 is 0).

Then, because covariances and variances are modified to the

same extent by Nonlin, the value of varT/Svar, and therefore

of (negative) d2, is little affected; a value less than expected

for simple depletion indicates desens, and the failure of early

Qa and cvm to be greater than the final values then indicates

Nonlin. To find desens even with small nonstationarity

(total range of hQi >~1.2-fold), the best indicators using

Qa become the weighted means of the first four Qas ((a)

weights ¼ fj � ff); (b) weights ¼ fj/(1 þ fj/4) � ff/(1 þ ff/4),

with f calculated from pA and aA), and SEs are such that

~200 trains are required to see this, with c ¼ 4hS1i.
There remains one indicator of desens that is nearly

independent of Nonlin. In principle, if there is desens, it

should be greater the more signals run down in trains (i.e.,

proportional to stimulation frequency), which should be

reflected in QA.

Relationship between refill probability (a)
and pool-refill rate (ra)

The depletion model for signal rundown in trains was histor-

ically phrased in terms of depletion and refill of an ‘‘available

pool’’ of quanta (4–6). This pool corresponds to Nfj. With sites

being at any moment refilled, in proportion to the deficit, from

a back-up pool that remains full, in the time between stimuli,

Dt, and designating A(t) as the amount available, as a fraction

of 1, we have the differential equation, dA(t)/dt¼ ra(1�A(t)),
where ra is the pool-refill rate. It follows that the unfilled

fraction declines exponentially: 1 � A(Dt) ¼ (1 � A(0))

exp(�raDt). However, a is the fraction of unfilled sites that

are refilled, i.e., a h (A(0) � A(Dt))/(1 � A(0)), and 1 �
a ¼ (1 � A(Dt))/(1 � A(0)). Hence, a ¼ 1 � exp(�raDt)
and ra¼ �ln(1 � a)/Dt. Therefore, stimulation at different

frequencies allows determination of whether pool-refill rate

is dependent on stimulation frequency.

Finding quantal contents

It is evident that the quantal content at stimulus j should be

hmji ¼ hSji/Qj
0, where Qj

0 is any one of the estimates given

by Eqs. 5–7. However, this is close to hSji/hvmji and (from

simulation) this value is up-biased because sampling vaga-

ries in hSji and hvmji are correlated. If there is no desens,

hmji ¼ hSji/Q0 , with Q0 any equilibrium estimator of Q, is

to be preferred. However, values of hSji/hS1i are then the
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same as hmji/hm1i. In general, all data regarding m is

provided by hS1i, alternatives for Q0 , and plots of hSji/hS1i
and Qj

0 /Q0 , versus j.

Jumps after an omitted stimulus

These give added information at little cost. If, at equilib-

rium, with final values pf and af, a stimulus is omitted

(pjþ1 ¼ 0), there is extra refill in the next Dt. At j þ 1,

the system does not ‘‘know’’ the stimulus is to be omitted,

and therefore fjþ1 ¼ ff. Designating a0 as the a for the next

Dt, fjþ2 ¼ a0 þ ff (1 � a0), with ff ¼ af/(af þ pf � afpf)

Hence, fjþ2/ff ¼ 1 þ pf a0 (1/af � 1), and if p and hQihhi
are unchanged by the gap, this will also be the ratio of hSjþ2i
to hSji. Thus, hSjþ2i/hSjis 1þ pf(1� af) indicates a change

in parameters during the extra recovery time provided by the

omitted stimulus. From the simulation, it turns out that the

SE of the jump is quite low if one uses the average of

four or five hSjis before the omission instead of hSji, but

is very much higher for estimated quantal size. For example,

with pf ¼ 0.6, a0 ¼ af ¼ 0.2 and no desensitization, the

simulation gave, for 20 iterations, jump ¼ 1.48 � 0.1,

jump_Qc ¼ 1.01 � 0.5, and jump_cvm ¼ 1.01 � 0.34.

Averaging estimates of the jump from each train is to be

avoided, because it gives a very high SE and an upward

bias.

Finding all a and p

Assuming Q (and its variation) to be constant, the equations

fjþ1¼ ajþ fj(1� aj)(1� pj) and sj h hSji/S1¼ pjfj/p1 imply

a unique set of aj for any assumed set of pj: at each jfjþ1 ¼
pjþ1sjþ1/p1 and the first equation then gives aj. Conversely,

any preset array of a yields an array of p that exactly fits

the observed sj array. No further information is available

from vmj. The sole constraint is that derived a or p must

not be negative or >1. Theoretically, with values

of cov(Sj,Sjþ1)/var(Sj), it is possible to obtain all a and

p without assuming a set of a or p—the relevant equations

are readily deduced—but it turns out that the derived ps

are largely governed by the covariances. If, from sampling

error or reality, covariances are excessively negative,

p becomes >1, and covariances that are near 0 or positive

produce p that is near 0 or negative.

Measurement of signals

This is generally not a trivial problem. All the above equations

assume that S accurately represents the sum of signals from N
sites. In reality, the signal seen is the sum of signals initiated at

different times (23), each being the convolution of an impulse

function at its time of generation with the time course of

channel opening and the time course of channel closing.

The latter have stochastic components that can be ignored

only if the number of channels opened by each quantum is

not small. In theory, the only correct measure is the area of
the signal, but in practice this is prone to error because of base-

line uncertainty. Such error is reduced if the signal is made

briefer by using the augmented derivative of the record

(yi) � zi ¼ (yi � ayi-1)/(1 � a), where a ¼ exp(�1/t); z(t) is

the ‘‘deconvoluted’’ waveform � using for t the main time

constant of signal decay, presumably the t of channel closing.

However, smoothing z(t) with a t high enough to make its

peak later than the time period encompassing the bulk of

z(t) will have at this peak (and everywhere after) a value

proportional to the area of z(t), and this smoothed waveform

may already be available as the original signal. However,

there are two more considerations. Measurement should not

be made at a time when there is an appreciable but ill-defined

tail of an antecedent signal. With decay t more than one-

fourth the time between stimuli, to avoid artifactual covari-

ances it may be better to use areas of deconvoluted signals

rather than subtracting from the peaks extrapolated tails of

previous signals. Second, a computer program will always

find a maximum in the allotted time window, from noise or

a spontaneous event, even if there is no true signal. A simple

alternative to peak height is to determine the time at which the

peak value occurs in the average of signals, and to measure all

signals at this time.

Covariance of records with signal heights:
maximizing detection of covariance

One method of detecting covariance is to measure the heights

of the first signal (S1) in each train and obtain the covariance of

S1 with every point (yi) in the records of each train for the first

few stimuli. Even if the signals are superimposed on the tails

of previous signals, the covariances are visible as bumps at the

times of the signals, superimposed on the positive covariances

generated by (self) covariance of S1 with the tail of the first

signal. Provided other signals can be measured unambigu-

ously (i.e., well separated from residua of previous signals)

the same can be done with S2, S3, etc. It can readily be shown

that the time course of every bump covariance (including the

self-covariance) should have the same time course as the

signal itself, with two provisos. The S with which the correla-

tion is made must adequately reflect the area of the signal,

and time dispersion of quantal release in each signal must

be random rather than reflecting differences in latency of

subpopulations of sites. Any noncorrespondence of time

course is made much more obvious by doing the correlations

with deconvoluted records (zi; see above).

Individual values of covariance between signals at equilib-

rium have a high sampling error, but a negative average is

implied by Qcf and Qt larger than vmf, whereas a positive

average is indicated by Qcf and Qt less than vmf.

Nonhomogeneous sites: ‘‘compound binomial’’

Early in trains, the first fall, hS1i to hS2i, is more than with

homogeneous sites. Final (equilibrium) hSi and estimated

hQi arise mainly from sites with relatively high final a and
Biophysical Journal 96(6) 2505–2531
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p, because final quantal content at a site is higher with high

final a and/or p. This affects estimated hQi only if Q is corre-

lated with a and/or p. With desensitization, this effect is

modified, since high quantal contents imply lower hhji.

Branch or whole axon failure of afferent action
potentials

If stimulation fails intermittently at groups of sites that consti-

tute a substantial fraction of N, and not at the same stimuli at

which trains are iterated, the result is a large increase in vm and

correspondingly false estimates of quantal size. The error is

readily detectable unless the failure of stimulation of release

sites is as likely for early as for late stimuli in the trains.

Sites releasing more than one quantum

If single sites can release more than one quantum at each

stimulus, it makes no difference to means, variances, and

covariances (except for NA rising in proportion) unless the

probability of release of a quantum is altered by whether

or not another is released. Any tendency for two or more

quanta to be released together produces raised vm and

derived values, and reduced apparent N.

Release-modified a and p

Models in which the a for refill after a stimulus is increased by

the output (and previous outputs) at a site (or group of sites)

can produce sequences of hSji and variances that resemble

those generated with a simple model (constant a and p) but

add a positive component to the negative covariances

produced by depletion—a net positive cov(Sj,Sjþ2) is always

largest at equilibrium and least for cov(S1,S3). Making a abso-

lutely contingent on output history gives slow drift of hSji
either to zero or to hS1i. Modifying p by previous outputs

generally produces sets of hSji and, especially, vmj (note

that these use between-train variance) that differ substantially

from those produced by a simple model.

Sampling errors

SEs of vm (i.e., the between-stimulus-number standard devia-

tion of average between-train variance/mean) and all corrected

vm values are independent of N and dominated by the SE of

variance, since the SE of means is relatively negligible; with

ni representing the number of values over which variance is

determined, this is SEv ¼ SE(var)/hvari ¼ 0.1 � (200/ni)
0.5,

i.e., �10% for ni ¼ 200 iterations, and �32% for ni ¼ 20,

for Gaussian variables, and (checked with 10,000 randomly

generated values). The same applies for binomial variates

with p < ~0.8 – at p > 0.9, where the SE becomes noticeably

more. Thus, with 10 estimates of equilibrium vm, each at one

stimulus number, the expected SE of vmf is�10%. If variances

are determined in smaller groups the SD of variances (or vm)

increases somewhat. Given ni ¼ 20, taking averages of two

variances each determined in groups of 10, the SE goes from
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�32% to �32.5%, averages of four variances from groups of

five gives�34.5%, and averages of 10 variances from groups

of two gives �43%, although the average variances do not

differ. Thus, SEs of vm are in principle somewhat raised if vari-

ances (and covariances, see below) are determined between

adjacent pairs of iterated trains (11), to minimize positive

covariances and excess variance arising from nonstationarity,

instead of using differences in each iteration from overall aver-

ages. In the same simulations, SEs of Qt (eliminating any

contribution of nonstationarity to variances) came out some-

what higher (�55%) than vm using adjacent pairs.

The above numbers are absolutely stereotyped, and all

models invariably produced these values for the SEs of vm,

those of QA (or cvm) being lower by the factor (1 � pAsf),

~0.8–0.9. However, with models modified in various

(implausible) ways (e.g., cycling of p) to produce a component

of between-train variances that was common to all the stim-

ulus numbers (at equilibrium), the SEs of vmf could be

reduced, roughly in proportion to the increase in variances

above that arising from the binomial nature of outputs.

The sampling error of cov(Sj,Sk), which was independent of

its value, came out between 70% and 90% of SEv multiplied by

(var(Sj)var(Sk))
0.5. In terms of percentage (given that average

values are appreciable), this increases greatly as signals decline.

For example, with a simple depletion model, with negligible

a and p constant at 0.5, with 20 iterations, the sampling errors

of cov(S1,S2), cov(S1,S3), and cov(S2,S3) came to about�40%,

�60%, and �100%, respectively. Despite the high sampling

errors of covariances, sampling errors of Qc are uniformly

~1.1–1.2 times SEv. Using any reasonable value of N0, the

corrected vmj has the highest SE at j ¼ 1 and progressively

less as the correcting term becomes closer to 1. Accordingly,

SE of QA (cvmf) were generally lower than those of vmf in

proportion to this factor (1� pAsf), ~0.8–0.9.

Thus, with 20 iterated trains and 10 S in each at equilib-

rium, for seeing desens, one has a value of QA � 9%, and

early signals (before desensitization is complete) each with

a Qa of �28%. Consequently, Qa1/QA has a sampling error

of �26%. If hQi(1 þ cvh
2) declines by 40%, one needs

approximately three repeats (or data from three cells, or at

three different stimulation frequencies) to see the reduction

with a ‘‘t’’ test with P < 0.05. Using four early Qas, depend-

ing on how fast quantal size goes down, the decline should

be seen in one or two sets of data.

METHODS

Slice preparation

The Animal Care Committee at The University of British Columbia

approved these experiments on young adult Sprague-Dawley rats. Rat brain

at age P12–15 presents favorable conditions for proper formation of patch-

clamp seals, due to a lack of extensive myelination. Animals were decapi-

tated while under deep isoflurane anesthesia. The brain was quickly removed

(in ~1 min) and immersed for 1–2 min in ice-cold (~0�C) sucrose solution.

The sucrose solution contained (in mM) 248 sucrose, 26 NaHCO3,

10 glucose, 2.5 KCl, 2 CaCl2, 2 MgCl2, and 1.25 NaH2PO4. The brain
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was quickly transferred to artificial cerebrospinal fluid (ACSF), which had

the composition (in mM) 124 NaCl, 25 glucose, 3 myoinositol, 2 Na-pyru-

vate, and 0.4 ascorbic acid (~320 mOsm). On saturation with 95% O2 and

5% CO2, the ACSF was adjusted to a pH of 7.3–7.4. The brain was trimmed

into a cube and, with a Vibroslicer (Campden Instruments, London, United

Kingdom), cut into 250-mm sagittal slices for whole-cell recording. The

slices were cut in a coronal plane that intersected with a sagittal plane at

a 45� angle. The slices included portions of the ventrobasal thalamus and

nucleus reticularis thalami (nRT), and importantly preserved fibers of the

internal capsule. The slices were incubated for 2–6 h in ACSF until required.

For recording (at 22–25�C), the slices were perfused in a submersion type of

chamber (~0.3 mL) on a Nylon mesh with oxygenated ACSF and drugs.

Whole-cell recording

Voltage-clamp recording was performed in the whole cell configuration with

microelectrodes (resistances, 5–8 MU) and an Axoclamp 2A amplifier (Axon

Instruments, Foster City, CA). To minimize capacitance, the volume of the

recording bath solution was lowered and the electrode was coated with

Sylgard. EPSCs were sampled at 20 kHz and filtered at 1 kHz. pClamp

8.2 software (Axon Instruments) was used for data acquisition, storage, and

analysis. The electrode solution contained (in mM) 125 Cs-gluconate, 20

TEA-Cl, 3 QX-314 (the lidocaine derivative), 10 N-2-hydroxyethylpipera-

zine-N-2-ethanesulfonate (HEPES), 5 Na-phosphocreatine, 4 Mg2þ-adeno-

sine 50-triphosphate salt (MgATP), 0.4 Naþ-guanosine 50-triphosphate

(NaGTP), and 10 ethylene glycol-bis-(b-aminoethyl-ether)-N,N,N0,N0-tetra-

acetic acid (EGTA). MgATP, EGTA, NaGTP, HEPES, QX-314, CsCl, and

the inorganic chloride salts were obtained from Sigma (St. Louis, MO).

The electrode solution had an adjusted pH of ~7.3 and an osmolarity of

295–300 mOsm.

Passive membrane properties

With QX-314 and Cs-gluconate applied intracellularly to block, respec-

tively, Naþ and Kþ channels, the input resistance (Ri) increased by ~81%

(380 � 25 MU, n ¼ 10, P < 0.05) compared to values obtained using solu-

tions containing Kþ-gluconate and no QX-314 (210 � 15 MU, n ¼ 9).

Hence, intracellular blockade of Kþ (and Naþ) channels presumably obvi-

ated any progressively increasing shunting of recorded signals during trains

in addition to improving the signal/noise ratio (24–26).

The experiments were performed in neurons voltage clamped at �80 mV

to minimize postsynaptic contributions of voltage-dependent Ca2þ conduc-

tance (27).

Drug application

The slices were perfused on a nylon mesh with oxygenated ACSF and

drugs. The drugs were prepared in distilled water, firstly as stock solutions

at ~1000 times the required concentration and then frozen. Just before the

experiment, the stock solutions were thawed and diluted in ACSF for appli-

cation. D-2-amino-5-phosphono-valerate (APV, 50 mM (Sigma)) was used

to block receptors for N-methyl D-aspartate. Receptors for g-amino butyrate

of type A (GABAA) were blocked by picrotoxin (50 mM). The drugs were

diluted in ACSF and the pH adjusted to 7.3–7.4. Extracellular solutions

were delivered in two ways: 1), bath applications performed using

a roller-type pump at a rate of 2 mL/min through a submersion-type cham-

ber with a volume of ~0.3 mL, and 2), local application by a glass pipette

(~100- to 200-mm tip diameter) connected by polyethylene tubes to

various reservoirs. The local application approach allowed for a rapid switch

(within <5 s) between the various drugs (28).

Corticothalamic EPSCs

EPSCs were evoked by stimulating corticothalamic projections to ventro-

basal neurons (held at �80 mV), using a bipolar tungsten electrode posi-

tioned over the internal capsule at a 0.2- to 0.3-mm distance from the
recording electrode. For identification of corticothalamic pathways, the

internal capsule was first stimulated with a strong (100 V) stimulus pulse

(100–200 ms). As the electrode was moved progressively closer to the slice

surface, the stimulus amplitude was reduced to the minimum value (range

5–20 V) that evoked responses to every stimulus. Once the electrode was

just above, but not touching, the surface of the internal capsule, the stim-

ulus amplitude was again adjusted to twice the minimum value. This proce-

dure produced a stable stimulation of a small number of afferent axons,

evident from a steady average and <~10% variation in the trial-to-trial fluc-

tuation of the first EPSC amplitude (12), and a lack of drift in time of equi-

librium EPSC size as trains were iterated. Subsequent examination of data

showed no need for rejection because of possible intermittent failure of

axon stimulation, or branch failure, which would be evident in sudden

increases in the variance/mean ratios after the first few EPSCs (see

Theory).

Stimulation trains

After preliminary experiments, it was decided to use trains of length

20 pulses delivered at 2.5, 5, 10, and 20 Hz with a 20-s intertrain interval,

chosen as sufficient to allow complete poststimulation recovery. The trains

were applied in a sequence that included all possible combinations of

frequencies, avoiding a bias in results resulting from possible ‘‘memory’’

of the previous train (10, 10, 20, 20, 5, 5, 2.5, 2.5, 10, 2.5, 20, 10, 5, 20,

2.5, 5). In each train, the 11th stimulus was omitted (see Theory).

Deconvolution of signals

In principle, any time series, y(t), can be expressed as the convolution of

a ‘‘forcing function’’ and a prescribed function. For simple prescribed expo-

nential functions with time constant t, the forcing function is expressed as

y(t) þ tdy(t)/dt, also known as the ‘‘augmented derivative’’. In practice,

with an array of point values y[k] with t > ~10 sample times, this is approx-

imated as (y(k)� a*y(k� 1))/(1� a) with a¼ exp(�1/t), or (y[k]-a*y[k-2])/

(1a) with a ¼ exp(�2/t), the latter being equivalent to the former with two-

point running average smoothing, and therefore less noisy. Deconvolution

with an exponential function is the exact converse of integrative ‘‘smoothing’’

sm[k] ¼ (1 � a)*y[k] þ a*sm[k � 1], which was used twice, with a ¼
exp(�1/2), for the deconvoluted records shown in the Results section.

Measurement of signals

Three different measures were made of EPSCs: 1), average of values around

the peak minus baseline (average of points for a period of 10 ms before the

stimulus extrapolated with t to the time of measurement, for all stimuli except

the first); 2), average of five values at the time of the peak of averages of

signals for the particular stimulus number minus baseline; 3), area of decon-

voluted signals as the sum of values in a broad window (determined from

averages) minus an interpolated baseline at each point from linear regression

with time of values before the stimulus and after the window period. The

method for determining baseline was selected as the one, of several that

were tried, that most successfully minimized correlation of baseline with

amplitude of antecedent EPSCs. Otherwise, measure 1 was prone to find

a signal where there was none (because a maximum within a window is likely

to be at a point where there is a spontaneous event), an error not found with

measure 2. All subsequent calculations were done with all three measures,

and gave essentially the same results regarding evolution of means, variances,

and covariances (and sampling errors), and derived values.

For brevity, the data presented in Results are those using measure 2, with

the exception of EPSCs recorded in the presence of cyclothiazide and

kynurenate, where measure 3 was used. In these, the overlap of successive

EPSCs was considerable, and the chosen measure was that which, in theory,

most avoided any artifactual covariances. EPSC amplitudes have been

designated S1, S2, S3, etc.
Biophysical Journal 96(6) 2505–2531
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Estimates of p, a, equilibrium variance/mean,
and N

As explained in the theoretical section, these parameters are accessible only

with the unrealistic assumption that p, a, and quantal amplitude are constant

in the train. Then, at stimulus 1 the fraction of filled sites f1 is 1 and at every

subsequent stimulus fjþ1 ¼ a þ fj(1 � a)(1 � p). Equilibrium (final) ff is the

same as equilibrium S (Sf) divided by hS1i and is a/(aþ p�ap). Thus, for any

given p, a¼ pff/(1� ffþ pff). For each set of average values of S in a train, Sf

was determined as the average of S values for stimuli 5–10 and 15–20. A

subroutine then went through all possible values of p, from 0.15 to 0.95, to

obtain the least-squares best fit of predicted values of Sj/S1 to data, for j ¼
2–6. Then, assuming constancy of p, one has QA ¼ vmf/(1 � pff) and, since

hS1i¼ pQN, NA¼hS1i/p/QA ((hS1i/p� Sf)/vmf), where vmf is the equilibrium

variance/mean. vmf was determined as the average of var(Sj)/hSji for j¼ 5–10

and 15–20, variance being the mean-square of deviations from the mean of

values at the same stimulus number, j, in the iterated trains. Calculation of

variances (and covariances) using adjacent trains (11,12) made no appreciable

difference to the values obtained.

Quantal size: ‘‘corrected’’ variance/mean

‘‘Corrected’’ variance/mean was determined in three ways. Using ‘‘C’’

language terminology for clarity and designating vm[j] h var(Sj)/hSji:

1. cvm½j ¼ vm½j þhS½j i=NA��� , with NA as determined using best-fitting

p and a;

2. cvm0½j ¼ vm½j þhS½j i=Ncov��� , with Ncov ¼ �covðS½1 ; S½2 Þ=��
hS½1 i=hS½2 i�� ;

3. Qc½j ¼ vm½j �covðS½j ; S½j þ 1 Þ=hS½j þ 1 iðor� cov�����
ðS½j ; S½j � 1 Þ=hS½j � 1 i��� .for j ¼ 9 or 19). (This is the method used by

Scheuss and Neher (11).)

In addition, a theoretically partially corrected variance/mean was determined

using variance within trains, for near equilibrium S, j ¼ 5–9, 15–19:

4. Qt
�
j
�
¼hð2�S

�
j
�
�S½j�1

�
�S½jþ1�2i=2=ðS½j þS½j�1 þS½jþ1 Þ��� .

In the Results section, equilibrium cvm (‘‘eq_cv’’ or ‘‘cvmf’’) is identical to

the Q found with p, a, and N, and eq_Qc is the average of Qc[j], for j¼ 5–10

and 15–20; Qt is the average of all Qt[j], all nominally equilibrium values.

RESULTS

Database

EPSCs evoked by trains of stimuli at 2.5, 5, 10, and 20 Hz,

with 20 iterations at each frequency, in a ‘‘balanced’’

sequence (see Methods) were successfully recorded from

six neurons.

Later examination showed that for neuron 1, the 20-Hz

data showed major differences from the other neurons, and

from the same neuron at 2.5, 5, and 10 Hz, in that there

was marked nonstationarity, manifested as a sudden increase

of average late EPSC amplitude around the middle of the

sequence. Also, the Qt within trains was ~20% of the equi-

librium vm (variance/mean ratios, with variance calculated

between trains). The data from this neuron was therefore

excluded from this analysis, but the original numbering of

neurons has been retained as a reminder that behavior of

EPSCs was not always the same.

Unless otherwise noted, the data presented below are from

neurons 2–6 of this series. In each of another six neurons,

six trains of EPSCs at 10 Hz were obtained in control bathing
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medium and in the presence of both cyclothiazide and

kynurenate to block receptor desensitization and saturation

(12), and these results are also presented here.

Rundown of EPSCs in trains

Repetitive stimulation produced a rundown of EPSC ampli-

tude early in the train, with a ‘‘jump’’ in EPSC amplitude

after the omitted stimulus. This short-term depression was

frequency-dependent. Fig. 1 shows, at left, averages of

records at each stimulation frequency, a different cell having

been arbitrarily chosen for each, and at right, arbitrarily, the

fourth train alone for each of these, illustrating the fluctuation

of signals within any individual train. For 20-Hz trains, the

records are continuous. In the other trains, some dead time

between responses has been omitted. The impression of

a constant time course of the EPSCs is reinforced in Fig. 2

A, where the same record as the last train of Fig. 1 is shown

inverted, and on a faster time base. However, in Fig. 2 B, the

augmented derivative of this record (i.e., the deconvoluted

record) using the apparent time constant (t) of late decline

of signal averages (10.85 ms), shows that individual signals

have time courses that are sometimes fragmented, as might

be expected if each EPSC is composed of varying units

that also appear as little bumps scattered between stimuli

(23,29). The deconvolution producing the record in Fig. 2

B may be regarded as a convenient method of either bringing

out detail or actually showing the timing of channel opening

implied by the original record, assuming that t is the time

constant of monoexponential channel closing. This particular

example (cell 4) was chosen for low noise and relative clarity

of spontaneous or asynchronous activity, which was a little

more prominent than in the other cells. It may be noted

that in some records, particularly from cells where the effect

of cyclothiazide/kynurenate was tested, the deconvolution of

signals showed complexity in time course—‘‘tails’’ that

progressively diminished after stimulus1—that might

FIGURE 1 Examples of average corticothalamic EPSCs in trains (left)
and a single train (right) at each stimulation frequency. Except at 20 Hz,

some dead time between stimuli has been eliminated. Note jumps in

EPSC amplitude visible in the averages, after the omitted 11th stimulus.
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A

B

FIGURE 2 A single EPSC train at 20 Hz, inverted, and

the same train after ‘‘deconvolution’’ to bring out the vari-

ability of time course of signals and visualization of ‘‘asyn-

chronous’’ events.
indicate subpopulations of release sites with delayed release

and more-than-average rundown.

Correlations between EPSCs

Mutual correlation of signals, illustrated in Fig. 3, showed

results both consistent with the depletion model—negative

covariances with adjacent signals—and contrary to this

model—positive correlation of the first and third signals,

and, to a lesser extent, of the second and fourth signals. In

Fig. 3 A, under the (inverted) average of the records for

the same period, are shown the correlations of all the points

in the time period, including the first four signals with heights

of, respectively, the first, second, third, and fourth signals in

each train (i.e., average y[iter][j] * (S[iter][k]� hS[k]i), where

y[iter][j] is the jth point in train number iter, and S[iter][k] is

the height of the kth signal in train number iter). The above

data are for cell 6 at 20 Hz. However, a virtually identical

picture was obtained for the other neurons, and at all stimula-

tion frequencies. The correspondence in time course of

average signals and ‘‘self-covariance’’ (the part of the record

where points have been correlated with the height of the cor-

responding signal, i.e., time-partitioned variance) is very

obvious. The actual scaling of the covariances here was

such as to make the maximum of the average self-covariance

of equilibrium signals the same as the maximum of their

average. The relatively low self-covariance of the first signal

reflects a variance/mean less than that of equilibrium signals.

Fig. 3 B shows the same data as in Fig. 3 A, but with decon-

voluted records (t ¼ 9.1 ms), and covariances with areas

instead of signal heights. Using original heights gave traces

indistinguishable from those shown here, indicating that

they were adequate surrogates for area. In theory, all bumps

(inverted or not) should have the same time course as the

corresponding averages if the measured signal heights are

good surrogates for area of signals (see Theory). Also, the

peak heights of the nondeconvoluted records (Fig. 3 A)

are at a time where the deconvoluted records show the bulk of

release included. It is also notable that for the third signal the

self-covariance shows tiny irregularities that are duplicated in

the covariances with the other signals but not apparent in the

average. Similar deviations from theoretical expectation were
seen with other neurons and at all stimulation frequencies, and

will be considered elsewhere. The EPSCs recorded in the

presence of cyclothiazide plus kynurenate (‘‘ctz_ky’’) were

considerably more prolonged than controls, resulting in an

inherent difficulty in defining ‘‘height’’, except for the first

in the 10-Hz train. Correlation of all points in the record

with height of the first (illustrated in Fig. 3 C for one of these

neurons) showed the same general picture as in Fig. 3 B, but

with bumps—negative and positive correlations—superim-

posed on a ‘‘tail’’ reflecting late self-covariance of the first

EPSCs. Fig. 3 D shows correlation of the time period corre-

sponding to the 10th–14th stimuli with the height of signal

10 (which may have included some of signal 9). The positive

correlation with signal 12 (i.e., the EPSC after the omitted

stimulus at 11) occurred in all six sets of ctz_ky data, and in

FIGURE 3 (A) Covariance of continuous records with height of S1, S2, S3,

and S4 ,respectively, under the average inverted original. Each signal-signal

covariance is present at all relevant points. (B) Same records as in A, but

deconvoluted. Note the relative brevity of signals. (C) Procedure similar

to that in A, but only for covariances with height of S1. Data are from

a neuron in cyclothiazide/kynurenate, which broadens EPSCs. (D) The

same train set as in C, showing positive correlation across the omitted stim-

ulus. Note the appearance of covariances despite there being only six trains.
Biophysical Journal 96(6) 2505–2531
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their controls, and in all the main series at all Hz, but varied

considerably in magnitude. The subsequent bumps corre-

sponding to correlations of signals 13–15 with signal 10

were very variable between data sets and, overall, not statisti-

cally significant.

The scattergraphs in Fig. 4 make clear the existence and

magnitude of the correlations between amplitudes of succes-

sive EPSCs. Fig. 4 A shows a plot of the data from neuron 2:

the height of the second EPSC versus the height of the first (S2

versus S1) for the 20 iterated trains. The negative correlations

are very obvious for data at each stimulation frequency. For

the depletion model, the slope of correlation, b, should be

�p in the absence of refill and otherwise less negative. In other

words, the observed slopes, especially at 20 Hz, indicate

rather high p. Using normalized values—S1/hS1i, S2/hS2i
etc.—allows points for trains from different cells to be put
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on the same graphs (Fig. 4 B). Now, the depletion model

with no refill predicts b equal to�p/(1� p) for S2/hS2i versus

S1/hS1i. For S3/hS3i versus S1/hS1i, the observed positive

slopes are quite different from the predicted slope, which is

negative. The slopes of S3/hS3i versus S2/hS2i accord with

theory in that they are negative, but turn out (see below) to

be too negative.

Derived measures and parameters

The bar graphs in Fig. 5 summarize some results from the

five neurons where data was obtained at 2.5, 5, 10, and

20 Hz. Values of hS1i varied between cells, but equilibrium

values (averages for stimuli 5–10 and 15–20, equilibrium

S ¼ Sf) were in proportion. That is, at each Hz, the fall of

signal amplitude was virtually identical in all five neurons.
A

B FIGURE 4 (A) Scatterplots of S2

versus S1 for one neuron only at 2.5, 5,

10, and 20 Hz. The 30 pairings available

in each are sufficient to see the negative

correlations. (B) Using data from all five

neurons, by normalizing each set of Ss

by dividing by the means. The slope of

the correlation between S2/hS2i versus

S1/hS1i is �p/(1 � p), in the absence

of refill, or less negative if refill is appre-

ciable. The positive correlation of

S3/hS3i versus S1/hS1i is contrary to

theoretical expectation.
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Equilibrium values of variance/mean (‘‘vmf’’) were only

slightly different between cells, with no consistent variation

with stimulation frequency. Qt was on average very close to

vmf, as were also equilibrium Qc. In other words, ‘‘correc-

tion’’ of variance/mean ratios to obtain true quantal size

(cf. (11) re Qc) produced values almost identical to vmf.

Very notably, the sampling errors of vmf, Qt, and Qcf (and

also QA, not illustrated) were consistently less than

expected—variance has an expected SE �10% of mean for

200 samples, and each of the above values was obtained

for 10 EPSCs with 20 iterations. This phenomenon is consid-

ered in more detail below.

The simplifying assumption of constant Q, p, and a for

each train gave nominal values for both these parameters,

and for N and Q (see Theory and Methods sections), as pA,

aA, QA, and NA. These showed no consistent trend with stim-

ulus frequency, except for aA which, as expected, declined

with less time for ‘‘refill’’ between stimuli. Since nominal

FIGURE 5 Various measured and

derived release parameters. (A and C)

Measured S1, S1/Sf , and derived param-

eters (vmf, Qt, Qc, and ratios) are given

for each neuron . (B) Between-neuron

variations for Qt/vmf and Qc/vmf ratios

and SE/mean values.
Biophysical Journal 96(6) 2505–2531



2520 Ran et al.
p was always ~0.4, QA (vmf/(1� pASf/hS1i) were between 10

and 20% more than vmf, with no significant variation with

stimulus frequency and little difference between neurons.

Sampling errors were 10–20% less than for vmf.

The NA for each of the neurons showed unexpectedly high

variation with different stimulation frequencies. Further

examination showed that this arose primarily from variation

in estimates of pA rather than QA. Using the data for all

stimulation frequencies in the algorithm for computing

a common least-squares-fitting pA, pA varied among neurons

between 0.44 and 0.38, with an average of 0.42; variation of

NA between stimulation frequencies virtually disappeared,

and values for each neuron were close to the average of

the values illustrated.

The last panel shows values of NA multiplied by -cov(S1,S2)/

hS1i/hS2i, the latter being 1/Ncov (see Theory). For these,

unless ‘‘refill’’, a, is appreciable, values of ~1 are to be

expected, otherwise, <1. Values of NA/Nx, Nx being the

N calculated by correlating vmj with hSji, had high SEs, as ex-

pected (see Theory), but average values close to 1 in every

neuron. The alternative methods of finding N (also see Theory)

using ‘‘finite summations’’ gave values (not shown) that

differed from NA much more than in simulations and in most

cases in the opposite direction to that expected with desensiti-

zation. In other words, the time course of rundown differed

from that expected with constant p and a (also see below).

Tests of nonstationarity and nonlinearity/
desensitization

In view of the above results, and those in the next section,

these were partly redundant, since nonstationarity would

introduce a positive component to every cov, denied in the

data shown in Fig. 4. Using the method for finding d2

described in the Theory section, in all but one of the 20 data

sets (five neurons at four stimulation frequencies) this value

was negative, with an average of �0.0011 � 0.0003 and no

significant difference with stimulation frequency. Theoretical

values were all close to �0.0029, for the depletion model.

Thus, either there was a tiny nonstationarity or overall covari-

ances were less than expected for the depletion model.

With nonlinear summation, the apparent quantal size

should be smaller for large, early signals than at equilibrium,

and with desens the opposite should be true. The data gave

estimates of Qa1/QA equal to 0.96 � 0.08, and weighted

averages of Qa for the first four stimuli, divided by QA, of

0.975 � 0.070. Weighted averages of cvm/QA for the first

four stimuli gave 1.01 � 0.026. Based on simulation results

(see Theory), these measures are incompatible either with

desensitization or nonlinear summation, with c (in apparent

S ¼ trueS/(1 þ trueS/c) < ~20 � hS1i.
With desens one would expect quantal amplitude at equi-

librium, QA, to be more reduced the higher the stimulation

frequency and rundown of signals, but the numbers, given

as a percentage of the average for the four stimulation
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frequencies, were 102 � 5 at 2.5 Hz, 102 � 3 at 5 Hz,

98 � 3 at 10 Hz, and 99 � 5 at 20 Hz. That is, there was

no significant trend in the direction expected if rundown

had a postsynaptic component.

Evolution of estimated values of quantal
amplitude

In Fig. 6, the evolution in trains of variance/mean ratios and

derived values for quantal amplitude are shown for the five

neurons at 2.5–20 Hz (Fig. 6 A), and for the six neurons in

which results were obtained in control medium and in

the presence of cyclothiazide and kynurenate (Fig. 6, B
and C). Although the latter two data sets were from only

six iterations, they show the same features that appear for

the main data set in Fig. 6 A. The variance/mean ratio for

S1 was consistently less than the equilibrium average, as

expected. In partial agreement with Scheuss et al. (12), Qc
was consistently high for the first few stimuli; here, cyclo-

thiazide/kynurenate made no difference. However, corrected

vm using NA showed no significant trend, and the same was

true for Qa (not illustrated). This was also true of cvm0 j, vmj

corrected using at each j the same constant apparent Ncov

given by cov(S1,S2)/hS1i/hS2i. Since the formula Qcj ¼ vmj

� cov(Sj,Sjþ1)/hSjþ1i is equivalent to Qcj ¼ vmj þ hS/iN,

with N at each stimulus given by cov(Sj,Sjþ1)/hSjþ1i/hSji, it

can be concluded that the apparent early decline of Qc
appears not to represent any true change in quantal amplitude

but instead to reflect a failure of cov(Sj,Sjþ1) late in trains to

properly reflect N.

Relation between calculated quantal size
and amplitude of spike-trigged miniature events

The logic employed for estimating the average size of

spike-triggered miniature events is illustrated in Fig. 7.

Invariably, events that could be ‘‘miniatures’’ (i.e.,

responses to individual quanta) occurred more often imme-

diately after trains than before them. These were measured

manually, and the amplitude was expressed as events/s so

that the corresponding histogram for pretrain spontaneous

events (expected to make the same contribution at all times)

could be subtracted. The net results are summarized in

Fig. 7 C. The coefficients of variation of spike-triggered

event size were low enough that if the same applies to

the quantal units of the signals, the terms in the equations

for variance and covariance (see Theory) amount to no

more than ~1.1. Calculated quantal sizes (QA) were fairly

consistently somewhat larger than mean event size (multi-

plied by 1 þ cv2), but not by a large factor. It should be

noted that, according to the depletion model, the release

sites contributing to ‘‘asynchronous’’ release should mainly

be those that did not release quanta in response to prior

stimulation. That is, if release sites vary in p and a

(‘‘compound binomial’’), the spike-triggered ‘‘miniatures’’

may come from release sites with relatively low p and/or
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A B C

FIGURE 6 (A) Evolution in trains of

variance/mean ratios (vm). (Upper) Qc,

cvm, and cvm0 . Note that only Qc

declines in the train. Data in A, main

set: five neurons at four stimulus

frequencies. (B and C) Averages from

six neurons before treatment and with

cyclothiazide/kynurenate at 10 Hz

only, and with only six trains in each.

The latter signals were measured as

areas in deconvoluted records.
high a; these would have relatively low hQi if the sites are

relatively distant from the soma and the miniatures are

made small by filtering.

Anomalies in EPSC rundown and covariances

The data consistently showed covariances that were different

from those predicted by the depletion model. To be able to

average results from the five neurons, with differing N, and

therefore predicted values of covariances, a single value of

N was calculated for each cell (from the common pA using

data from all stimulation frequencies, and average QA), giving

N¼ hhS1ii/QA/pA). Each cov was then expressed as C(i,j)¼N
cov(Si,Sj)/hSii/hSji. This procedure also allowed comparison

of each covariance with the (always negative) theoretical value

for the depletion model. For example, in theory, cov(S1,S2)¼
�hS1ihS2i(1� a1/f2)/N and therefore, C(1,2)¼�(1� a1/f2),

which can never be <–1 (Vere-Jones (9), and see Theory),

unless N has been overestimated.
Some particularly notable values of C(i,j) are listed in Table

1 as averages� SE (between cells). Even if one supposes that

refill probability a is close to 0 at the start at 20 Hz, most of the

listed values are significantly different from expected values.

They are either too negative—e.g., C(1,2) at all but 2.5 Hz;

a1/f2 should be appreciable at all but 20 Hz; C(2,3) is theoret-

ically always less negative than C(1,2)—or they are positive:

note, in particular, C(10,12), from the covariance of signals

before and after the omitted stimulus, at all Hz. In all neurons,

this follows a series of C(j,j þ 2) with values near zero.

The evolution of covariances (Fig. 8) shows another

anomaly, namely that from stimulus 4 or so, covariances

of one signal with the next were essentially zero, as was

already implicit in the correspondence of equilibrium Qc
and Qt with equilibrium vm (Fig. 5), whereas theory predicts

negative values. Note also the reappearance of (excessive)

negative values for C(12,13)—after the omitted stimulus.

Values for C(i,i þ 3) were generally close to 0, except for

small, usually significant, negative values for C(1,4). Note
Biophysical Journal 96(6) 2505–2531
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that similar patterns for C(i,i þ 1) and C(i,i þ 2) occurred in

the data for the six neurons tested for an effect of cyclothia-

zide plus kynurenate (only six trains each at 10 Hz) both

before and with ctz_ky (Fig. 8 B).

All these features of the covariances were unaltered by

elimination of covariances due to mutual correlation with

antecedent signals (see Theory); the actual values were virtu-

ally unchanged.

In Fig. 8 C are shown autocorrelation functions for the

data. Here, pairings giving obvious large covariances, C(1,i
< 4), C(2,i < 4), C(12,13), have been omitted. These

show an absence of net covariance, particularly for

A

B

C

FIGURE 7 Analysis of amplitude of

evoked and spontaneous ‘‘miniature’’

events. (A) Evoked (spike-triggered)

asynchronous miniature events were

sampled immediately after stimulus

trains (poststimulation), whereas ‘‘spon-

taneous’’ miniature events were sampled

before stimulus trains (prestimulation).

(B) Histograms expressed as events/s

before and after trains give histograms

for events evoked by the trains of stimuli.

(C) Bar graphs show means at the

different frequencies for the five

neurons, the coefficients of variation, to

be compared with the QAs for the ante-

cedent trains.
Biophysical Journal 96(6) 2505–2531
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equilibrium signals, at all separations, for the main set of data

at all stimulation frequencies. On the other hand, there is

a hint of periodicity for the neurons studied before and

with cyclothiazide and kynurenate, in which, remarkably,

the same highs and lows occur at the same separations

(iDt) between stimuli (all at 10 Hz, Dt ¼ 100 ms). However,

this cycling, if any, has a period of ~3Dt—somewhat higher

than the 2Dt period necessary for any intrinsic cycling of p to

account for the positive and excessively negative covari-

ances early in the train.

Differences in rundown of EPSCs from predicted
rundown

The depletion model with constant p and a (and fixed hQi)
implies predicted values for EPSC average heights with hSji/
hS1i independent of N (varying between neurons). Averages

of these values for the five neurons are shown in Fig. 9 A. These

are also graphs of quantal content relative to the first in the

train. Deviations from predicted values (Fig. 9 B) occur early

in the trains: S2 is notably low at 20 Hz, whereas S3–S5 are

high at 10 Hz. The largest deviations from prediction are for

stimuli after the omitted stimulus at position 11: at 2.5 Hz

and 5 Hz, values are less than predicted, whereas at 10 Hz

and 20 Hz, values are higher. In other words, the ‘‘jumps’’ in

EPSC heights after the omitted stimulus were inconsistent

with the postulate of constant p and a, with the jump being

much less than predicted for 2.5 Hz and 5 Hz, and much

more than predicted at 20 Hz. This is consistent with a at 2.5

and 5 Hz being much less in the extra gap than between stimuli,

and p at 20-Hz equilibrium having risen from its initial value.

For the other six neurons, before and with cyclothiazide/

kynurenate, with data (not shown) for 10 Hz only, rundown

A B

C

FIGURE 8 (A) Evolution of covari-

ances in trains expressed as C(i,j) to

permit averaging for the five neurons,

with theoretical values for C(i,i þ 1).

For C(i,i þ 2), all theoretical values

are about half of those for C(i,i þ 1),

i.e., always negative, and only signifi-

cant values are shown. (B) Same as in

A, for the six neurons before and with

cyclothiazide\kynurenate.

TABLE 1 Selected values of C(i,j)

Stimulus frequency (Hz) C(1,2) C(2,3) C(1,3) C(2,4) C(10,12)

2.5 �0.85 � 0.13 �0.85 � 0.14 0.53 � 0.09 �0.28 � 0.39 0.76 � 0.18

5 �1.05 � 0.10 �1.18 � 0.15 0.45 � 0.19 0.62 � 0.32 1.08 � 0.14

10 �1.21 � 0.07 �1.53 � 0.25 0.99 � 0.06 1.05 � 0.15 1.16 � 0.44

20 �1.76 � 0.07 �2.62 � 0.11 1.59 � 0.11 1.95 � 0.28 2.22 � 0.18

C(i,j) h N,cov(Si,Sj)/hSii/hSji � SE between cells.
Biophysical Journal 96(6) 2505–2531
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showed no significant differences from values predicted by

the depletion model.

Pool-refill rate (ra) as a function of stimulus
frequency

As explained in Theory, a is implicitly a function of the time

interval between stimuli (Dt), but this should not be true of

pool-refill rate (ra), calculated as ra ¼ ln(1a)/Dt, provided

refill at any moment is on average proportional to the extent

to which sites have been ‘‘emptied’’ by release. In Table 2

are listed averages of these values for the five neurons

(each of which gave nearly identical values), for each stim-

ulation frequency. These data show that ra is not independent

of Dt, but is rather a rising, but saturating, function of stim-

ulation frequency.

This result could arise, for example, if every stimulus

injected something (say A) that accumulated with a time

constant that was of the order of 100 ms, with ra proportional

to the amount of AX,A combined with a receptor (X). At equi-

librium, one has ra ¼ k[AX]/[Xt] ¼ k[A]/([A] þ KA), where

k and KA are constants to be fitted to the data. This model turns

out to be indistinguishable from ra¼ kHz/(HzþKHz) and the

resulting least-squares best fit to the four points available

(fit(i)) shows an ra at 10 Hz ~15% lower than observed.

Differences between real and fitted values are less if one

postulates that the amount of A injected by each stimulus

is proportional to the output, Sj, i.e., that there is feedback,

with refill stimulated by the transmitter itself, or something

released as a consequence of transmitter action (fit(ii)). The

‘‘model’’ inherent in fit(ii) has a large element of tautology,

and Monte Carlo simulation shows that one must have

a component of injected A independent of outputs to avoid

outputs eventually going to 0 or rising to be equal to S1.

However, such a model generates positive covariances—it

can account for positive C(10,12)—but C(10,12) in the

simulation is never more than C(7,9), contrary to reality,

and C(1,3) can scarcely be raised to an appreciable positive

value. The third fitting function in Table 2 simply puts

ra proportional to Hz � (1 � exp(�Dt/K)), an arbitrary satu-

rating function with no theoretical basis—the resulting

c2 was about half that for fit(i) and double that for fit(ii).
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Evolution of p and a in trains

As explained in Theory, the depletion model implies two

equations that are independent of the mechanism of quantal

transmitter release or action, namely, for each stimulus, 1),

hSji ¼ pjfjhQjiN, and 2), fjþ1¼ ajþ fj(1 � pj)(1 � aj), where

fj is the fraction of sites with an available, releasable

quantum, presumed to be unity at the beginning of a train

(f1 ¼ 1). With unchanging Q (Fig. 6), the decline in EPSC

heights in trains must reflect a fall in either f or p, (since

N, the number of sites, is fixed, and if some fail to be stim-

ulated this can be regarded as a fall in hpi for all the sites).

With the Pdown model, a is always 1 and f is always 1,

i.e., the fall in S becomes entirely attributed to a fall in p,

but the equations remain valid.

It follows from the two equations that for any arbitrary set

of pj, the observed set of Sj/S1 dictates a corresponding set of

aj. Conversely, given aj, there is a set of pj values that

exactly fit the Sj/S1. In both cases, the only constraint is

that no p or a can be h0 or i1. The calculated results in

Fig. 10 A (averaged for the five neurons) show the evolution

of a (and corresponding pool-refill rates, ra) on the assump-

tion of constant p—this had to be raised to 0.53 (from the

average of 0.42 for the five neurons, with no significant

difference between them)—to prevent any negative a, and

were assumed to be the same for the five neurons.

With p set constant, there appeared, at all frequencies, after

an initial low a1 (set at 0 for 20 Hz), a progressive fall of

a from an early maximum to a plateau. Subsequently, at

2.5 and 5 Hz, there was a profound fall of a within the time

gap corresponding to the omitted stimulus. Setting a lower

value for constant p (i.e., allowing negative a1 values at

20 Hz) produced the same features. In other words, the data

actually show that if p is constant, a is not. The rough parallel

between a1 and Sj/S1 provides a rationale for the assumption

that the probability for refilling sites was proportional to

previous transmitter release (Table 2, Fit(ii)). In fact, at

20 Hz, there is an apparent rise in a at the time the stimulus

was omitted, suggesting that whatever causes pool-refill rate

to rise reflects some kind of integral of previous events.

The converse situation, pj with constant a, consistently

gave implausible results (e.g., an abrupt fall at stimulus 2,

a large rise then fall, a progressive rise after the omitted
A B
FIGURE 9 (A) Evolution of mean

EPSC height in trains. Since values are

expressed as a fraction of hS1i and

quantal heights did not change in trains,

these are also plots of quantal content as

a fraction of that of the first signal. To

avoid overlapping points, the values

for successive stimulation frequencies

are displaced downward. (B) Deviations

from theoretical expectation for a

constant p and a model.
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stimulus) even with a for the time of the omitted stimulus set

low. The results shown in Fig. 10 for model I are for pool-

refill rates, ra, proportional to [AX] (see above), with constant

injection of hypothetical A at each stimulus, falling and accu-

mulating with a time constant of 100 ms—changing this

parameter made little difference. Here, initial p1 was set at

0.42—any higher p1 gave a higher maximum p at 20 Hz.

For model II, the preset a series was made by supposing

hypothetical A injected at each stimulus in proportion to Sj/

S1; p1 ¼ 0.48 (cf. 0.53 above for constant p) was the highest

that produced no p>1. In both cases, the large SEs for 20 Hz

reflect solely the divergence of cell 2 from the others, which

dominate the mean values. Also, in both cases, choosing an

initial low p1 produced pj that initially fell, then rose, and

then fell again from stimulus 2 to stimulus 10. The near

correspondence of final (equilibrium) pj to p1 is artificial; it

A

B

FIGURE 10 (A) Plots of calculated a on the left and corresponding pool-

refill rate, ra, on the right, calculated for each neuron at each stimulus

frequency and then averaged, on the assumption of constant p. Note high

early values and subsequent fall to a plateau, as well as dependence of ra

on stimulus frequency. (B) Calculated p on the assumption of two different

scenarios as to how a may be generated. See text for an explanation.

TABLE 2 Saturating rise of pool-refill rate and output/site/s

with stimulus frequency

Stimulus frequency (Hz) True ra

ra with fit

Fit(i) Fit(ii) Fit(iii)

2.5 0.84 � 0.01 0.90 0.86 0.84

5 1.39 � 0.02 1.48 1.44 1.51

10 2.53 � 0.02 2.11 2.31 2.26

20 2.69 � 0.07 2.72 2.73 2.81

ra ¼ equilibrium pool-refill rate/s ¼ �ln(1 � a),Hz. See text for a descrip-

tion of fits. All SEs are among values from the five neurons.
comes from adjusting, for each Hz in each cell, the propor-

tionality factor for converting [AX] to pool-refill rate to

make equilibrium a the same as the observed value. As

pointed out above, model II, which corresponds to fit(ii) in

Table 2, is not a true model, since ra. proportional to outputs

that are themselves proportional to ra gives excessive posi-

tive or negative feedback. However, something between

models I and II might be considered, a real model—partial

dependence of pool-refill rate on antecedent outputs could

partially explain the nonconstant a and positive covariances.

The result of both these exercises is the same. The

rundown of signals is consistently different from the predic-

tions of the simple depletion model, with either a falling

from early high values (except for a for refill between the

first and second stimulus at 20 Hz) or p rising and then

falling, or both. In any case, pA values, and consequently

aA and NA values, will be incorrect. What validity, if any,

then attaches to these values, and to QA? The answer is

that QA is nearly independent of moderate error in pA, which

might underestimate p by no more than 25% or so. Corre-

spondingly, a at equilibrium might be different from aA by

as much as 25%. True N might be as much as 30% lower

than NA. This would do little to bring the anomalous covari-

ances into agreement with the theoretical.

Sampling error of vm and related measures

It was pointed out above, with regard to consideration of the

derived values in Fig. 5, that between-stimulus-number

SEs of vmf, Qcf, and Qt were all substantially less than those

predicted from theory. The same was true of QA, and it soon

became clear that it was estimates of variance that had

SEs lower than expected. To check whether there was

some computing error, simulations were done several

hundred times for each model (see Theory), with varying

parameters, and invariably using the same subroutine as

for the actual data, SEs conformed to theory, with particular

exceptions that will be described below.

Invariably, in deriving vm, etc., the averages and variance

were determined between trains, i.e., independently at each

stimulus number, there being no alternative when hSi runs

down (Fig. 11 A). However, equilibrium values did give an

alternative. For stimulus numbers 6–10 and 16–20, Qt was

calculated for each trio of signals. Averaging the values

within each train, and then taking SD(Qt)/hQti vis-à-vis

these averages gave the same values for SD(Qt)/hQti as

with two controls (Fig. 11 A, left). These controls were 1),

altering in each train the sequence of S, e.g., S[9] to S[6],

S[10] to S[7].S[20] to S[17], S[6] to S[18], S[7] to S[19],

S[8] to S[20] (Fig. 11 B, Shift stim no.), the starting number

being determined by random numbers (30); and 2), replacing

each S by a Gaussian variable (30) scaled to have variance/

mean similar to that of real data. In contrast, making an

average Qt at each stimulus number, across trains, and

then getting an SD(Qt)/hQti vis-à-vis these averages gave
Biophysical Journal 96(6) 2505–2531



2526 Ran et al.
SD(Qt)/hQti substantially less than in the controls. Here, the

values plotted and SE bars are for averages over different Hz

of stimulation (Fig. 11 A, right). It should be emphasized that

hQti was just the same whichever procedure was used, and

just the same for control A. Total shuffling of the positions

of each signal within each train gave the second, between-

signal SD(Qt)/hQti, the same as with Gaussians.

For Fig. 11 B, the data was treated in a slightly different

way, to determine whether the same phenomenon was to

be found assessing variance in other ways. Here, Qa was

used, as essentially invariant with stimulus number. In

method 1, Qa was found at each stimulus number (across

trains), and the mean and variance were determined across

all stimulus numbers. In method 2, the variance and means,

and hence cv_Qa ¼ SD(Qa)/hQai, of the same Qa as in

method 1, were assessed across the values from the four

different stimulation frequencies. In method 3, cv_Qa was

estimated using adjacent pairs of Qa values. Qa across trains

was done in four different ways: 1), using variance and mean

A

B

FIGURE 11 Sampling errors expressed as a coefficient of variation of

Qt (A) and Qa (B), depending on how variances are measured (see text).

There are two sets of controls, one generated by shifting the position of

S in each train (shift stim no.) and the other by replacement of real data

with Gaussian variates (normally distributed). The latter conform to theoret-

ical expectation, whereas the real data does not.
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across all 20 trains; 2), dividing the 20 Ss at each stimulus

number into two groups of 10, and averaging the two pairs

of values; 3), using four groups of 5; and 4), using 10 groups

of 2. For all but the first case, a total of 1000 permutations of

train location were used (and the final results averaged) to

avoid the possibility that train groupings might make a differ-

ence. Theoretically, and in practice, Gaussians substituted

for the data showed SD/mean of variance/mean diminishing

from groups of 2 to groups of 20, with some difference

between the methods. However, the real equilibrium signals

showed a large decline with group size of cv_Qa, whereas

control A (shift stim no.) gave an intermediate result, closer

to the Gaussians than the unaltered data. Again, it should be

emphasized that hQai was the same regardless of the method

used to assess variance. Moreover, the equilibrium signals

were the same for all stimulus numbers in terms of means,

variances, and third and fourth moments. There were also

(on average) no covariances between adjacent Ss for adjacent

stimulus numbers.

Methods 2 and 3 could also be applied to the first and

second signals, (sets of S1 and S2). The results (Fig. 11 B,

1st signal and 2nd signal) indicate that whatever causes the

failure of variances to vary is operative from the start of

the trains, rather than developing within it.

The exception to the rule that all simulations yielded

values the same as theoretical came with models in which

there was imposed a substantial extra between-train variance

that was essentially the same for all stimulus numbers. This

could be accomplished by making p vary at random (e.g.,

modulated by a gasdev() or vis-à-vis the sum of noncoherent

oscillations) at all release sites together at each stimulus

number, so that quanta always tend to be released in tandem,

to make cv_Qa less than half its theoretical value. Such

a scenario is so implausible as to be hardly worth

mentioning, and it is contrary to the data in that it gives

vm, etc., proportional to N. Moreover, if indeed the low

sampling error of variances (and derived values) arises

from a large extra variance at all stimulus numbers in the

train, we must suppose that the extra variance parallels the

variance produced by the binomial nature of outputs, to

account for the low vm values associated with the largest

signals (Fig. 6). Nevertheless, the implication of an SD/

mean of variance that is one-quarter of the theoretical value,

because of extra variance, is that the true quantal unit is of the

order of one-quarter (!) that given by fluctuation analysis and

by the stimulation-evoked ‘‘miniatures’’.

DISCUSSION

Perhaps the most striking outcome of this study is the abun-

dance of information obtainable using repeated stimulus

trains (11) at a conventional (corticothalamic) synapse; this

experimental approach seems likely to be useful for the study

of changes of synaptic function produced with longer-lasting

forms of plasticity or with changed ambient conditions or
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drugs. Here, we have used several new methods for estimating

quantal release based on an expanded theoretical framework.

Briefly, the analysis starts with obtaining, as a first approxima-

tion, a description of tetanic rundown (‘‘short-term depres-

sion’’) in terms of the four constant-within-train parameters

of a simple binomial-depletion model (9,10): number of

release sites (N), quantal size (Q), output probability if a

quantum is ‘‘available’’ (p), and probability of between-stim-

ulus ‘‘refill’’ (a). Using several alternative estimates of N,

corrected variance/mean ratios constitute estimates of quantal

amplitude at each stimulus number. Monte Carlo simulation

indicates that this procedure enables detection of any fall in

Q if it occurs, which was not the case for the data presented

here. Moreover, the data also showed Q to be independent

of stimulation frequency. Thus, tetanic rundown at this

conventional (nongiant) synapse is purely presynaptic, as at

the (giant) neuromuscular junction (5).

Subsequent analysis showed deviations from the simple

depletion model: ‘‘anomalous’’ covariances and EPSC

rundowns per se not compatible with constant release prob-

ability (p) and refill (a). These deviations preclude an extrap-

olation to what would happen with irregular stimulus trains.

Although covariances are indeed sometimes negative, this

cannot be read as supporting the depletion scenario over

others (Pdown, Ndown1, and Ndown2 in the Theory

section). Thus, there are two important implications, namely,

that release sites are not entirely independent of one another

(see below) and that negative covariance does not arise only

from depletion, if indeed depletion has anything to do with

negative covariance.

Estimating quantal size during rundown

Whether quantal amplitudes change during repetitive stimu-

lation (31–33) has been a long-standing question. Here, we

have estimated quantal amplitudes (Q) as ‘‘corrected’’ vari-

ance/mean ratios (cvmj), with a rather wide latitude in the

estimate of N in the equation, cvmj ¼ vmj þ hSji/N. One

guess at N comes from the equivalence, at equilibrium, of

the latter equation with cvmf ¼ vmj/(1 � pff) (with ff esti-

mated as hSfi/hS1i, and p as the p governing rundown). These

equations, used to estimate Q, are all model-independent

(except for the implausible Ndown3 scenario in the Theory

section). Using these approximations, we obtained, in each

set of repeated trains, an array of cvmj values that should

have revealed any systematic change in Q that may have

occurred (Fig. 6). In general, whenever a synapse shows

large rundown (hSji much less than hS1i), suggestive of

high release probability (p), the uncorrected equilibrium

variance/mean ratios (vmj) become nearly equal to cvmj

and, therefore, represent legitimate (though biased) estimates

of Q—unit quantal response. Another legitimate quantal size

estimator is Qt, which needs no repetition of trains, but is

available only for near-equilibrium signals. On the other

hand, when synapses show no signal rundown, indicative
of low p, both the variance/mean ratio and Qt represent valid

quantal size estimates regardless of which model is used.

Combining signal amplitudes and quantal size estimates,

one can determine whether drug interventions or long-term

plasticity are attributable to changes in quantal content

(S/Q)—entirely presynaptic—or quantal amplitude—either

pre- or postsynaptic.

Our conclusion that quantal size is invariant during tetanic

rundown at corticothalamic synapses differs from that of

Scheuss et al. (12) regarding the Calyx of Held. Neverthe-

less, we also find that Qc—quantal size by correcting vari-

ance/mean ratio using covariances of successive EPSCs

(used by (12))—falls early in the stimulus train. In our

data, this fall occurs for two reasons: early in the train

cov(Sj,Sjþ1) is excessively negative, and after the first few

stimuli, cov(Sj,Sjþ1) becomes near zero instead of approxi-

mating cov(Sj,Sjþ1) ¼ �hSjihSjþ1i/N. Corrected variance/

mean ratios, using constant (and plausible) N, do not show

a fall in putative quantal amplitude. However, there are

two important differences between our results and those of

Scheuss et al. (12). First, our data shows no change in this

phenomenon during combined application of cyclothiazide

and kynurenate (to block desensitization and saturation of

receptors). Second, the N obtained by Scheuss et al. (12)

from (simplified) cov(S1,S2) ¼ �hS1ihS2i/N coincided with

that obtained using the method of Elmqvist and Quastel

(5), which is upwardly biased by any appreciable refill. In

contrast, our Ns derived from cov(S1,S2) were always less

than that obtained by a method that is less up-biased and

depends on the same assumptions. The disparity between

our results and those of Scheuss et al. (12) suggests that

whatever (unknown) process produces overly negative

cov(S1,S2) at corticothalamic synapses is less operative

at the calyx of Held, and that whether postsynaptic factors

play a role in rundown may vary between types of

synapse.

Validity of the Q estimate

The classical test of the validity of quantal size estimates is

that the values of Q should correspond to the amplitude

(multiplied by 1 þ cv2) of ‘‘miniatures’’ that represent

responses to single quanta of transmitter (23). In the data

presented here, Q was consistently a little (~20%) higher than

expected from the average amplitude, and variation of spike-

triggered, asynchronous—long-latency—events presumably

representing such miniatures. However, it may be argued

(from the depletion model) that the latter largely represent

responses to quanta from sites that did not produce

‘‘synchronous’’ release; there is no way of knowing if these

belong to the same population. Nevertheless, it is possible

that the discrepancy is real. In theory, this could arise from

nonindependence of release sites (see below) causing

a tendency of quanta to be released in tandem. The small-

average events appearing between stimulus trains
Biophysical Journal 96(6) 2505–2531



2528 Ran et al.
presumably represent spontaneous miniatures or EPSCs

originating at synapses distinct from and more distant from

the soma than those generating the EPSCs.

Complexity of refill rate

An unexpected finding was that the between-stimulus pool-

refill rate, a parameter that limits the drop in quantal outputs

within trains, was not only frequency-dependent (neuromus-

cular junction (5) or central synapses using visual probes (34–

38)), but also declined within trains (Fig. 10) in parallel with

outputs (except for the first few signals). It is conceivable that

whatever makes outputs fall also makes pool-refill rate fall.

For example, as pure speculation, the parallel fall of outputs

and pool-refill rate might both reflect a rundown in Naþ (or

Mg2þ or Ca2þ) entry per stimulus. An alternative explanation

is that a local feedback mechanism makes refill a function of

previous outputs. Such a hypothesis would explain, at least in

part, the appearance of positive or null covariances where

negative ones were expected (see below).

Problem(s) posed by positive and overly negative
covariances

A negative correlation between amplitudes of first and

second EPSCs in trains (cov(S1,S2)) appeared prominently

in all the data presented here (all cells, all stimulation

frequencies, with modification by ‘‘refill’’ during interstim-

ulus time much as expected), as at neuromuscular junctions

(5), hair cell afferents (8), and calyx of Held (11,12), and

with EPSPs from cerebral cortex (F. Tennigkeit, Max Planck

Institute for Brain Research, Frankfurt, Germany, personal

communication, 2004). However, there are indisputable

counterexamples (14,15), indicating either that presynaptic

physiology might differ fundamentally between types of

synapses or that negative covariance may arise from mecha-

nism(s) other than depletion.

The depletion model predicts that covariances between

signal heights should always be negative and never more

negative than to give Ncov(Sj,Sjþ1) ¼ �1. In contrast, our

data show excessively negative covariance between the first

and second, and particularly between the second and third,

EPSCs. Although our estimates of N are intrinsically subject

to error, they would have to be around three times too high

for the observed values (especially cov(S2,S3)) not to exceed

this limit (Table 1). In addition, there was always positive

correlation between the first and third EPSCs (cov(S1,S3))

and between the 10th and 12th EPSCs (cov(S10,S12)), across

an omitted stimulus. It is equally anomalous that equilibrium

covariances (cov(Sj,Sjþ1)) were near zero (also indicated by

equilibrium quantal size estimators Qc and Qt indistinguish-

able from ‘‘final’’ variance/mean ratios (vmf)). In brief, the

negative covariances must arise largely from mechanisms

other than depletion.

In searching for possible mechanisms of the anomalous

covariances, we must first emphasize that there can be no
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model with independent release sites by which the release

of a quantum at one stimulus is succeeded by less than

zero release at the next stimulus (implicit in Ncov(Sj,Sjþ1)

< �1). Therefore, the only explanation for the overly nega-

tive covariances is that release at a site is profoundly affected

by antecedent release at other sites, presumably in the

vicinity. The positive covariances should also be viewed in

light of an expected negative covariance, either from

continued depletion or persistence of whatever causes the

excessively negative covariance. An obvious explanation

for the anomalous covariances is feedback, namely, the

released transmitter acts presynaptically either directly or

through something released locally by the postsynaptic cell

or glia. There are numerous possibilities for inhibitory and

facilitatory feedback at corticothalamic (39,40) and other

synapses (41–46), including (glial regulated) raised extracel-

lular Kþ implicated in short-term potentiation (47). It should

be noted that neighboring axon terminals are electrotonically

coupled (48,49) and that, in our experiments, the postsyn-

aptic neurons were voltage-clamped and produced no action

potentials. Given that transmitter release at a site is influ-

enced by activity at neighboring sites supplied by the same

axon(s), it is not unreasonable to infer the existence of heter-

osynaptic inhibition and facilitation subserving a mechanism

for associative forms of synaptic plasticity (e.g., Hebbian

learning).

The problem in finding a mathematical model to account

for the anomalous covariances lies in their timing. Whatever

the mediators, any postulated negative and positive feedback

must have a time course, with decay faster for inhibition than

for facilitation, but any set of parameters that might fit for

one stimulus frequency cannot fit at the other frequencies.

For example, the covariance across the omitted stimulus is

positive at 10 Hz. That is, at a separation of 200 ms, with

no intervening stimulus, an above-average EPSC10 is associ-

ated with above-average EPSC12. In other words, the above-

average EPSC10 has produced net facilitatory feedback. In

contrast, at equilibrium in 5 Hz trains, covariances between

adjacent signals (with 200 ms separation and no intervening

stimulus) are zero. Similarly, the early covariances appear to

be related to stimulus number rather than to time between

signals. A possible explanation is that presynaptic action

potentials modulate the decay (and accumulation) of presyn-

aptic inhibition and facilitation. But what combination of

time and stimulus-number dependence allows the system

to ‘‘know’’ that a stimulus has been omitted? So far, our

Monte Carlo simulations have failed to match the timing

of anomalous covariances.

Transmitter release revisited: stochastic or
deterministic?

Our most perplexing observation is that the between-stim-

ulus-number sampling errors of between-train variance

(and, hence, estimated Q) were consistently and significantly
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less than expected for a binomial (or Poisson or Gaussian)

distribution of quantal outputs. For equilibrium signals,

with indistinguishable averages, this low sampling error

disappeared with any shuffling of signal values, as though

the system ‘‘knew’’ the stimulus number in each train

and what the variance should be. An explanation for this

behavior completely eludes us. The only models we have

found that produce a low variation of variance do so by intro-

ducing a common ‘‘extra’’ variance at each stimulus in the

train. If such extra variance exists, then true Q is less than

estimated Q by a factor of ~3. Why, then, the correspondence

of estimated Q from between-train variances with Qt (from

within-train variances) and with the size of spike-triggered

asynchronous miniatures? Moreover, if our Q values are

too high, our N values are correspondingly lower than true

values, resulting in even more overly negative covariances.

In this regard, our neuron 1 (omitted from our main data

set) sometimes showed a within-train variance/mean ratio

(Qt at 20 Hz) much lower than other Q. This unusual

behavior is consistent with a shift to a subquantal release

mode (cf. (50,51)). It is conceivable that the low sampling

errors could reflect some kind of deterministic/chaotic

process underlying quantal formation, as well as pseudosto-

chastic release (19,52–55). However, our data is insufficient

to permit the use of the relatively sophisticated analysis that

has led to the identification of deterministic chaos associated

with recurrent feedback networks (56). In retrospect, our

experimental paradigm would have been much improved

by including a few very long trains.

To conclude, the behavior of pool-refill rate, anomalous

covariances, and sampling errors in our results, which

imply unexpected complexity in presynaptic physiology,

were readily detectable and measurable. Therefore, the mech-

anisms that give rise to these phenomena should be amenable

to investigation using agents with known effects on receptors

and metabolic systems. For example, pharmacological

blockade of inhibitory (39,40) or facilitatory (41,43) presyn-

aptic receptors might well lead to identification of specific

components of feedback and how these may vary between

synapses, alter with long-term plasticity, and contribute to

optimization of transfer of information across the synapse.

APPENDIX: MONTE CARLO MODELING

The following subroutines in C make, for any of five scenarios, NT sets of

S[train#][stim#] for NS stimuli with quanta of initial size Q0, with N sites,

with an omission of the stimulus at stimulus number 10. The numbering

of stimuli starts at 0.

modparam(f,al,p,pfail,tr) float *f,*al,*p,*pfail,*tr;

{ int i,j; float a,b,c,d,x,y,z;

/*alp0 and p0 are globals*/

for (j¼0;j<NS;jþþ) { al[j]¼alp0; p[j]¼p0;pfail[j]¼0;}

p[10]¼0;/*omission at #10*/

f[0]¼1;

if(PdownjjNdown)

for(j¼0;j<NS-1;jþþ) f[jþ1]¼al[j]þf[j]*(1-al[j])*(1-p[j]);
if(Pdown) for(j¼0;j<NS;jþþ) p[j]¼f[j]*p0;/*mimicking depletion*/

if(Ndown¼¼2) /*stochastic irreversible ‘disabling’complete by tenth

stim*/ for(j¼1;j<10;jþþ) pfail[j-1]¼1-f[j]/f[j-1];if(trend>1)/* here

trend is up..makes no difference*/ { /*want (1þx)/(1-x)¼t¼trend;

1þx¼ t-t*x; t*xþx¼t-1; x¼(t-1)/(tþ1);*/

x¼trend-1;x/¼trendþ1; tr[0]¼y¼1-x; z¼1þx; a¼(z-y)/(NT-1);

/* also get square of cv produced by trend */

c¼tr[0];d¼tr[0]*tr[0];

for(i¼1;i<NT;iþþ) {cþ¼tr[i]¼tr[i-1]þa;dþ¼tr[i]*tr[i];}

d -¼ c*c/NT;d/¼NT-1; c/¼NT; trend2¼d/c/c; } }

makesig() {

int i,j,k,n,t,site;

float c,Q,f[NS];

static int count¼0,ok[N][NS];

static float al[NS],p[NS],pfail[NS],tr[NT],cnonlin;

if (count¼¼0) {

modparam(f,al,p,pfail,tr);

for(site¼0;site<N;siteþþ) for(i¼0;i<NS;iþþ) ok[site][i]¼1;

if(Ndown¼¼3) /*always same series of disabled sites*/

for(j¼1;j<NS;jþþ) {k¼(1-f[j])*Nþ0.5; for(site¼0;site<k;siteþþ)

ok[site][j]¼0; }

if(abs(nonlin)>1) cnonlin¼nonlin*p0*N*Q0;

countþþ; }

for (t¼0;t<NT;tþþ) /*t is train#*/

{ for (j¼0;j<NS;jþþ) S[t][j]¼ 0.001;/*avoid 0’s*/ for(site¼0;site<N;

siteþþ) { n¼1; Q¼Q0; for(j¼0;j<NS;jþþ) {

if(ok[site][i]&&n>0)

if (frand<p[j]) {/*release*/

S[t][j]þ¼Q;

qs[0][j]þ¼Q;qs[1][j]þ¼Q*Q;qs[2][j]þþ;/*track Q*/

if(depl) n¼0;

if(desens) Q¼0;/*complete desens*/ }

if(Ndown¼¼1) if(frand<p[j]) n¼0;

if(Ndown¼¼2) if(frand<pfail[j]) break;

/* site disabled irreversibly */

if (n<1) {if (frand<al[j]) n¼1;} /*refill*/

if (desens) Qþ¼aH*(Q0-Q);/*non-stoch recovery from desens*/

}/*end doing for NS stimuli w/ omission at #10*/

} /* end doing for N0 sites*/

}/*end NT trains*/

if(trend>1) for(t¼0;t<NT;tþþ) for(j¼0;j<NS;jþþ) S[t][j] *¼ tr[t];if

(abs(nonlin)>1) { if(trend>1) c¼cnonlin*tr[NT-1];else c¼cnonlin;

for(t¼0;t<NT;tþþ) for(j¼0;j<NS;jþþ) S[t][j] /¼ 1þS[t][j]/c; }}

Any desired modification of the evolution of p and a may be specified in

modparam(). If Q is to vary between sites, ‘‘S[t][j]þ¼Q;’’ becomes

‘‘S[t][j]þ¼Q*q[site];’’ For within-site variation of Q, ‘‘S[t][j]þ¼Q*q[site];’

becomes ‘‘S[t][j]þ¼Q*q[site]*randlist[frand*10000];’’, where randlist[] is

a preset list of 10000 log-normally distributed numbers (to avoid negative

values) with an average of 1. For a ‘‘compound binomial’’, one has different

p[j] and/or alpha[j] at each site—i.e., the relevant lines have p[site][j] and

al[site][j]. Of course, all these arrays must be specified before makesig(). If

one wants entire pseudosignals, then whenever there is release, a position

for the start of the quantum must be specified: ‘‘pos ¼ latency-log(frand)*

tau1-log(frand)*tau2; x¼ frand; ar[pos]þ¼x*Q; ar[posþ1]þ¼(1-x)*Q;’’

will produce a dispersion of release fitting an ‘‘a function’’ with these t

values. Integrating the array, twice, with the two t values for a quantum fitting,

an a function gives the same record as adding a whole quantum to the array

whenever one is released.

For full flexibility in modeling, one can save at each j the output and state

(n ¼ 1 or 0 (full or empty, respectively)) of all N sites, and make al[j] and/or

p[jþ 1] for each site any arbitrary function of the output history of any group

of sites, and then go on to the next stimulus.
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