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Abstract
The accurate prediction of an RNAs three dimensional structure from its “primary structure” will
have a tremendous influence on the experimental design and its interpretation, and ultimately our
understanding of the many functions of RNA. This paper presents a general coarse-grained (CG)
potential for modeling RNA 3-D structures. Each nucleotide is represented by five pseudo atoms,
two for the backbone (one for the phosphate and another for the sugar), and three for the base to
represent base-stacking interactions. The CG potential has been parameterized from statistical
analysis of 688 RNA experimental structures. Molecular dynamic simulations of 15 RNA
molecules with the length of 12 to 27 nucleotides have been performed using the CG potential,
with performance comparable to that from all-atom simulations. For ~75% of systems tested,
simulated annealing led to native-like structures at least once out of multiple repeated runs.
Furthermore, with weak distance restraints based on the knowledge of three to five canonical
Watson-Crick pairs, all 15 RNAs tested are successfully folded to within 6.5 Å of native structures
using the CG potential and simulated annealing. The results reveal that with a limited secondary
structure model, the current CG potential can reliably predict the 3-D structures for small RNA
molecules. We also explored an all-atom force field to construct atomic structures from the CG
simulations.
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Introduction
The importance of RNA has been appreciated since the central dogma was proposed in
1958.1,2 Three RNA molecules, messenger RNA (mRNA), transfer RNA (tRNA), and
ribosomal RNA (rRNA) are associated with the cell’s transcription of its DNA into RNA
and then translated into proteins.3 While experiments as early as 1971 suggested that RNA is
involved in catalysis during protein synthesis,4–6 experiments starting in 1982 confirmed
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that RNA is directly involved in catalysis, in many different RNA systems with difference
chemical reactions.4,7–15 These RNAs form complex three-dimensional structures.16–33

Within the past few years, a large increase in the number of RNAs that form higher-
structure, associated with numerous functions in the cell is the foundation for a major
paradigm shift in the molecular biology of the cell; RNAs that do not code for proteins are
directly associated with the regulation and overall function of the cell 34–44, including
different cancers.45–47 Since more than 90% of the human genome is transcribed into RNAs
that do not code for proteins,48,49 and the function of an increasing amount of this RNA is
now being determined, the prediction of an RNAs higher-order structure and its dynamics
will provide great insight into the RNAs contribution to the structure and function of a cell.
Towards that end, computational approaches such as molecular modeling have made
significant contribution to the understanding of three-dimensional structures and chemical
principles of RNA.50–60 The most successful approaches for protein structure prediction so
far have been based on comparative analysis or reduced models derived from known
structures.61–63

In recent years, increased effort has been devoted to RNA structure prediction as more and
more RNA structures have been determined experimentally. A range of models have been
developed for nucleic acids, from fully atomistic models to reduced representations.64–67

For example, a knowledge-based atomic energy function has been introduced to predict
RNA tertiary structures in the FARNA package.68 Nucleotide cyclic motifs are used in MC-
Fold and MC-Sym model to build RNA structure from sequence data.69 These two models
seem successful in predicting the tertiary structure of small RNA molecules. In addition,
physics-based atomic force fields such as AMBER70–73 and CHARMM74–76 describe the
dynamic atomic interaction following traditional molecular mechanics, with parameters
derived by fitting to ab initio quantum mechanics calculations and experimental data. It is
now feasible with supercomputers to simulate dynamic biological systems as large as an
entire virus in atomic detail.77 However, typical applications of the atomistic force fields are
usually limited to small oligomers of nucleic acids or routine simulation times on the order
of a few nanoseconds.78 On the other hand, CG methods reduce the number of particles and
eliminate high-frequency motions in the system. A CG model enlarges the time step in
molecular dynamics simulations while also enhancing intrinsically faster dynamics.79–81

Several CG approaches, either knowledge or physics based, have been utilized to study the
structures of nucleic acids.68,69,78,82–106

There has been a history of modeling DNA at mesoscale.65,78,82–84,86–89,92–97,99,105

Recently studies such as Knotts IV and co-workers successfully predicted several important
DNA behaviors, like salt-dependent melting, bubble formation and rehybridization, with a
CG model that uses three interaction sites for phosphate, sugar, and base, respectively.78 For
RNA, Malhotra et al. first introduced a reduced potential to refine 3-D structure of low-
resolution ribosomal RNAs.52,59 Zhang et al. combined a highly reduced coarse-grained
model and a Monte Carlo method to simulate the distribution of viral RNA inside the capsid
of cowpea chlorotic mottle virus.100 In these works, each nucleotide was modeled as one
bead to reduce the complexity of large RNAs. Cao et al. developed a reduced chain
representation model to predict RNA folding thermodynamics based on a statistical
mechanical theory.101 The RNA molecules were represented by their backbone and two
beads (phosphate and sugar) were used for each nucleotide. Later, Jonikas et al. integrated
coarse-grained model with knowledge-based potentials to generate plausible three-
dimensional structures.107 Despite the development, automated programs for predicting
RNA 3-D structures and their dynamic properties are required to increase their accuracy and
robustness.108 In addition, the coarse-grained RNA potentials are mostly aimed at structural
refinement rather than predicting dynamics properties.
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Aside from the energy or scoring function, the configuration searching and sampling
methods are also important components of the structure prediction algorithms. The MC-
Fold/MC-Sym and FARNA programs begin by generating structures from small RNA
fragments with a few residues. Then, Las Vegas or Monte Carlo sampling is performed to
generate a sampling of possible tertiary structures of the entire RNA.68,69 NAST utilizes
MD simulations, combined with secondary structure information, to generate 3-D structure
candidates for the RNA molecules.107 A coarse-grained (C3’ based one-bead CG model)
energy function derived from the structural statistics is applied in the MD simulation. The
ranking of structural clusters can be based on the NAST energy function or experimental
data (solvent accessibility data from the hydroxyl radical foot printing). Herein we present
an “intermediate” coarse-grained potential for modeling RNA 3-D structure using molecular
dynamics. Previous CG RNA models typically used one52,100,107 or two101 particles for
each nucleotide. To optimize the efficiency and accuracy, we developed a model that
represents each nucleotide with five pseudo atoms; two of these represent the backbone–one
for the sugar and the other for the phosphate, while three pseudo atoms represent the
stacking and base pairing for each base. The analytical potential energy functional forms,
parameterization with 3-D structural statistics obtained from experimental structures and
initial validation using molecular dynamics simulations of selected RNAs is discussed.

Experimental Methods
Data Collection and Preparation

The CG potential was parameterized using statistics collected from available three
dimensional structures of RNA molecules (including both x-ray diffraction structures and
nuclear magnetic resonance structures). The RNA structure files were downloaded from The
Protein Data Bank (http://www.pdb.org/), Nucleic Acid Database
(http://ndbserver.rutgers.edu/index.html), RNA Comparative Analysis Database (rCAD,
http://rcat.codeplex.com/, manuscript submitted), and the Comparative RNA Web (CRW)
Site109 (http://www.rna.ccbb.utexas.edu/). Only 668 structure files that contained more than
5 base pairs and have the resolution records were analyzed for the statistical calculation. All
of the coordinates obtained from nuclear magnetic resonance (NMR) structural files were
included in the statistical calculations.

Coarse-Grained RNA Interaction Potential
In our CG model, each nucleotide is reduced to five pseudo atoms in RNA (Figure 1). Two
of the five pseudo atoms represent phosphate and sugar respectively, which is the minimum
requirement to capture the backbone tertiary structures of RNA.110 Each base (A, G, C, and
T) is represented by three pseudo atoms, connected by three virtual bonds into a triangle.
Compared to earlier models with one particle for each base or each residue,78,107 the use of
three pseudo atoms for each base provides us with better ability to capture the stacking and
pairing of bases. As the different bases share some common pseudo atoms, nine unique
types of pseudo atoms are needed to represent the four canonical RNA component bases in
total (Figure 1). The improvement in computational efficiency arises from the reduction of
number of particles and larger particle mass that enables greater integration time step in
molecular dynamics. The topological and physical properties of the pseudo atoms are listed
in Table 1.

The corresponding CG potential energy is calculated by:

(1)
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where Ebonded and Enon-bonded are pair-wise bonded and non-bonded energy terms, each
representing the sum of contributions of all pairs in the system. The bonded term is further
decomposed into:

(2)

where Ebond , Eangle and Edihedral are the bond stretching, angle-bending and dihedral
energies, respectively.

In classical molecular mechanics, the non-bonded interaction consists of the van der Waals
(VDW) and electrostatic contributions. Since our CG model is derived from the 3-D
structural statistics of experimental structures, an effective potential is used to represent the
potential of mean force of all the non-bonded interactions, including the excluded volume
repulsive, the attractive force and the electrostatic force between non-bonded particles, as
well as the solvation forces due to the environment. A Buckingham potential is utilized to
describe the effective potential (see equation 9).

(3)

For each term, the parameterization was performed based on the Boltzmann inversion of the
corresponding atomistic distribution functions obtained from the experimental structures.
The Boltzmann inversion method performs a potential inversion from a set of known
distributions of structural parameters to extract effective CG potentials. In our RNA CG
system, the potentials calculated from the Boltzmann inversion method111,112 need to
reproduce the distribution of structural parameters including fourteen different bonds,
twenty-five types of angles, twenty-eight dihedral angles, and nineteen intermolecular radial
distribution functions extracted from statistical results of all available atomistic RNA
structures (please see Table 2 to Table 5 for more details). All the parameter-fitting works
were performed with the software of Matlab Curve Fitting Tool.

Bond Stretching
The distribution of bond lengths can be represented by the Gaussian function, which is
calculated by:

(4)

where b, b0 and σ are the parameters obtained through fitting, kB is the Boltzmann factor and
T is absolute temperature. Taking the logarithm of both sides of equation (4) and dropping
the constant term, after performing Boltzmann inversion, we have:

(5)

where the temperature, T, is set to be 298K.

Angle Bending
The distributions of bond angle can be weighted by a factor sin(θ) and renormalized by a
factor Zn. The normalized distribution is expressed as:
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(6)

where θ is the angle between neighboring bonds, while P(θ) and p(θ) are normalized and un-
normalized distribution functions of θ. The distributions of bond angles between CG bonds
were also fitted with the Gaussian function, and then the Boltzmann inversion were used to
calculate Eangle.

(7)

Dihedral Rotation
As in atomic force fields, the tensional energy takes the formula of:

(8)

where ϕ is the dihedral angle, Kn and δn (n = 1, 2, 3) are force constants and phase angles.
The Edihedral were also obtained from performing Boltzmann inversion.

Non-bonded Interactions
A Buckingham potential,113 consisting of a 6 term and an exponential term are used to
represents the potential of mean forces between a pair of non-bonded atoms, i and j:

(9)

where εij is the depth of the potential well, σij is the radius, and rij is the distance between a
pair of atoms. Note that the above equation is used to describe the potential of mean force
even though the symbol “E” and the formula are commonly used to represent potential
energy. The constants we used here are the same as MM3 force field.85,114–116 We use the
pair-specific ε and σ parameters instead of the combing rule for unlike atom pair i and j. The
Lennard-Jones (LJ) 6–12 potential and Buckingham potential fitted the non-bonded
interactions at the onset were generated. The Buckingham function is “softer” than the LJ 6–
12 function in the repulsive region because the exponential term is more suitable to
represent the non-bonded potentials in our CG model. However, as shown in Figure S3,
even the Buckingham potential is not “soft” enough. In addition, some of the interactions
(e.g. N2-N2) clearly show a second or more local minima which are ignored by the
Buckingham potential. The complicated shape of the non-bonded potentials can be captured
much more accurately by using the spline interpolation functions as in the previous
statistical potentials for proteins117. However, in the current study, we would like to explore
the capability of the simple Buckingham potential that is implemented in almost all popular
molecular modeling packages. In (dihedral) non-bonded potential fitting, we have chosen to
primarily reproduce the global energy minima by using a weighted least-square fit. The data
points in minimum energy area (0.5 Å within the potential minimum) were assigned a
weight of two while the others one. The final fitting results are shown in Figure S3 in
Supporting Information. As discussed in the Results and discussion, a nonlinear
optimization was later performed on the non-bonded parameters, after all bonded and non-
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bonded parameters in the CG model were obtained, by minimizing the RMSD between the
energy minimized and the experimental structures of selected RNAs. The experimental
structures were analyzed to generate the radial distribution functions (RDF) or g(r) for
selected pairs of coarse-grained particles (Table 4). The set of 1–2 (directly bonded), 1–3
(separated by 2 bonds), and1–4 (separated by 3 bonds) pairs were not included in RDF
calculations. Then the potential of mean force, which corresponds to the Boltzmann
inversion of the g(r), is determined from the RDF:

(10)

By combining equation (9) and (10), we determine the initial values of ε and σ for each pair.
We have also combined certain pairs (the same parameters were used) based on the
similarity of the RDF obtained.

Simulation Details
Fifteen different RNA molecules were selected for molecular dynamics simulations using
the developed CG potential. For comparison, all-atom simulations were performed on the
same set of RNAs using amber99sb force field with explicit and implicit solvent in
AMBER10.70,72,118 For the explicit solvent simulations, the TIP3P water model was used.
119,120 The Particle Mesh Ewald (PME) method121,122 was applied to treat the long-range
electrostatic interactions and a 12 Å cutoff was employed for the van der Waals interactions.
After the RNA was solved in the water box, a 150 mM/L Na+ ions were added to the box,
and then the Cl− ions were added to neutralize the whole system. All the RNA systems were
equilibrated with a 5,000-step energy minimization to remove the bad contacts. Then, the
minimized configurations were used as the starting point for a 1 ns NPT molecular dynamics
equilibration at 1 atm and 298 K. For the implicit solvent simulations, the Generalized-Born/
Surface Area (GB/SA) model was used.123–128 The salt concentration was also 150 mM/L
in implicit solvent systems. The time step for all production runs was 1 fs. The CG model
molecular dynamics simulations were performed via modified Beeman algorithm with the
TINKER software package.129 Different time steps (1 fs to 10 fs) were tested in the CG MD
simulations. The normal simulation time for all systems was 10–100 ns. Simulated
annealing MD simulations were performed to fold fifteen RNA molecules. In the simulated
annealing, after the energy minimization and 2,000 steps of equilibrium, the systems were
heated to 1,000 K within the first 2,000 steps and then gradually cooled down to room
temperature (298 K) over 100 ns with a linear schedule. For each RNA molecule, we
performed 5 independent simulated annealing simulations starting with random seeds.
Finally, we performed another 3 independent 100 ns simulated annealing under restraints set
by the known secondary structure (Watson-Crick base pairs only). A flat-welled harmonic
potential (also known as the Nuclear Overhauser Effect potential) was used to restrain the
distance between the pseudo atoms CG and AU (Figure 1) in the canonical Watson-Crick
base pairs with a lower and upper bounds of 8.0 Å and 10.0 Å, respectively. The force
constant for the harmonic potential is zero when the distance falls within the bounds and 0.5
kcal/Å2 beyond the bounds.

Results and Discussion
Determination of the RNA Coarse-Grained Model Parameters

The probability distribution of all virtual bonds, angles, and torsions (shown in the
Supporting Information) were used to fit the valence parameters using equation (4) to (8).
The fitted parameters for virtual bonds, angles, and torsions are given in Table 2, Table 3,
and Table 5, respectively. The force constants of bonds and angles for pseudo atoms are
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smaller than those of atomic bonds and angles, meaning a larger time step could be used
during the MD simulations in the CG model. As expected, the larger force constants of
bonds and angles within the base make the bases fairly stiff (Table 2 and Table 3). However,
they are still smaller than those of atomic constants by a factor of 3 to 10.

The non-bonded parameters in equation (9) were obtained by mapping the radial distribution
functions (RDF) of all the pseudo atoms in existing RNA structures:

(11)

where nij(r) is the number of pairs in the given shell from r to r+dr, Ni is the total number of
particle I in the system, and d is the mean bulk density of particle j. The reference state here
is the expected number of contacts when two pseudo atoms i and j at long distance, which is
approximated as the average density of pseudo atoms j.130 Therefore, the g(r) could be
normalized to 1 at long distance. The results from g(r) are plugged into equation (10) to get
the potential of mean force, which is approximated to be the effective potential function of r.
The effective potential functions are shown in Supporting Information. The best fitting
results for each type of CG atom are summarized in Table 4.

Optimization of the Non-bonded Parameters
The RNA structural statistics we utilized to derive the non-bonded and bonded parameters
effectively include contributions from all energy terms, although to different extents. For
example, the actual conformational distribution is affected by both the torsion and non-
bonded energy terms in the CG potential. To remove the “redundancy”, we directly
compared the structures given by the coarse-grained potential with the experimental
structures and adjust the parameters. Since the RNA structure is most sensitive to the non-
bonded interaction, we refined the non-bonded parameters using seven RNA molecules with
diverse secondary and tertiary structures. The non-bonded parameters were refined by
minimizing the difference between the energy-minimized CG structures and their
corresponding experimental structures. First, energy minimization was performed on each of
the seven RNA molecules, and the structural root mean square deviation (RMSD) from the
experimental structure was calculated based on all pseudo atoms. The average of the RMSD
over the seven molecules is used as the target function in the optimization of the non-bonded
parameters. An optimally conditioned variable metric nonlinear optimization algorithm in
TINKER was utilized.129,131–133 The first derivative of the average RMSD with respect to
each non-bonded parameter was calculated numerically. In total 38 non-bond parameters
were optimized (Table 4). The average RMSD between the experimental and energy-
minimized structures dropped from 3.35 Å to 1.75 Å by using the optimized non-bonded
parameters.

Validation of the Coarse-Grained Model
We have validated the CG potential in two sets of simulations. First, molecular dynamics
simulations of the native RNA structures were performed at room temperature to examine
the RMSD fluctuation. Second, simulated annealing molecular dynamics simulations were
applied to fold the RNA structures, with and without restraints set by the secondary structure
information. Fifteen RNA molecules with high quality experimental structures were chosen
for the model validation (Table 6). These RNAs represent common RNA structural motifs,
such as a helix with and without non-canonical base pairs, hairpins, internal loops, bulges,
and pseudoknots.
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The results of the regular room temperature MD simulations are given in Table 6. The
RMSDs for both the coarse-grained and all-atom model were calculated as an average over
the MD trajectories using the same atom set of five pseudo atoms for better comparison.
One base-pair at each of the terminals is ignored in all the RMSD calculations unless
specified otherwise. The 15 RNA molecules investigated had an overall average RMSDs
with the CG model (3.36 Å). This is similar to the all-atom implicit solvent model (3.30 Å).
The all-atom MD simulation with explicit solvent was even closer to the experimental
structure, with an average RMSD of 2.21 Å. The RMSD for the CG model (1.66 Å)
performed slightly better than the all-atom explicit solvent simulation (2.21 Å) for an A-
form helix with only canonical Watson-Crick base pairs. Figure 2a shows the superposition
of the native structure (1QCU) and the last frame of 10ns CG MD simulation. The backbone
is well preserved by the CG MD in 1QCU, as well as the base-pair and base stacking
interactions. As expected, somewhat larger RMSDs have been observed at the 5’ and 3’
terminals of double helix in both CG and all-atom MD simulations of 1QCU, consistent with
the assumption that the lack of base stacking interactions and neighboring base-pair
connections would decrease the stabilities of the helix terminals

The frameshifting RNA pesudoknot from beet western yellow virus (PDB ID: 1L2X) is a
single chain with coaxial helices connected with two loops.134 The superposition of the
native x-ray structure and the last frame of 10ns MD CG simulation are shown in Figure 2b.
The backbone is well represented in the CG model. The average RMSD of CG model (2.84
Å) is quite similar to those given by the all-atom simulations using implicit (2.89 Å) and
explicit solvent (2.73 Å). Both the all-atom model and the CG model showed a larger
fluctuation for non-canonical Watson-Crick base pairs in 1L2X during the MD simulations.
The observed unpaired bases which belong to the loops moved back and forth along the
direction perpendicular to the backbone, which may play an important role in forming
tertiary contacts.

Among the 15 test RNAs, the largest RMSD (4.75 Å) was observed for 1LNT.135 1LNT is a
12-t double-strand helix with a 5-bp interior loop. The superposition of the native x-ray
structure and the final snapshot of MD simulation (Figure 2c) show that the large RMSD is
mostly due to the base atoms and two terminals. The bases within the interior loop are much
more flexible and disordered than base forming Watson-Crick base pairs. It is not surprising
that the current CG model has difficulty in capturing them, given that RNA structures in the
parameterization set is dominated by canonical Watson-Crick base-pairs.

How well the MD simulations preserve the native structure is only a minimal check of the
coarse-grained potential. It is more interesting and challenging to see if the CG potential can
be used to “predict” RNA folds. The “folding” of RNA molecules by the CG model was
examined by 100 ns simulated annealing molecular dynamics. In this process, the RNA
molecule was denatured by being quickly heated to a temperature of 1000 K. With the
system temperature gradually (over 100 ns) cooled back down to 298 K, the RNA molecules
were expected to fold back to its native or native-like conformations. We have performed
five independent simulated annealing runs for each of the 15 RNAs. The final conformations
were checked by comparing the structure of the last snapshot of trajectory to its native
structure. The minimum and average RMSDs among the 5 repeats are given in Table 7. The
results indicated that ~75% of RNAs fold back to their native-like structures (final all-
pseudo-atom RMSD < 6.5 Å) at least once among the 5 repeats. Examples of the simulation
snapshots and the final annealed structures of 1ZIH (RMSD = 3.8 Å) and 353D (RMSD =
6.3 Å) could be found at Figure 3b and Figure 3d, respectively. Due to the limited sampling
capability of simulated annealing method, the RNA molecule is very likely to be trapped
into a local minimum. For instance, all five simulated annealing repeats of the 1L2X
(contains a pseudoknot), failed to fold back to its right coaxial structures and were stuck in
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different local minima. Another possible reason is a lack of chemical details in our energy
potential function. The stability of some RNA tertiary motifs such as pseudoknots is highly
dependent on the solvation environment and metal ion concentration, especially the
magnesium hydration effect.136

Here we discuss in detail three RNAs that were successfully folded by the simulated
annealing MD simulations, a hairpin 1ZIH,137,138 and two helices: 353D139 and 1DQF.140

1ZIH is a 12-nt single strand RAN hairpin capped by a GCAA tetraloop.138,141 The GCAA
tetraloop belongs to the GNRA tetraloop family (N is A, C, G, or U; R is A or G)142 which
is a basic building block of RNA structure that often provide sites for tertiary contacts or
protein binding.50,142–145 At the beginning of annealing, the RNA was completely
denatured due to the heating, showing a RMSD of about 10 Å (Figure 3a and 3b). The
structure became stable after 70 ns and the RMSDs dropped to ~3.8 Å when the temperature
slowly decreased to 400 K (Figure 3b). Similar behavior was observed in the annealing of
two A-form helices, 353D (Figure 3d) and 1DQF. 353D contains two U-G Wobbles and
1DQF contains a bulge residue. Both RMSDs converged to ~4.5 Å at the end of the
annealing (Figure 3a). Overall, the successes demonstrate that the CG potential is very
promising for ab initio prediction of small RNA tertiary structure from sequence alone.

We have examined the possibility of further refining the CG structures from the simulated
annealing by mapping the structures to the corresponding all-atom models and performing
all-atom MD simulations. The last frames from the 100-ns simulated annealing simulation of
1ZIH and 353D with RMSDs around 5 Å were taken to generate the initial coordinates for
the subsequent all-atom simulations using AMBER10. The all-atom structures were re-
constructed from the CG structures via the following steps (please refer to Figure 1c for the
atomic labels). 1) The planar all-atom bases were placed based on the three pseudo particles
in the CG bases (Figure 1). The C1’ atom, which lies in the base plane, was constructed by
extending from the N atom in the bases. Equilibrium bond and angle values from amber99sb
force field were used in constructing the atomic coordinates relative to each other. 2) The
CG backbone particles P and S were turned into P and C4’ in the all-atom model. The
backbone O5’ and C5’ were placed along the vector connecting P and C4’ with the P-O5’
and O5’-C5’ bond lengths to set to be one third of the P-C4’ distance. Similarly, O3’ and
C3’ were placed between C4’ and P in the opposite direction. The other two O atoms
connecting to P were placed in the plane orthogonal to the O3’-P-O4’. 3) The O4’ in the
sugar ring was placed such that it lied in the plane of C3’-C4’-O4’-C1’. Using the C4’-O4’-
C1’ as the anchor, the sugar ring (including directly bonded peripheral atoms) in a flat
conformation was then constructed. Note that in this new structure, C5’ and C3’ were
moved out of the C4’-P vector. 4) The all-atom structure was then relaxed via AMBER
energy minimization while the five atoms directly transferred from the CG model (3 base
atoms, P and C4’) were constrained to the CG coordinates. The resulting all-atom structures
were subjected to a 20,000-step energy minimization without constraints followed by a 20-
ns MD simulation with amber99sb force field and GB/SA implicit solvation model. For
hairpin 1ZIH, the overall RMSDs dropped slightly from ~5.5 Å to 5 Å. However, the
backbone structure of 1ZIH was significantly improved as the RMSD was reduced from 5.4
Å to 3.65 Å. The detailed bases orientations in GCAA loop could be seen in Figure 3c,
which shows the superposition of final conformation and native structure of the tetraloop.
The GCA bases were stacked on top of each other instead of the CAA base-stacking in
native structure with ~60 rotation. The rotation or flipping of the GNRA bases, similar to the
U-turn motif 16,33,146 was observed in early studies by NMR analysis and other all-atom
molecular dynamic simulations.138,147 The flipping of some of the bases towards the solvent
in a tetraloop allows those bases to interact with other RNAs and proteins. For 353D, both
all-atom RMSDs and backbone RMSDs remained mostly unchanged after the all-atom
refinement. One possible reason is that the final structure of CG simulated annealing may be
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trapped in a local minimum, and the 20-ns all-atom simulation was not able to allow the
helix to relax and re-arrange into the native structure. The results indicate that the multi-
stage approach is useful for construction and refinement of all-atom structures after the CG
simulation provide the prediction of near-native structures. We also tested the ability of the
CG potential to predict 3-D structure when limited restraints are introduced based on the
secondary structure information (canonical base pairing) during the simulated annealing
simulations. We added restraint by randomly picked 3 to 5 canonical Watson-Crick base
pairs in each RNA molecule (Table 7). With these limited restraints, the CG model was able
to predict all the 3-D structures for each tested RNA in all 3 independent repeats, with
RMSDs in the range of 2.8 Å to 6.5 Å (Table 7). The results are very encouraging as it
demonstrates that limited knowledge of canonical base pairing from secondary structure
prediction can greatly facilitate the 3-D structure prediction using a CG potential.

Computational Efficiency of the Coarse-Grained Model
The computational efficiency of the CG model is greatly improved when compared to the
all-atom model. A nearly two orders of magnitude improvement in MD simulation speed
was found with the same time step of 1 fs. This improvement is mainly due to the reduction
in the number of bond, angle and torsion calculations. Furthermore, because of the absence
of high frequency motions such as bond stretching in the all-atom model, a time step up to
10 fs can be applied to the MD simulation without a noticeable effect on energy and
structural stability. In addition, in explicit all-atom simulations using a physical force field,
not only is the number of atoms further increased due to the presence of the solvent, the
equilibration of water and counter ions distribution is time-consuming. Therefore, the CG
model can achieve an improvement of about three orders of magnitude in the simulation
speed, which may enable us to study a large system, or extend the simulation time from tens
of nanoseconds to the scale of microseconds.

Conclusions
In summary, we developed and applied a new statistical coarse-grained potential to model
RNA structures with molecular dynamics. In the coarse-grained potential, each nucleotide is
represented by 5 pseudo atoms including 3 in the base ring. The bond, angle, torsion and
non-bonded parameters in the CG potential were derived based on the structural statistics
sampled from experimental structures of over 600 RNA in PDB. The Boltzmann inversion
used to obtain the initial parameters for the CG potential. Subsequently the non-bonded
parameters were optimized analytically by comparing the CG minimum energy structures
with the experimental structures. The optimization was performed systematically using the
optimally conditioned variable metric nonlinear optimization algorithm in TINKER.129,131–
133

The resulting potential was validated in molecular dynamics simulations of 15 RNAs,
including helices, teraloops, stem loops, bulges and pseudoknots. Room temperature MD
simulations starting from the native structures produced very reasonable RMSD (3.36 Å on
average), indicating the CG potential is able to maintain the native structure, or the native
structures are minima on the CG potential energy surface. The coarse-grained potential was
then applied to “predict” the 3-D structures of the 15 RNAs using multiple independent
simulated annealing dynamics simulations. For most of the RNAs, at least one out of the
five simulated annealing runs, the structure folded into a near native state (RMSD < 6.5 Å).
We also noted that the CG potential was able to predict the base stacking behavior in a
tetraloop. Furthermore, we also introduced limited distance restraints based on the
knowledge of canonical base-pairing in secondary structure. The reliability of the structure
prediction using CG potential was drastically improved, and all RNAs were folded into
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structures with RMSDs less than 6.5 Å. We also investigated the possibility of using an
amber all-atom force field to map and refine the CG model into all-atom structures.

Overall, the performance of this simple CG potential is very promising. With limited
knowledge of base-pairing from secondary structure prediction, the CG approach can
reliably predict the 3-D structure for small RNA molecules of various topologies. The
analytical functional form of the CG potential is compatible with existing molecular
modeling packages such as NAMD148 and GROMACS,149 so that it can be easily adapted
and take advantage of sophisticated simulations algorithms such as replica exchange
molecular dynamic method150 that is much more effective than simulated annealing for
conformational sampling. Further improvement of the accuracy of the CG potential can be
achieved by incorporating more experimental structure and refinement of the parameters. To
capture the non-bonded interaction more precisely, spline interpolation functions can be
utilized instead of the current simple analytical function,117 In the future, extra types of
pseudo atoms will be incorporated to represent the modified bases, especially by
methylation, such as inosine (derived from adenine) or pseudouridine (derived from uracil)
in tRNA.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(a) Schematic representation of the CG model for RNA. Phosphate and sugar are
represented as one CG particle. The bases A, G, C, and U are represented as three CG
particles for each. (b) The components of each CG base. The base is divided by the red dash
line. (c) Schematic representation of all-atom RNA backbone.
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Figure 2.
Superposition of final snapshot from 10 ns CG simulations (colored green) and native
structure (colored blue). The backbones are represented as thick sticks and the bases are
shown as lines. (a) Superposition of RNA with 12 canonical Watson-Crick base pairs (PDB
ID: 1QCU). (b) Superposition of the frameshifting RNA pesudoknot from beet western
yellow virus (PDB ID: 1L2X), a single chain with coaxial helices connected by two loops.
(c) Superposition of 12 nt dsRNA with 5-bp internal loop (PDB ID: 1LNT).
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Figure 3.
(a) Comparison of all-atom RMSDs for the structures 1ZIH, 353D and 1DQF during the 100
ns simulated annealing simulations. The simulation temperature was increased to 1,000k
within the beginning 2,000 steps and then cooled down to room temperature 298k. The
RMSDs were calculated using all of the CG atoms. The figures show how the RNA
molecules fold toward to their native structures. (b) Snapshots taken from simulated
annealing of 1ZIH. (c) The superposition of final conformation (colored green) and native
structure (colored blue) of GCCA tetraloop after 20 ns full-atom MD refinement. The
backbone is represented as a ribbon and the base-stacking unit in tetraloop is shown as
sticks. (d) Snapshots taken from simulated annealing simulation of 353D.
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TABLE 1

The Properties of Nine CG Particles

number CG particle name mass (amu) bond connections

1 P 94.970 2

2 S 97.054 3

3 CG 53.022 3

4 N6 42.030 2

5 N2 54.030 2

6 O6 43.014 2

7 O2 42.006 2

8 CU 26.016 3

9 CA 39.015 2
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TABLE 2

The Bond Stretching Interaction Parameters for the CG Model of RNA Fitted by the Gaussian Function and
Obtained From Statistical Structures

bond b0 Kb

1 - 2 3.85 11.12

2 - 3 3.74 9.79

2 - 8 3.61 10.89

3 - 4 4.29 57.70

3 - 5 5.66 51.66

3 - 6 4.28 44.60

3 - 9 4.33 109.19

4 - 7 4.55 44.00

4 - 8 3.59 124.29

4 - 9 3.53 93.79

5 - 6 4.57 37.14

6 - 7 4.53 57.10

6 - 8 3.55 89.85

7 - 8 3.52 82.87
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TABLE 3

The Bond Angle Interaction Parameters for the CG Model of RNA Fitted by the Gaussian Function and
Obtained from Statistical Structures

angle θ0 Ka

1-2-1 102.78 1.356

1-2-3 101.75 5.271

1-2-3'a 75.89 1.864

1-2-8 100.79 9.115

1-2-8' 74.40 2.386

2-1-2 106.18 2.040

2-3-4 154.72 7.130

2-3-5 104.12 12.734

2-3-6 153.94 8.162

2-3-9 108.78 10.611

2-8-4 163.79 6.794

2-8-6 163.79 6.794

2-8-7 88.99 15.930

3-4-9 66.45 35.882

3-5-6 79.38 16.156

3-6-5 48.06 21.701

4-3-9 48.33 49.428

4-7-8 49.44 24.490

4-8-7 79.78 29.398

4-9-3 65.22 17.290

5-3-6 52.57 50.065

6-7-8 50.54 38.613

6-8-7 79.46 31.109

7-4-8 50.84 29.033

7-6-8 49.98 30.600

a
The prime in the table indicates the atom comes from its neighbor residue
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TABLE 4

The Optimized CG Parameters for Non-Bonded Interaction Described by Equation (9), Including Similar and
Unlike Pairs of CG Atoms

CG atoms σ (initial) ε (initial)a σ (final) ε (final)b

P - P 11 0.287 11.2778 0.1503

S - S 11.7 0.3827 12.1544 0.4162

C - C 4.4 0.8851 4.1836 0.9276

N6-N6 3.1 1.3875 3.4604 1.4312

N2-N2 4.8 1.1004 4.7928 1.1603

O6-O6 3.1 1.4354 3.7784 1.4635

O2-O2 4.9 1.0526 4.8614 1.0846

C - N6 5.1 0.6698 5.2158 0.3818

O6-O2 5.2 1.0526 5.4321 1.2972

N2-O2 2.8 1.9138 2.7974 2.0524

C - O6 5.2 0.8373 5.26 0.6972

C - O2 3.5 0.909 3.6176 0.8886

N6-O6 2.85 1.866 3.0427 1.8562

C - N2 4.25 0.8373 4.3342 0.8527

N6-O2 5.3 0.7416 5.6477 0.7942

N6-N2 5.3 1.232 5.3832 1.0547

O6-N2 5.4 0.7416 5.5622 0.5273

P - S 9.4 0.5263 9.4287 0.054

S - C 5.6 0.5502 5.615 0.5856

a
Columns σ (initial) and ε (initial) are the non-bonded parameters obtained from statistical potential of mean force.

b
Columns σ (final) and ε (final) are the non-bonded parameters obtained after the optimization
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TABLE 6

Comparision of All-Atom Average RMSDs from the Native Crystal Structures for Both the CG Model and the
Full-Atom Models. All RMSDs Were Obtained from All CG Atoms (Full-Atom Calculation Using the Same
Atom Set as CG Model)

RMSD (Å)

PDB ID CG model full-atom implicit water model (amber99sb ff) full-atom explicit water model (amber99sb ff)

157D 3.644 5.609 2.260

1DQF 2.478 3.274 1.935

1I9X 3.236 3.956 1.780

2JXQ 2.536 2.940 1.800

2K7E 3.675 4.560 3.560

353D 3.483 2.802 3.583

472D 3.137 2.467 1.500

1F5G 4.425 2.950 1.800

1KD3 4.570 3.740 2.560

1L2X 2.840 2.890 2.730

1LNT 4.751 2.610 1.880

1QCU 1.669 2.560 2.210

1ZIH 3.532 3.180 2.010

2AO5 3.326 2.090 1.350

1AL5 3.080 3.770 2.210

Average 3.359 3.293 2.211

a
All rmsd’s were obtained from all CG atoms (full-atom calculation using the same atom set as the CG model).
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TABLE 7

Comparison of All-Atom RMSDs between the Final Structures of 100 ns Simulated-Annealing Simulations to
Their Native Structures.

PDBID RMSD (Å) without restrains MIN/AVGa RMSD (Å) with restraints MIN/AVG number of restrained pairs

157D 6.6/7.2 5.2/5.5 5

1AL5 6.4/8.4 5.2/5.8 5

1DQF 4.2/5.7 4.8/5.3 4

1F5G 5.2/7.0 5.8/5.9 5

1I9X 6.8/8.4 3.0/4.7 5

1KD3 8.0/9.1 5.3/5.6 5

1L2X 9.7/10.4 5.0/5.2 5

1LNT 6.5/7.7 5.0/5.6 5

1QCU 6.0/8.8 4.0/4.4 5

1ZIH 3.8/4.7 3.6/5.0 3

2AO5 5.1/6.5 2.8/4.6 5

2JXQ 4.1/6.4 3.0/4.8 5

2K7E 5.9/7.8 5.0/5.1 5

353D 4.8/6.0 4.0/5.5 5

472D 4.6/6.9 4.7/5.5 3

a
The minimum and average RMSD value among all repeats (the restrained pairs shown in the last column on average correspond to ~40% of each

RNA).
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