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Abstract
Higher throughput thermodynamic measurements can provide value in structure-based drug
discovery during fragment screening, hit validation, and lead optimization. Enthalpy can be used to
detect and characterize ligand binding, and changes that affect the interaction of protein and ligand
can sometimes be detected more readily from changes in the enthalpy of binding than from the
corresponding free-energy changes or from protein-ligand structures. Newer, higher throughput
calorimeters are being incorporated into the drug discovery process. Improvements in titration
calorimeters come from extensions of a mature technology and face limitations in scaling.
Conversely, array calorimetry, an emerging technology, shows promise for substantial improvements
in throughput and material utilization, but improved sensitivity is needed.

Introduction
As the role of structural biology in drug development continues to grow, the value of related
thermodynamic measurements is becoming more widely recognized. Indeed, in a recent review
Chaires concludes that “thermodynamic data are an essential complement to structural data in
drug development and for the optimization of lead compounds” [1*]. As an increasing body
of data makes clear, the formation of isostructural complexes can result in very different
thermodynamic consequences, and measuring these consequences can provide additional
signatures of binding modes. Thermodynamic measurements can also be used to provide
insights into specificity, agonist versus antagonist effects of ligands, and other important
properties [1*,2*,3].

Such considerations are of particular value in drug design, where choices made at early stages
of the process can have great impact on in vivo efficacy, resistance and toxicity, and where the
costs of failure are high. Fragment-based drug discovery (FBDD) is an approach of particular
interest and relevance here. Fragments are molecules smaller than typical drugs, and they
generally bind with lower affinity than conventional drug screening hits. In FBDD, fragments
that bind with high ligand efficiency (binding free energy per atom, not counting hydrogen
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atoms) are sought as building blocks for constructing larger, higher affinity drug leads [4,5].
Measuring the contributions of enthalpy and entropy to the free energy of binding provides
information that can be useful in fragment elaboration and subsequent medicinal chemistry
work [6–13].

In this review, we discuss recent progress toward integrating higher throughput calorimetry
into structure-based drug discovery, covering both new isothermal titration calorimetry (ITC)
instruments and array nanocalorimeters.

Higher throughput ITC instruments
Traditionally, ITC is a low throughput technique, having relatively high material and time
requirements (~1mg of protein and 2–3 hours per titration). As a result, ITC has not been used
routinely in drug discovery. However, some recent improvements in instrumentation have
finally begun to emerge, including the iTC200 and Auto-iTC200 from MicroCal (GE
Healthcare) and the Nano ITC from TA Instruments. For example, the iTC200 and Auto-
iTC200 provide a 3-fold gain in sensitivity combined with a 7-fold smaller sample cell compared
with the Microcal VP-ITC instrument [14**]. These two features reduce the protein
requirement by 3 fold and the experiment time to around 30–40 min per titration. The protein
concentration must be increased to maintain the same signal: noise ratio, however, which has
immediate consequences. Higher titrant concentrations become necessary, so in some cases
ligand solubility becomes limiting. In addition, requiring higher protein concentrations may
restrict the high affinity limit of the instrument, since accurate Kd’s can only be determined
down to ~1000-fold below the protein concentration for standard titrations.

In practice, the increased speed of titration and the ability to automate a series of titrations are
the major benefits of the Auto-iTC200. Although retaining a serial titration mechanism, the
Auto-iTC200 can, in principle, run ~30–40 titrations per day and up to 384 titrations unattended.
Implicit in any consideration of throughput is the question of protein requirements. A typical
Auto-iTC200 titration on a 40kDa protein at a 40μM concentration would require ~0.3 mg of
protein. This allows ~30 titrations to be run and analyzed using 10mg of protein. This type of
throughput could satisfy a typical project chemistry team during hits-to-leads or in lead
optimization, providing of course that the target protein was available in sufficient quantity.

ITC in hit validation and lead optimization
In principle, ITC allows the measurement of binding free energies, enthalpies, and
stoichiometry from low mM to ~50 pM affinities (see Table 1). Crucially for FBDD, the
technique allows solution-based measurement of binding at weak affinities and high ligand
concentrations, the region of interest for fragment screening where biochemical assays can
suffer from compound interference. Measuring whether a compound binds with a meaningful
stoichiometry, reasonable enthalpy, and attractive Kd can be useful for identifying false
positives, a matter of high importance in both high throughput screening (HTS) and FBDD.
The value of providing this fundamental information early in the drug discovery process has
been demonstrated [15] and includes the validation of “tool compounds” taken from the
literature. The simplicity and robustness of ITC also makes it valuable during lead optimization.

In work at Astex Therapeutics, greater than 400 ITC datasets describing fragments and
fragment-derived leads binding to a wide variety of target proteins have been acquired. These
datasets complement a similar number available from publically available sources such as the
Scorpio [16] (URL: http://scorpio.biophysics.ismb.lon.ac.uk/scorpio.html), PDBcal [17]
(URL: http://www.pdbcal.org/) and BindingDB [18] (URL:
http://www.bindingdb.org/bind/index.jsp) databases, which compare thermodynamic binding
information and structural data for a range of small molecules, natural products and
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biopolymers interacting with proteins. The data for Astex campaigns clearly show that binding
of fragment hits to proteins has been driven predominantly by enthalpy and that this preference
has been maintained during X-ray structure-based optimization of fragment hits into nanomolar
affinity leads and drug-candidates, as shown in Table 3. With hindsight this trend can be
rationalized by invoking molecular interpretations of thermodynamic effects, combined with
a biophysical viewpoint of the structure-based drug discovery process.

Molecular Interpretation of Thermodynamic Effects in FBDD
Binding of an initial fragment hit is often dominated by polar, hydrogen-bonding interactions,
while hydrophobic portions of the molecule may limit access of solvent but do not usually
make optimal contacts with the protein. Fragments used in screening contain polar heteroatoms
because they must be highly soluble in aqueous buffers (solubility > 1mM). Furthermore,
fragment scaffolds are usually restricted to simple geometries, typically with one or two
aliphatic or aromatic rings decorated with polar functional groups, thus limiting the extent and
availability of apolar surface area. In order to bind to a protein, small molecules must first lose
a considerable amount of entropy, a disadvantage estimated to be approximately +4 kcal/mol
at 25°C [19,20]. These factors mitigate in favor of enthalpically driven binding, at least in the
early stages of fragment-based drug design

Hydrogen bonding between ligand and protein usually provides a favorable enthalpy change
due to the energy of the bond itself, with a smaller entropic contribution that may be favorable
or unfavorable. Large variations occur, though, reflecting the need to desolvate H-bond
partners to varying extents and in some cases break intramolecular H-bonds. Also, the
formation of multiple hydrogen bonds can severely restrict mobility and thereby reduce entropy
significantly. Importantly, once the configurational entropy is lost, additional hydrogen bonds
may not have as noticeable an effect.

Removing a hydrophobic area of a ligand from an aqueous environment leads to a loss of
solvent order that corresponds to a favorable entropy change, while van der Waals interactions
make a smaller, favorable contribution to the binding enthalpy. During later iterations of
structure-based design, these hydrophobic contacts are optimized, and there are more
opportunities for favorable entropic contributions from the release of ordered water. However,
this may be opposed by a further reduction in configurational entropy of the ligand, as its
interactions with the protein are strengthened [3]. Astex data suggest that, on average, both
entropic and enthalpic contributions to binding affinity can be improved during this phase of
structure-based design (Table 3).

The trend in Table 3 conceals larger, partially compensating changes in the binding enthalpy
and entropy that can occur, even though the relationship between ligand structure and free-
energy of binding may appear smooth and continuous. One example of such an effect for a
series of related amino-pyrimidines binding to HSP90 is evident in Figure 1. Empirically, such
effects are usually observed when making changes in regions of the ligand that make close
contacts with the protein. Accordingly, the measurement of large enthalpy changes on
modification of the ligand can be used to suggest a close contact with the protein, even in the
absence of structural data and in cases where the modification leads to little or no change in
affinity. As a caution, though, it is difficult to justify such suggestions convincingly, even with
high resolution structural data that includes positions of individual water molecules in the active
site. The message for FBDD is interpretation of enthalpy and entropy changes needs to be
sophisticated to be effective.

Factors such as enthalpies of buffer protonation [21], ligand desolvation, or conformation
changes due to binding or ‘unusual’ interactions can complicate the interpretation of
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thermodynamic data [22]. Repeating measurements in different buffers can elucidate
protonation effects, and structural data can be used to identify the presence of new interactions.
In contrast, contributions from changes in ligand desolvation remain difficult to probe.

Another thermodynamic parameter of interest in drug design is ΔCP, the change in heat capacity
that occurs when a ligand binds to a protein [23,24]. ΔCP is determined from the temperature
dependence of the enthalpy change (ΔCp =|∂ΔH/∂T|p) and is dominated by changes in
hydration. Desolvation of polar groups is associated with a small increase in heat capacity,
while desolvation of apolar groups causes a decrease in heat capacity. Although solvent is
ordered around both solvated polar and apolar groups, the ordering is clearly different and,
around apolar groups, provides additional vibrational modes that can be populated at normal
temperatures. For example, for the burial of an isopropyl group, changes in ΔCp are expected
to be ~0.03 kcal/(mol.K), and these should be reflected by changes in ΔH of ~0.6 kcal/mol
over 20°C [25].

Array calorimetry
In order to routinely get the full value that thermodynamic measurements can provide in
structural biology-based drug discovery, higher throughput instruments will be required. While
miniaturization of ITC instruments enables somewhat higher throughput and lower sample use
[14**], the measurements are still performed in series and thus have limited throughput relative
to the evolving need. Arrays of nanocalorimeters increase throughput by performing
measurements in parallel, and they also enable decreased sample use by reducing sample
volume to the sub-microliter level.

Tables 1 and 2 list array or array-able nanocalorimeters for biochemical measurements that
have been presented in the literature. Table 1 focuses on binding measurements, and Table 2
focuses on enzymatic measurements. For comparison, these tables also list higher throughput
ITC instruments.

Nanocalorimeters can be classified based on two major design elements: the configuration of
the reaction chamber and the type of thermometry. Two types of reaction chambers have been
described: open-chamber (batch calorimetry) devices which use syringes or pipettes to place
droplets of reactants on the surface of a thermally isolated well or platform [26,27**,28*,29,
30] and closed-chamber (typically flow calorimetry) devices which use microfluidic channels
to introduce reactants [31,32*,33,34]. Open-chamber designs generally provide better thermal
isolation and reduced dead volume compared with microfluidic delivery systems. A limitation
of open-chamber systems is evaporation of drops, which must be minimized to achieve reliable
measurements. Closed-chamber systems do not suffer from evaporation issues, but their
sensitivity is limited by thermal conductance to their surroundings and higher device heat
capacity.

The two types of thermometers that have been used in nanocalorimetric devices are thermopiles
[29,31,32*,33,34] and thermistors [26,28*]. Thermopiles are composed of thermocouples
connected in series, a higher number giving better sensitivity. Thermistors are temperature
sensitive resistors which display decreased resistance with increasing temperature. Most of the
nanocalorimeters reported in the literature use thermopiles. They have the advantage of not
generating heat because current is not required to sense the temperature-dependent voltage.
For an array of nanocalorimeters, though, the small size of the device limits the size and number
of thermocouple junctions that can be placed in the device, making the fabrication more
challenging and increasing the cost substantially compared to thermistors. Sensitive
thermistors are easier to fabricate, but they generate heat during a measurement due to the
applied current. Larger current improves the electronic signal-to-noise ratio, but the increased
resistive heating can amplify unwanted thermal artifacts [35]. In enthalpy array devices
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[28*], four thermistors are combined in a Wheatstone bridge to directly provide a differential
temperature measurement of sample and reference specimens.

A number of closed-chamber microfluidic calorimeters using thermopile heat sensors have
been described [31,32*,33,34,36]. In principle, arrays of these devices could be fabricated, but
so far the published work only describes the construction and operation of a single calorimetric
unit. Flow calorimeters typically require significantly larger sample volumes than batch
designs, but microfluidic devices that use as little as 10–20 microliter sample volumes have
been described by Lerchner et al [33,37], albeit with a focus on measuring the metabolic heat
produced by microorganisms rather than on drug discovery applications. This calorimeter
contains a thermopile chip with four measuring sections arranged along a flow path, allowing
the transient behavior of a reaction to be resolved. With respect to the potential for application
in target-based drug discovery, the device has been used to measure high-activity enzymatic
reactions (oxidation of glucose by glucose oxidase, hydrolysis of penicillin G by β-lactamase
[33]), but further work appears necessary to enable measurement of specific parameters of
interest, such as thermodynamic quantities for binding or kinetic inhibition constants.

The measurement of binding reactions in a flow-through nanocalorimeter has been achieved
by immobilizing one binding partner on magnetic streptavidin-coated agarose beads [31].
Using a microfluidic calorimeter of the type described by Lerchner et al [33], streptavidin-
coated beads were loaded into the chamber over one or more of the thermopile sensors (~175
μM streptavidin monomer in chamber), and the binding of biotin was measured, yielding a
linear relationship between peak area and biotin concentration. In addition, the hybridization
of DNA strands was measured by first binding one biotinylated DNA strand to the streptavidin-
coated beads and then injecting the complementary DNA strand into the chamber. These are
interesting demonstrations, but they are still a long way from measurements relevant to drug
design, and immobilization of one binding partner eliminates a major advantage that
calorimetry provides.

Lee et al. [32*] also report a closed-chamber calorimeter that can in principle be developed
into an array technology. They describe a single unit closed-chamber calorimeter in which the
measurement chamber and thermometer are built on a parylene-C membrane. The sensitivity
of the closed-chamber device has been increased by surrounding the chamber with a vacuum
jacket, providing better thermal isolation of the reaction chamber, albeit at a significant increase
in fabrication difficulty. Measurement of the enzymatic reaction of urease was shown, which
yielded the expected linear relationship between total energy and initial substrate
concentration. In addition, the mixing of methanol with water was shown, but the results
indicated some limitations in sample mixing in the device. The device will require further
development to achieve good mixing and enable measurement of binding reactions [32*].

Actual array calorimeters have been demonstrated for open chamber designs. For example,
Verhaegen, et al [29] developed the MiDiCal array calorimeter using a thermopile-based sensor
and published results for the analysis of ascorbic acid concentration in food and pharmaceutical
samples [30]. Each array allows up to 48 samples to be measured using reaction volumes of
10 to 20 microliters each. The ascorbic acid content of a sample was determined by measuring
the heat evolved by ascorbate oxidase turnover of ascorbic acid. The results were in good
agreement with an HPLC reference method, but these reactions gave highly exothermic signals
well above the sensitivity limits desired for array calorimeters in target-based drug discovery.
The data analysis reveals that diffusion of reagents in the reaction wells has a significant impact
on the observed signal compared to the expected sensor readings, indicating that poor sample
mixing is an issue.

Torres et al. Page 5

Curr Opin Struct Biol. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The array calorimeter with the best published sensitivity is the enthalpy array, an open chamber
calorimeter [26,27**,28*]. As shown in Tables 1 and 2, these arrays have been used to measure
both binding and enzymatic reactions. For enzymatic reactions, both the total integrated heat
and the detailed kinetics have been measured, the former for inhibitor screening or substrate
quantitation and the latter for determination of kinetics constants such as kcat, KM, and KI. Of
particular interest in FBDD, enthalpy arrays can measure inhibition constants for relatively
weak inhibitors at mM compound concentrations [27**], providing a platform for activity-
based fragment screening. The arrays were initially used to measure the enthalpy of binding
reactions (RNase A-2′-CMP, stretpavidin-biotin), an enzymatic reaction with limited substrate
(hexokinase), and mitochondrial respiration [28*]. The thermistor material was improved,
yielding lower noise devices, and these were then used to perform titrations to determine Kd
of a simple non-biological model system (BaCl2-18-crown-6) and to quantitate the total initial
concentration of substrate in an enzymatic reaction [26]. Limitations in the sensitivity of the
devices was observed and traced to poor mixing of 500 nanoliter volume samples. Achieving
good sensitivity requires rapid and complete mixing of samples, which is hard to achieve with
nanoliter sample volumes [26,38,39]. Employing a micro magnetic stir bar, rapid mixing of
samples was achieved and enabled measuring enzyme kinetic parameters and determining
inhibitor constants for several enzyme systems (trypsin, hexokinase, PKA). In addition,
determination of the mode of inhibition (competitive, noncompetitive) was determined from
the nonlinear regression of the rate versus substrate concentration data at various inhibitor
concentrations. Lineweaver-Burk plots were provided to give visual validation of the inhibition
mode [27**].

Concluding remarks
Higher throughput thermodynamic measurements are providing value in structure-based drug
discovery, in particular throughout the FBDD process where enthalpy can be used to detect
and characterize ligand binding. Critical regions of the ligand that affect its interaction with
protein can sometimes be detected more readily from changes in the enthalpy of binding than
from the corresponding free-energy changes because of enthalpy-entropy compensation
effects. While the interpretation of small enthalpy differences in terms of changes in molecular
interactions is difficult, enthalpy-driven binding has been suggested to favor ‘best-in-class’
properties in some cases, such as for HIV protease inhibitors [40]. Experience in the area of
protein-folding has also indicated that ΔCP is correlated with the amount of apolar surface area
buried on binding, thus providing additional structural information from enthalpy.

Current improvements in conventional titration and array calorimeters indicate the potential
for making measurements on hundreds of complexes, using a few milligrams of protein.
Improvements in titration calorimeters come from extensions of a mature technology and face
limitations in scaling. Conversely, array calorimetry is an emerging technology and shows
promise for substantial improvements in throughput and material utilization, but development
work is needed to improve the sensitivity. Successful miniaturization and automation could
impact not only lead optimization but also primary and secondary screening.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Binding thermodynamics for substituted amino-pyrimidine ligands and HSP90
(a) X-ray structure showing the binding mode of a substituted amino-pyridimidine bound in
the ATP-binding site of the N-terminal domain of the chaperone, HSP90.
(b) Changes in free-energy and enthalpy of binding observed on modification of the amino-
pyrimidine ligand. At position R1, replacement of Cl by Me leads to a substantial change in
ΔH that is accompanied by a similar change in ΔG. Replacing Cl by H, however leads to a
much larger change in ΔH than ΔG indicating a high degree of enthalpy-entropy compensation
for this particular substitution. Enthalpy-entropy compensation is also evident for both
substitutions shown at position R2. For the substitution of OMe by H, entropy effects dominate
and ΔΔG and ΔΔH are of opposite sign. For the substitution of OMe by Cl, enthalpy and entropy
changes are finely balanced and little change in ΔG results. With the benefit of enthalpy data
is it clear that the substitution OMe to Cl at R2 could lead to large improvements in affinity,
provided that enthalpy-entropy compensation could somehow be overcome.
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