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The dysfunction of pancreatic 3-cell and the reduction in -cell mass are the decisive events in the progression of type 2 diabetes.
There is increasing evidence that cytokines play important roles in the procedure of 3-cell failure. Cytokines, such as IL-1f3, IEN-y,
TNEF-a, leptin, resistin, adiponectin, and visfatin, have been shown to diversely regulate pancreatic -cell function. Recently, islet-
derived cytokine PANcreatic DERived factor (PANDER or FAM3B) has also been demonstrated to be a regulator of islet f3-cell
function. The change in cytokine profile in islet and plasma is associated with pancreatic $-cell dysfunction and apoptosis. In this
paper, we summarize and discuss the recent studies on the effects of certain important cytokines on pancreatic S-cell function.
The imbalance in deleterious and protective cytokines plays pivotal roles in the development and progression of pancreatic S-cell

dysfunction under insulin-resistant conditions.

1. Introduction

Diabetes is a chronic disease that occurs when pancreatic
islets fail to produce sufficient insulin and/or the sensitivity
of glucose-metabolizing tissues to insulin decreases. Chronic
hyperglycemia may lead to serious damage to many organs
and cause the impairment of insulin production and action.

The mechanisms of islet § cell failure are different in the
progression of type 1 and type 2 diabetes. In the progression
of type 1 diabetes, pancreatic islet 8 cells are mainly destruc-
ted by autoimmune-mediated apoptosis, leading to the loss
of insulin production. Inflammatory cytokines play crucial
roles in this process [1]. In the progression of type 2 diabetes,
the failure of f-cell function and S-cell mass reduction are
predominantly associated with the increase in circulating
cytokines and in free fatty acids (FFAs) and with persistent
hyperglycemia [2]. Chronic exposure of 5 cell to these medi-
ators induces excessive production of reactive oxygen species
(ROS) and activation of caspases, which inhibit insulin
secretion and promote apoptosis of pancreatic f3 cells [3].

In the past decades, it had been well established that
inflammatory cytokines including IL-1p, TNF-a, and IFN-
y play a critical role in the pathogenesis of type 1 diabetes.

At the early stage of type 1 diabetes, some immune cells such
as lymphocytes and macrophages infiltrate into the islets of
pancreas and secrete inflammatory cytokines, resulting in
high concentrations of cytokines within islets [1]. Chronic
exposure of f cells to IL-18, TNF-a, and IFN-y finally
induces islet dysfunction and f8 cell apoptosis. Since the
discovery of leptin and other adipose-derived hormones, it
has been realized that adipose is an endocrine organ besides
being the main energy reservation tissue [4]. Adipocytokine
is a general term of adipose-specific cytokines, such as
leptin, resistin, adiponectin, visfatin, and omentin, and
nonadipose-specific cytokines such as IL-6, IL-1f3, and TNEF-
a [5, 6]. Cytokines including IL-1f, leptin, resistin, and
adiponectin have been shown to play important roles in
the development of pancreatic 3-cell dysfunction and type
2 diabetes. Recently, PANcreatic DERived factor (PANDER,
FAM3B), a cytokine-like protein, had been shown to be a
regulator of pancreatic 3-cell function [7-9].

Depending on their roles in regulating pancreatic f3-
cell function, some cytokines are protective, others can be
detrimental. For instance, chronic exposure of islets to some
cytokines such as IL-1f3, IFN-y, TNF-qa, and resistin inhibits
insulin secretion and induces apoptosis of f cells. Other



cytokines such as adiponectin and visfatin exert protective
effects on pancreatic f cell function. In addition to circu-
lating cytokines, islets also produce a variety of cytokines
in response to physiologic and pathologic stimuli, and these
locally produced cytokines play important roles in regulation
of pancreatic f-cell function as well [10, 11]. To maintain the
normal pancreatic -cell function, the deleterious and pro-
tective cytokines need to be balanced. The abnormal change
in cytokine profile in islet and plasma is associated with
pancreatic 3-cell dysfunction and type 2 diabetes [10, 12]. In
this paper, recent findings regarding the effects of cytokines
including IL-1p, IEN-y, TNEF-q, leptin, resistin, adiponectin,
visfatin, and PANDER on pancreatic f-cell dysfunction and
type 2 diabetes will be summarized and discussed.

2.1L-1B/ IFN-y/TNF-a

IL-1p-mediated pancreatic S-cell dysfunction and apoptosis
are involved in the pathogenesis of pancreatic S-cell dys-
function and type 2 diabetes. Short-time pretreatment of
pancreatic f3 cells with IL-13, IFN-y, and TNF-q, alone or
in combination, results in significant inhibition of insulin
secretion in the absence or presence of stimulatory glucose
concentration [13, 14]. Chronic exposure of pancreatic f3
cell to IL-1p activates the expression of inducible nitric
oxide synthase (iNOS) and results in excessive production
of nitric oxide (NO), which interferes with electron transfer,
inhibits ATP synthesis in mitochondria, and induces the
expression of proinflammatory genes [15, 16]. A decrease in
cellular ATP content inhibits insulin secretion and results in
cell dysfunction. It has been widely accepted that Nuclear
Transcription Factor-k«B (NF-xB) predominantly mediates
IL-13- or other cytokine-induced activation of iNOS in
pancreatic f cells [17-19]. Persistent activation of NF-xB
induces a sustained decrease in expression of f-cell-specific
proteins including insulin, GLUT-2, and PDX-1 concomitant
with an increase in iNOS expression [20]. Sulforaphane,
radix clematidis, guggulsterone, or other molecules has been
shown to protect pancreatic f cell from apoptosis induced by
cytokines including IL-1f and IFN-y via inhibition of NF-«xB
activation and iNOS expression [21-23]. Overexpression of
MnSOD also protects  cells from IL-1f or other cytokine-
induced apoptosis by repressing NF-«B activation and iNOS
expression [24]. NF-xB1 (p50)-deficient mice are not suscep-
tible to multiple low-dose streptozotocin-induced diabetes
[25]. In contrast to persistent activation, transient activation
of NF-xB may be beneficial to insulin secretion from
pancreatic islets at the early stage of cytokine stress [20, 26].
However, cytokines including IL-1f3, IFN-y, and TNF-« have
also been reported to inhibit insulin secretion and induce
apoptosis of 8 cell via iINOS-independent pathway [27, 28].
Endoplasmic reticulum (ER) stress-mediated apoptosis has
been proposed as an additional important mechanism for IL-
13-mediated pancreatic f3 cell death. Pretreatment of 8 cells
(primary islet 3 cells and MING cells) with 4-Phenyl butyric
acid (PBA) to alleviate ER stress significantly reduces IL-
1-induced cell apoptosis [29]. PBA may partially alleviate
IL-1B’s deleterious effect on f cell by depleting ER Ca?*
and activating c-Jun NH(2)-terminal kinase (JNK) signaling
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pathway [29]. IL-18 and IFN-y in combination markedly
decrease the sarcoendoplasmic reticulum pump Ca’** ATPase
2b (SERCA2b) protein expression and deplete ER Ca?* stores
by stimulating NO synthesis, which subsequently activates
the ER stress pathway [30]. IL-1/3 plus IFN-y also upregulates
the BH3-only protein, DP5, which induces ER stress and
consequently triggers f3 cell apoptosis [31]. Maedler and
colleagues reported in 2002 that incubation of human islets
with high concentration of glucose (33.3 mM) for 20 hours
significantly induced IL-1f production and locally produced
IL-183 exerted deleterious effects on human islet function
[32]. This suggests that islet-produced IL-13 maybe be
involved in glucotoxicity on islet 8 cell. In support, IL-1J
expression is shown to be increased in islets from type 2
diabetic patients [33]. However, Welsh and colleague report
that stimulation with 11 and 28 mM glucose for 48 hours or 7
days fails to affect the expression of IL-1 receptor antagonist
(IL-1ra), Fas, IkB-«, or monocyte chemoattractant protein
(MCP-1) in human islets. The authors further show that high
glucose fails to induce IL-1f production in human islets [34].
Opverall, although whether glucose regulates the expression of
IL-1f or IL-1ra in human islets remains controversial [34], it
has been well established that local and/or systemic IL-1f’s
play an important role in the progression of islet dysfunction
and f3 cell apoptosis in type 2 diabetes. Adenoviral-mediated
overexpression of IL-1ra increases f3-cell replication in rat
pancreatic islets [35]. IL-1Ra treatment ameliorates hyper-
glycemia of high-fat-diet- (HFD-) induced mice. In vitro,
IL-1ra protects islets of HFD-treated mice from f-cell apop-
tosis, induces f3-cell proliferation, and improves glucose-
stimulated insulin secretion [36]. Consistently, administra-
tion of IL-13-neutralizing antibody for 13 weeks significantly
reduces glycated hemoglobin (0.45%), serum proinsulin (2.1
+ 0.2 versus 4.8 + 0.9ng/mL), and insulin levels (3.6 =
0.5 versus 5.2 + l.4ng/mL), and improves islet function
in HFD-induced diabetic mice [37]. Treatment of diabetic
GK rats with IL-1ra attenuates hyperglycemia, reduces the
proinsulin/insulin ratio, and improves insulin sensitivity. In
addition, the expression of islet-derived proinflammatory
cytokines including IL-18 and TNF-« is reduced by IL-
1ra treatment with amelioration of islet inflammation [38,
39]. IL-1ra also protects human islets from IL-1S-induced
production of NO, impairment in glucose-stimulated insulin
secretion, and apoptosis of 5 cells [15, 40]. Pioglitazone also
protects human islet 3 cells from IL-13-induced apoptosis by
blocking NF-«B activation [41]. Patients with type 2 diabetes
receiving subcutaneously a daily dose of 100 mg of anakinra,
arecombinant human IL-1ra, for 13 weeks show a significant
decrease in glycated hemoglobin level and fasting blood
glucose, ratio of serum proinsulin to insulin, and IL-6 and
C-reactive protein levels while show an increase in serum C-
peptide level [42, 43]. Clearly, these studies in animal models
and human or human islets strongly suggest that blockade of
IL-1p signaling pathway will improve f3-cell dysfunction and
ameliorate hyperglycemia.

It has been previously reported that the use of TNF-« or
IFN-y alone fails to induce f3 cell apoptosis, whereas in com-
bination they markedly induce f cell death. Interferon reg-
ulatory factor 1 (IRF-1) may mediate IFN-y/TNF-a-induced
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apoptosis of pancreatic 5 cells. IFN-y induces the expression
of IRF-1, which makes insulinoma cells susceptible to TNF-
o [44]. X-linked inhibitor of apoptosis protein (XIAP), an
antiapoptotic protein, can protect pancreatic 3 cells from
being damaged by IFN-y/TNF-a toxicity. Overexpression
of XIAP abrogates TNF-a induced apoptosis of insulin-
secreting MIN6NS cells via inhibition of caspase activation,
whereas downregulation of XIAP augments MIN6NS8 cell
apoptosis induced by TNF-« and IFN-y [45]. Moreover, the
amplitude of high-voltage-activated Ca®" currents has been
demonstrated to be increased in MIN6N8 insulinoma cells
exposed to IFN-y and TNF-q, resulting in an increase in
cytosolic Ca>* concentration and activation of calpain and
calcineurin. Activated calcineurin mediates dephosphoryla-
tion of the proapoptotic protein BAD. Intracellular events
such as mitochondrial dysfunction and caspase activation are
also involved in apoptosis of pancreatic 8 cell involving Ca**
channel activation [46]. In addition, excessive production of
ROS, decrease in mitochondrial transmembrane potential,
activation of JNK/SAPK and P53 pathways, upregulation
of suppressor of cytokine signaling proteins (SOCS), and
activation of NF-xB and iNOS may also be involved in
the underlying mechanisms accounting for IFN-y/TNF-a-
induced apoptosis of pancreatic f3 cells [47-49]. In vivo, the
decrease in circulating TNF-« level has been reported to be
involved in improvement of 8-cell function of type 2 diabetic
patients receiving transient intensive insulin therapy [50].

3. Leptin

Since the discovery of adipocyte-derived hormone leptin
in 1994 [4], several other adipocyte-derived cytokines have
been identified. Leptin is one of the most important
cytokines secreted by adipose, and it plays vital roles in con-
trolling food intake and body energy balance [51]. Leptin-
or leptin-receptor-deficient mice exhibit severe obesity and
diabetes [52]. Recently, leptin has been shown to directly
regulate insulin secretory process from pancreatic islets.
Leptin receptors have been shown to be expressed in rat islets
and murine-derived 3-TC3 cells [53]. Covey and colleagues
report that mice with deletion of leptin receptor in pancreatic
B cells and hypothalamus develop obesity, fasting hyperin-
sulinemia, impaired glucose-stimulated insulin release, and
glucose intolerance [54]. Morioka and colleagues further
confirm that mice with specific disruption of leptin receptor
in pancreatic 3 cells develop more severe glucose intolerance
when fed a high-fat diet due to impaired insulin secretion
from B cells [55]. Consistently, we previously demonstrated
that electroporational transfer of naked plasmid with human
leptin gene into skeletal muscle of normal C57/B6 mice
leads to increased circulating leptin level and decreased
serum proinsulin level and fasting blood glucose [56].
Recently, Chen and colleagues have reported that overt type
2 diabetes in Aktl(+/—)Akt2(—/—) mice is due to markedly
decreased leptin level and f3-cell dysfunction. Hyperglycemia
of Aktl(+/—)Akt2(—/—) mice is significantly attenuated by
restoring plasma leptin level concomitant with increased
circulating insulin level [57]. Leptin has also been reported to
prevent pancreatic f cells from inducible apoptosis, and this

may partially account for islet hypertrophy in obese rodents
and patients. Leptin may exert its antiapoptotic effects on
pancreatic 3 cells by reducing triglyceride accumulation,
inhibiting NO production, increasing antiapoptotic protein
Bcl-2, and reducing apoptotic protein Bax [58-60]. Recent
findings indicate that IRS2-PI3K-Akt signaling axis plays a
crucial role in f-cell proliferation [61, 62]. Leptin suppresses
PTEN activity via CK2- (cyclin-dependent kinase-) depen-
dent pathways and results in an increase in PIP3 availability,
which activates PI3K/Akt signaling pathway in pancreatic
B cells [63]. All these results suggest that leptin has a
protective role on pancreatic f cells function. However, leptin
has also been shown to inhibit insulin secretion of S cells
via activation of ATP-regulated potassium (Karp) channels,
reduction in cellular cAMP level, and activation of PI3K-
dependent activation of cyclic nucleotide phosphodiesterase
3B (PDE3B) signaling pathway [64, 65]. Supportively,
Laubner and colleague show that leptin inhibits insulin
biosynthesis in pancreatic 3 cells by activating suppressor
of cytokine signaling 3 (SOCS3) [66, 67]. Leptin also sup-
presses acetylcholine-induced insulin secretion in isolated
perfused chicken pancreas [68] and induces the expression
of inflammatory genes in RINm5F insulinoma cells [69].
A recent study further indicates that mice with disrupted
leptin signaling in 8 cells display hyperinsulinemia, insulin
resistance, glucose intolerance, obesity, and reduced fasting
blood glucose. The authors further propose that insulin
resistance of these mice is due to excessive insulin secretion
from pancreatic 8 cells [70]. Central fusion of leptin directly
decreases insulin secretion capacity of pancreatic islets in rat
model [71]. In contrast to the controversial observations in
rodent models, leptin is likely to exert deleterious impact
on human islet function. A clinical study reveals that in
obese women after standardized weight reduction, improved
pancreatic f3-cell function is independently associated with
the decreased leptin and increased adiponectin levels in
circulation [72]. In vitro, leptin decreases the expression of
IL-1ra and stimulates the release of IL-1f in human islets
[73]. Another study from the same group further indicates
that leptin impairs insulin secretion and induces apoptosis
of f cells in the presence of 20 mM glucose via activation
of ¢-JNK in human islets [74]. Leptin also impairs insulin
secretion of human islets via inhibition of UPC2 expression
or increase in potassium channel permeability [75, 76].
Opverall, leptin is likely to exert diverse effects in regula-
tion of pancreatic f cell function, and further research is still
required to clarify its distinct role in various conditions.

4. Resistin

Resistin is another adipose-derived cytokine first described
in 2001 [77]. Unlike the expression of resistin in mouse,
human resistin is expressed primarily in macrophages but
not in adipose [78]. Increased serum resistin level is asso-
ciated with insulin resistance in rodents and human. It has
been demonstrated that resistin impairs glucose tolerance
and antagonizes insulin action, indicating that resistin
may be an important cytokine linking obesity to diabetes
[77]. Treatment of diabetic mice with resistin-neutralizing



antibodies significantly ameliorates hyperglycemia of HFD-
fed mice [77]. Resistin increases f-cell viability at phys-
iological concentrations (10-20ng/mL) [79]. In contrast,
pretreatment of pancreatic  cells (8 TC-6 or BRIN-BD11
cells) with pathological concentration of resistin (40 ng/mL)
for 24 hours significantly reduces insulin receptor expression
[79]. Resistin induces apoptosis of rat insulinoma cell
RINmS5F at the concentration of 200 ng/mL via activation
of caspase-3 and NF-«B, which can be blocked by TIMP-1,
an inhibitor of Metalloproteinase-1 [80]. When the plasma
concentration of resistin is elevated by adenoviral-mediated
delivery of resistin, mice exhibit impaired insulin secretion
in response to glucose. In vitro, pretreatment of pancreatic
islets with resistin augments insulin release at basal glucose
concentration (2.8 mM) whereas inhibits insulin release at
stimulatory glucose concentration (8.3 mM). The authors
further show that resistin impairs insulin secretion of islets
by inducing SOCS3 expression and inhibiting Akt phos-
phorylation [81]. Resistin is also expressed in human islets,
and its expression is upregulated in insulin-resistant status,
suggesting that islet-produced resistin may be involved in
the progression of B-cell dysfunction in insulin-resistant
condition [82]. Overall, increased circulating resistin level
in obese or insulin-resistant status impairs insulin secretion
from islets, resulting in deterioration of glucose homeostasis.
Targeting resistin may represent a novel therapeutic strategy
for islet dysfunction and type 2 diabetes.

5. Adiponectin

Adiponectin, also known as Acrp-30 (adipocyte comple-
ment-related protein of 30 kDa), apM1 (adipose most abun-
dant gene transcriptl), AdipoQ, and GBP28 (gelatin-binding
protein of 28 kDa), is another adipose-derived cytokine. It is
one of the most abundant circulating proteins with a con-
centration greater than 5mg/mL [83]. Adiponectin protein
is composed of an N-terminal collagenous domain and a
C-terminal globular domain. In vivo, adiponectin exists in
tull-length form or as globular fragment. Adiponectin in
plasma is in its full-length form [84]. Adiponectin exerts
its physiological functions by binding to two subtypes of
adiponectin receptors, which are designated as AdipoR1
and AdipoR2, respectively. AdipoR1 is abundantly expressed
in muscle, and AdipoR2 is mainly expressed in liver. The
demonstrated physiological functions of adiponectin include
insulin-sensitizing, antiatherogenic, and anti-inflammatory
effects [85]. Recently, there has been an increasing evi-
dence that adiponectin is also involved in the regulation
of pancreatic f-cell function. Plasma adiponectin level is
significantly lower in type 2 diabetic patients when compared
with control subjects [86]. Lower plasma adiponectin level
is associated with pancreatic f-cell dysfunction in women
during pregnancy [87]. In Hispanic women with recent ges-
tational diabetes mellitus, a decline in f3-cell compensation
for insulin resistance is associated with decreased circulating
adiponectin level [88]. Supportively, low plasma adiponectin
level has been reported to predict abnormal pancreatic
p-cell function in Chinese men [89]. Both AdipoR1 and
AdipoR2 have been shown to be functionally expressed in
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human and rat pancreatic 3 cells, and their expression can
be upregulated by oleate (unsaturated fatty acid) but not
palmitate (saturated fatty acid) [90]. A recent study shows
that the expression of AdipoR2 in murine-derived f-cell
line NIT-1 cells is increased under acute hyperlipidemic
stress. In contrast, chronic hyperlipidemic stress significantly
downregulates AdipoR2 in NIT-1 cells, which can be reversed
by activation of peroxisome proliferator-activator receptor
a (PPARa) [91]. The expression of AdipoR1 is decreased,
whereas the expression of AdipoR2 remains unchanged in
the islets of ob/ob mice [92]. Pretreatment with adiponectin
prevents INS-1 cells from insulin secretion dysfunction and
apoptosis induced by inflammatory cytokines, free fatty
acids, and high glucose [93, 94]. Adiponectin augments
insulin secretion in islets from normal rat or HFD-treated
mice at high glucose concentrations [95, 96]. Brown and
colleagues report that globular adiponectin stimulates PDX-
1 expression by 450% and decreases LPL (lipoprotein
lipase) expression by 45% in rat f-cell line BRIN-BD11
cells [97]. In human islets, pretreatment with full-length
adiponectin induces phosphorylation of acetyl coenzyme A
carboxylase (ACC) without significant impact on basal or
glucose-stimulated insulin secretion [98]. This suggests that
adiponectin may repress the synthesis of fatty acids and
prevent lipid deposition in human S cells. In the same study,
the authors also report that adiponectin fails to prevent
human islet cells from apoptosis induced by FFAs [98].
Overall, adiponectin is a positive regulator of pancreatic f3
function and may be a putative target for treatment of islet
dysfunction and type 2 diabetes.

6. Visfatin

In 2005, visfatin mRNA was identified from the visceral fat
using differential display PCR technology [99]. Visfatin had
been previously identified as a pre-B-cell colony-enhancing
factor (PBEF) or nicotinamide phosphoribosyltransferase
(Nampt), a 52-kd cytokine expressed in lymphocytes. When
compared with wild-type mice (visfatin*/*), heterozygous
visfatin*/~mice show lower circulating visfatin level and
higher plasma glucose concentration [99]. In vitro, visfatin
enhances glucose uptake in 3T3-L1 preadipocytes and
suppresses gluconeogenesis in H4IIEC3 hepatocytes. The
authors further show that visfatin can mimic the effects of
insulin by binding to the insulin receptor and activating
insulin signaling pathway [99]. Supportively, visfatin regu-
lates glucose uptake, cell proliferation, and type I collagen
production in human osteoblasts in an insulin-like manner
[100]. Serum visfatin level is elevated in patients with type
2 diabetes and decreased after intensive glycemic control
[101]. It is also reported that visfatin synthesis is increased
in adipose tissue under diabetic status, leading to activa-
tion of NF-xB and systemic inflammation [102]. Revollo
and colleagues report that Nampt (visfatin) heterozygous
(Nampt+/—) mice show impaired glucose tolerance and
reduced glucose-stimulated insulin secretion, suggesting that
visfatin may be involved in regulation of insulin secretion in
p cells. Controversially, the authors fail to observe its insulin-
mimetic effects [103, 104] such as inducing preadipocyte
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FiGure 1: Cytokines play important roles in regulation of pancreatic -cell function. The disturbed balance of deleterious and protective
cytokines in islets and plasma plays crucial roles in the development and progression of 3-cell dysfunction and type 2 diabetes.

differentiation, activation of insulin receptor and Akt, as
previously reported [99]. Furthermore, visfatin also fails
to stimulate glucose transport and mimic the lipolysis
inhibition effect of insulin in human adipocyte [105]. Brown
and colleagues report that visfatin upregulates the mRNA
expression of insulin (9-fold to control) and enhances insulin
secretion by 46% in murine-derived B-TC6 cells at low
glucose. These effects of visfatin can be blocked by FK866, a
specific inhibitor of Nampt [106]. Overall, visfatin may have
protective effect on pancreatic f-cell function, but further
research is required to clarify its distinct roles.

7. PANcreatic DERived Factor
(PANDER, FAM3B)

PANDER (PANcreatic DERived factor, FAM3B) is a novel
cytokine that has been recently cloned and identified using
an algorithm, ostensible recognition of folds (ORF), search-
ing for novel cytokines based on their predicted secondary
structure [11]. The rationale for this approach is that the
secondary structure of cytokines is highly conserved through
evolution. Many cytokines are four-helix bundles with disul-
fide bridges. This approach has allowed the identification
of a novel cytokine family consisting of 4 members: 2—19
(FAM3A), EF-7 (FAM3D), FAM3C, and FAM3B in 2002.
Northern blot and immunohistochemical assays reveal
that FAM3B is highly expressed in pancreatic islets [11].
FAM3B is thus also called PANcreatic DERived factor
(PANDER) in subsequent studies [7]. PANDER is a 235-
amino acid protein with a secretion signal peptide [11].
In vitro, we have demonstrated that recombinant PANDER
pretreatment or viral-mediated overexpression of PANDER
inhibits insulin secretion and induces pancreatic f3-cell
apoptosis of rodent and human islets [7, 8, 107]. IFN-y
has been shown to regulate PANDER expression in mouse
islets in a dose- and time-dependent manner, suggesting that
PANDER may be involved in IFN-y-mediated apoptosis of
islet 8 cells [108]. Furthermore, glucose potently activates

the PANDER promoter activity in primary pancreatic islets
and f-cell lines [101, 109]. More recently, Burkhardt and
colleagues report that the PANDER promoter activity is
also regulated by PDX-1, confirming that the expression of
PANDER is regulated in a manner similar to insulin in islets
[110]. These observations have suggested that PANDER may
have a potential role in the regulation of -cell function and
glucose homeostasis as a locally produced cytokine in islets.
In addition, PANDER protein is cosecreted with insulin
from pancreatic f8 cells through a similar Ca?*-dependent
regulatory mechanisms [9], suggesting that PANDER may
also act on other tissues or cells as an endocrine factor.
To identify the target tissues of PANDER, the in vitro 12°I-
PANDER saturation and competitive binding assays have
been performed using tissue membranes. The binding results
indicate that PANDER specifically binds to the liver cell
membrane. Cross-linking experiments further confirm that
PANDER interacts with some unknown protein on the liver
membrane. In contrast, PANDER does not bind to the
membrane of pancreas, muscle, kidney, and heart [111].
In HepG2 cells, PANDER pretreatment significantly inhibits
insulin-stimulated activation of IR, IRS-1, PI3K, and Akt.
These observations have suggested that liver is a novel target
for islet-secreted PANDER. In addition, PANDER fails to
induce cell apoptosis of HepG2 cells. The physiological role
of PANDER is to some extent similar to that of amylin,
also known as islet amyloid polypeptide (IAPP). Amylin is
another islet-specific protein which is cosecreted with insulin
from f cells [112]. Normally, amylin inhibits glucagon
secretion, delays gastric emptying, and inhibits food intake
[113]. However, chronic hyperglycemia stimulates amylin
production in insulin-resistant condition. Excessive amylin
will be deposited as amyloid in islets and will result in
islet dysfunction [114, 115]. Interestingly, PANDER-deficient
mice show glucose intolerance due to impaired insulin secre-
tion from pancreatic f cells [116]. Because the expression
and secretion of PANDER is similarly regulated by glucose
as insulin, it is reasonable to speculate that PANDER may



regulate insulin secretion process [9, 109, 110, 116, 117]. In
addition, pancreatic « cells also secrete PANDER in response
to L-arginine and insulin [118].

Overall, chronic hyperglycemia and compensatory
increase in insulin secretion ability of pancreatic  cells
and islet hypertrophy may result in increased production
of PANDER in islets. Excessive PANDER may negatively
regulate islet function as a local cytokine and deteriorate
hepatic glucose metabolism as an endocrine factor. Clearly,
PANDER may be a novel linker between insulin resistance
(prediabetes) and type 2 diabetes.

8. Summary and Perspective

It is likely that crosstalk among cytokines in islets or other
tissues may also be widely involved in regulation of pan-
creatic f-cell function. For example, TNF-« neutralization
increases circulating adiponectin level and decreases resistin
level in patients with the metabolic syndrome [119]. Leptin
represses resistin expression in adipose [120]. Leptin also
decreases IL-1ra expression and increases IL-1f release in
islets [73, 120]. IFN-y upregulates PANDER expression in f3
cells [108]. Insulin regulates the expression and secretion of
various cytokines in islets and adipose, which may in return
regulate insulin secretion from islets [118, 121-123].

Overall, cytokines are widely involved in the regulation
of pancreatic f-cell function. In insulin-resistant status, the
levels of deleterious cytokine in islet 3 cells and plasma
increase, whereas the levels of protective cytokines decrease.
This abnormal change in local and circulating cytokines plays
an important role in triggering f3-cell dysfunction and type 2
diabetes (Figure 1). Restoring the normal cytokine profile in
B cells and plasma may hold great promise for treatment of
B-cell dysfunction and type 2 diabetes.
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