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Abstract

Background: Estimation of future glucose concentrations is a crucial task for diabetes management. Predicted
glucose values can be used for early hypoglycemic=hyperglycemic alarms or for adjustment of insulin injections or
insulin infusion rates of manual or automated pumps. Continuous glucose monitoring (CGM) technologies pro-
vide glucose readings at a high frequency and consequently detailed insight into the subject’s glucose variations.
The objective of this research is to develop reliable subject-specific glucose prediction models using CGM data.
Methods: Two separate patient databases collected under hospitalized (disturbance-free) and normal daily life
conditions are used for validation of the proposed glucose prediction algorithm. Both databases consist of glucose
concentration data collected at 5-min intervals using a CGM device. Using time-series analysis, low-order linear
models are developed from patients’ own CGM data. The time-series models are integrated with recursive
identification and change detection methods, which enables dynamic adaptation of the model to inter-=
intra-subject variability and glycemic disturbances. Prediction performance is evaluated in terms of glucose pre-
diction error and Clarke Error Grid analysis (CG-EGA).
Results: Prediction errors are significantly reduced with recursive identification of the models, and predictions are
further improved with inclusion of a parameter change detection method. CG-EGA analysis results in accurate
readings of 90% or more.
Conclusions: Subject-specific glucose prediction strategy has been developed. Including a change detection
method to the recursive algorithm improves the prediction accuracy. The proposed modeling algorithm with
small number of parameters is a good candidate for installation in portable devices for early hypoglycemic=
hyperglycemic alarms and for closing the glucose regulation loop with an insulin pump.

Introduction

With the current therapy for insulin-dependent pa-
tients, it is generally difficult to estimate future glucose

levels and therefore to determine the required insulin
amount=rate. Reliable glucose prediction models will simplify
diabetes management. By predicting future glucose concen-
trations, the appropriate insulin amount for keeping normo-
glycemia can be calculated, hypoglycemic=hyperglycemic
episodes can be prevented before they occur, and the ampli-
tudes of glucose level variation can be reduced. The fully
automated artificial pancreas with closed-loop administration
of insulin will also require a model predicting future glucose
concentrations.1–3

Modeling glucose–insulin interactions has been an active
research area.4–8 Most of the proposed physiological models
are nonlinear and are difficult to tune for individual patients.

More precise glucose predictions require taking into account
the intra-=inter-subject variability. Several techniques for
glucose estimation from self-monitored glucose data have
also been proposed.9–13 Recent continuous glucose monitor-
ing (CGM) technologies provide detailed insight into glucose
variation,14–16 and new methods have been emerging for an-
alyzing a patient’s own CGM data.3,17–23 Finan et al.22 and
Sparacino et al.23 used the time-series identification methods.
Similarly, we make use of time-series analysis for the devel-
opment of subject-specific glucose prediction models from
CGM data.

Time-series models are recursively identified at each sam-
pling step and are integrated with a change detection method
that enables dynamic adaptation of the model to inter-=intra-
subject variability and glycemic disturbances. Prediction ac-
curacy is evaluated in terms of error in glucose predictions
and Clarke Error Grid analysis (CG-EGA).
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Materials and Methods

Subject data

Two separate patient databases collected under (1) distur-
bance-free (hospitalized) and (2) normal daily life conditions
are used. Both databases consist of glucose concentration data
collected using a CGM device. The two study procedures were
reviewed and approved by the University of Illinois at Chi-
cago Institutional Review Board. Prior to participating in the
study, all subjects completed consent and HIPPA documents.
Data collection took place at the University’s general clinical
research center.

Study Group A. This study population consisted of
healthy individuals (sample size n¼ 22, 43.50� 10.4 years
old, body mass index [BMI]¼ 35.02� 3.4 kg=m2), glucose-
intolerant subjects (n¼ 7, 45.00� 7.0 years old, BMI¼
34.88� 4.1 kg=m2), and subjects with type 2 diabetes (n¼ 11,
47.18� 5.1 years old, BMI¼ 36.80� 4.1 kg=m2). Data were
originally collected to investigate the effect of moderate ex-
ercise (30-min walk on a treadmill performed before breakfast
at an intensity of 65% maximal oxygen consumption ( _VVO2max

)
measured with indirect spirometry) on postprandial glucose
during two separate randomized protocols (exercise and
nonexercise).24 Subjects were hospitalized for 48 h and were
prescribed three standard meals for each day. A subject’s
glucose concentration was monitored with a CGM system
(CGMS System Gold�, Medtronic MiniMed, Northridge,
CA) for 48 h. In this paper, we used the CGMS data collected
during the nonexercise protocol only.

Study Group B. This study population consisted of sub-
jects with type 2 diabetes (n¼ 14, 47.93� 6.1 years old, BMI¼
36.94� 4.9 kg=m2) and healthy subjects (n¼ 8, 42.75� 12.7
years old, BMI¼ 34.66� 5.8 kg=m2). The database consisted
of glucose concentration data collected at 5-min intervals us-
ing the CGMS System Gold monitoring device. The subjects
wore the CGMS at home for 48 h, with no additional in-
structions other than how to operate the monitor and cali-
bration techniques of the device.

Low-order linear time-series models

With the intensive insulin therapy, patients with diabetes
are constrained to check their blood glucose concentrations
frequently, to closely follow their eating and exercise plan,
and to avoid unexpected stress conditions. Physiological
models that describe glucose–insulin dynamics under such
disturbance-free conditions have been reported in the litera-
ture.4–8 However, these nonlinear models have a large num-
ber of parameters to be identified, which makes it difficult to
tune the model for individual patients. To overcome this
limitation, we develop recursive linear models using the pa-
tient’s own CGM data. Low-order linear models would be
less accurate than nonlinear models for describing varia-
tions of a nonlinear system in a wide range of conditions.
However, it will be shown that recursive identification of the
model will compensate for its simplicity and improve its ac-
curacy.

Current or future glucose concentrations can be expressed
as a function of previous glucose measurements with auto-

regressive (AR) or autoregressive moving average (ARMA)
models:

AR model : y(t)¼ a1y(t� 1) þ a2y(t� 2)þ . . .

þ anA
y(t� nA)þ e(t) (1)

or A(q� 1) y(t)¼ e(t)

ARMA model : y(t)¼ a1y(t� 1)þ a2y(t� 2)þ . . .

þ anA
y(t� nA)þ e(t)þ c1e(t� 1)

þ . . . þ cnC
e(t� nC) (2)

or A(q� 1) y(t)¼C(q� 1) e(t)

where y(t) denotes the glucose measurement at current time
instant t and y(t� k) is the glucose measurement k time-units
before the current time t. e(t)¼ y(t)� ŷ(t) represents the re-
sidual terms caused by the difference between the patient’s
behavior and its model, where ŷ(t) is the predicted value of
y(t). Parameters ai and ci are unknown and are identified by
using the patient’s GCM data. q�1 is the back shift operator
that transforms a current observation to a previous one
[q�ky(t)¼ y(t� k)]. Polynomials A(q�1) and C(q�1) in Eqs. 1
and 2 are:

A(q� 1)¼ 1� a1 q� 1� . . . � anA
q� nA (3)

C(q� 1)¼ 1 + c1 q� 1 + . . . + cnC
q�nC (4)

Future glucose concentrations are estimated from recent
glucose data, and models do not require any prior informa-
tion about glycemic disturbances such as meal consumption
or insulin administration.

Recursive identification of model parameters

Glucose–insulin dynamics show inter-subject variability.
Metabolic changes caused by stress or changes in insulin
sensitivity might also lead to variation in glucose–insulin
dynamics of the same subject over time. Furthermore, subjects
are exposed to glycemic disturbances such as meal con-
sumption or physical activity on a daily basis. A reliable
model for predicting glucose levels should address such
variabilities and should be able to adapt to unexpected fluc-
tuations in the system dynamics. Therefore, recursive identi-
fication of the glucose prediction models (Eqs. 1 and 2) is
proposed. As a new glucose measurement becomes available
at each sampling instant, model parameters are updated in
order to include information about the most recent glucose
concentration dynamics. The preferred recursive identifica-
tion strategy is the weighted recursive least square (RLS)
method with a forgetting factor, l:

y(t)¼u(t)Th(t)þ e(t) (5)

ĥh(t)¼ ĥh(t� 1)þKfy(t)�u(t)T ĥh(t� 1)g (6)

K(t)¼ P(t� 1) u(t)

kþu(t)TP(t� 1) u(t)
(7)

P(t)¼ 1

k
P(t� 1)� P(t� 1) u(t) u(t)TP(t� 1)

kþu(t)TP(t� 1) u(t)

" #
(8)
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FIG. 1. Prediction of blood glucose with time-invariant models for a representative (a) healthy subject, (b) glucose-
intolerant subject, and (c) subject with type 2 diabetes for Group A with a PH of two time steps.
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where y(t) is the current glucose measurement, j(t) represents
the vector of past glucose observations, and y(t) denotes the
vector of model parameters, while ĥh(t) is its estimate. For in-
stance, for the ARMA model described by Eq. 2,

u(t) ¼ [y(t� 1) . . . y(t� nA), e(t� 1) . . . e(t� nC)] and

ĥh(t)¼ [a1(t) . . . anA
(t), c1(t) . . . cnC

(t)]

K(t) and P(t) are the smoothing parameter and estimate of
error variance, respectively. The forgetting factor (0< l� 1)
assigns relative weights on past data sequence. When l¼ 1,
all observations are equally weighted (infinite memory) in
the identification. Small values of l make the more recent
data dominant for estimation of model parameters by as-
signing larger weights on recent observations and smaller
weights on older ones (short memory).

Change detection method

In order to capture unpredicted glycemic disturbances
rapidly and to provide quick response to such conditions, the
RLS algorithm is integrated with a change detection method.
When a persistent change in model parameters is detected, l is
decreased to a smaller value. This way, past observations
(data before the change detection) are rapidly excluded, and
faster convergence to new model parameters is ensured.
However, to avoid parameter changes due to nonpersistent
abnormalities in data such as sensor noise, l is not reduced at
the first instant of change detection. Instead, consistency of the
change for several time steps (window size, TW) is assured
first. The proposed change detection method can be described
by null and alternative hypotheses as:

H0 : E(ĥh(t))¼ h0, for T\t\T þ TW

H1 : E(ĥh(t)) 6¼ h0, for T\t\T þ TW

(9)

where E(ĥh(t)) represents the expected value of parameter es-
timates at current time t and y0 is the vector of unbiased pa-
rameter estimates computed by the RLS algorithm using data
until time instant T. When a persistent change with the du-
ration of the window size is detected, l is reduced to a smaller
value, and y0 is replaced with its new estimate.

k-steps-ahead glucose prediction

The k-steps-ahead glucose prediction, ŷ(tþ k|t; y) is a
function of current and past glucose observations.25 For the
ARMA model (Eq. 2):

ŷy(tþ kjt; h)¼ G(q� 1)

C(q� 1)
y(t) (10)

The polynomial G(q�1) (of order n� 1, n¼max (nA,
nC� kþ 1,1)) is uniquely defined by:

C(q� 1)¼A(q� 1) F(q� 1)þ q� kG(q� 1) (11)

where F(q�1) has order of k� 1. Rearrangement of Eqs. 10 and
11 for AR models (Eq. 1) is straightforward.

Prediction performance analyses

Error in glucose predictions. Prediction accuracy, the
deviation of predicted glucose values from the patient’s GCM
device data, can be expressed as the sum of squares of the
glucose prediction error (SSGPE):

SSGPE % ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(y� ŷy)2P

y2

s
· 100 (12)

and relative absolute deviation (RAD):

RAD (%) ¼ y� ŷyj j
y

· 100 (13)

In Eqs. 12 and 13, y denotes the actual glucose measure-
ment (CGM data), and ŷ is the predicted glucose concentra-
tion. SSGPE and RAD do not depend on data magnitude,
since they are normalized by actual glucose measurements.
The CGM device is assumed to provide accurate (reference)
glucose readings.

CG-EGA. Prediction performance is also evaluated using
CG-EGA.26,27 CG-EGA creates three error grid zones (clini-
cally accurate, benign errors, and erroneous readings) for
analyzing the prediction accuracy and provides separate

Table 1. Model Parameters and Glucose Prediction Errors of Group A Presented in Figure 1

Model Parameter

Patient group, model a1 a2 a3 c1 SSGPE (%) Mean RAD (%)

Healthy
AR(3) 1.294 �0.480 0.185 — 4.27 1.26 (0.27)
ARMA(3,1) 2.065 �1.237 0.172 �1.01 4.21 1.21 (0.28)

Glucose-intolerant
AR(3) 1.625 �1.019 0.392 — 4.81 1.43 (0.35)
ARMA(3,1) 1.241 �0.437 0.184 0.463 4.72 1.40 (0.32)

Diabetes
AR(3) 1.215 �0.154 �0.061 — 4.20 1.11 (0.24)
ARMA(3,1) 1.844 �0.886 0.042 �0.669 4.11 1.09 (0.24)

Results are for time-invariant models. SSPGE and RAD values are for a PH of two time steps (one step¼ 5 min). Mean RAD values are
reported with standard deviations given in parentheses.
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analysis during hypoglycemia (blood glucose� 70 mg=dL),
normoglycemia (70< blood glucose� 180 mg=dL), and hy-
perglycemia (blood glucose> 180 mg=dL). We use the CGM
data as reference and analyze how accurate are the predicted
glucose values in terms of CG-EGA.

Results

Time-invariant models for disturbance-free case

Glucose prediction with time-invariant models is first
demonstrated on the database of study Group A. In order to
remove any noise in the sensor data, CGM data are smoothed
using a low-pass filter (filter characteristics are defined later in
the text). The first half of the smoothed CGM data is used for
the development and identification of the linear models with
constant parameters (Eqs. 1 and 2). Then, prediction perfor-
mances of the models developed are validated on the patient’s
raw second-day data (second half ). Models of various orders
(nA,nC) are developed using the MATLAB (Natick, MA) Sys-
tem Identification Toolbox.28 The best model order is deter-
mined based on a statistical model fit measure, Akaike’s
Information Criterion. Results show an AR model of order 3
(nA¼ 3) and ARMA model of order (3,1) (nA¼ 3, nC¼ 1) to be
satisfactory. Figure 1 demonstrates the predicted glucose
values by these models for the representative subjects, with
model parameters and prediction error terms provided in
Table 1.

Effect of prediction horizon (PH). Prediction accuracy
defined as SSGPE or RAD (Eqs. 12 and 13) is highly affected
by the PH, how far into the future one is trying to predict.
Table 2 presents mean SSGPE and RAD values for several PH
values for populations of both study groups. PH¼ 3 denotes
that glucose value 3-steps-ahead (15 min) from the current
time is predicted using the available history of glucose mea-
surements. For 10-min-ahead prediction, results show around
4–5% SSGPE and 1–2% RAD. Prediction errors increase to
around 11–12% SSPGE and 5–7% RAD for PH¼ 6. Even
though prediction models are developed using filtered glu-
cose data, SSGPE and RAD are computed as deviation of
predicted glucose values from patient’s raw GCM device
data.

For constant parameter models, prediction error is also
affected by the likeness between data used for model devel-
opment and data used for validation. Reducing the interval of
data used in model development from 24 h to 12 h (from one-
half to one-fourth) does not significantly alter the SSGPE
and RAD values: e.g., for PH¼ 2 and ARMA(3,1), SSGPE is
5.10� 0.97%, 4.25� 0.93%, and 5.20� 1.06%, and RAD is
1.42� 0.15%, 1.21� 0.38%, and 1.47� 0.37% for the healthy,
glucose-intolerant, and type 2 diabetes populations of Group
A, respectively. Since glucose concentrations are relatively
constant at night and most of the glucose variation occurs
during daytime, the model from the first 12-h data is able
to capture the dynamics of the remaining data. However,
using the first 6-h data for model development signifi-
cantly increases the error terms for PH¼ 2 and ARMA(3,1)
to 8.37� 0.96%, 7.28� 1.26%, and 8.05� 2.21% SSGPE and
3.38� 0.37%, 3.31� 0.70%, and 3.54� 0.72% RAD for healthy,
glucose-intolerant, and type 2 diabetes populations, respec-
tively.
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Recursive models

For the recursive modeling, we selected the ARMA model
type over AR since the model error information is leveraged
by the ARMA model structure [C(q�1) term in Eq. 2]. During
recursive identification, simultaneously an online filter is
utilized to remove the sensor noise and consequently enhance
the prediction accuracy. Figure 2 illustrates 5-min- (PH¼ 1)
and 30-min-ahead (PH¼ 6) glucose predictions for represen-
tative subjects of Group B. Results are for ARMA(2,1) with

TW¼ 5 (25 min) and l¼ 0.5. The forgetting factor l is reduced
to 0.005 in case of change detection. The model is able to track
and predict 30-min-ahead glucose concentrations accurately
with 3.03% and 6.14% SSGPE and 2.62� 0.83% and
3.78� 1.12% RAD for the representative healthy and type 2
diabetes subjects, respectively.

Increasing the autoregressive term of ARMA( p,q), p, results
in more oscillatory predictions with larger overshoots that
cause increase in prediction errors. For instance, the error
terms increase to 3.84% and 7.40% SSGPE and 2.85� 0.78%

FIG. 2. Glucose prediction results with the recursive algorithm for a representative (a) healthy subject and (b) subject with
type 2 diabetes for Group B.
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and 4.02� 1.00% RAD for the representative healthy subject
and patient with diabetes in Figure 2, for ARMA(3,1) with
PH¼ 6. On the other hand, as the model order is reduced to
ARMA(1,1), prediction profiles become much smoother;
however, they result in larger delays in predictions. Reducing
the moving average part (q), ARMA(2,0) or AR(2), leads to
consistent overshoot and higher SSGPE and RAD values
(3.81% and 6.76% SSGPE and 2.80� 0.81% and 3.87� 1.09%
RAD for representative healthy and type 2 diabetes subjects,
respectively, in Fig. 2 with PH¼ 6), whereas ARMA(2,2) does
not significantly improve the prediction performance.

Prediction capability of the recursive algorithm for model
ARMA(2,1) with TW¼ 5 (25 min) and l¼ 0.5 is evaluated in
terms of SSGPE and RAD in Table 3. Means and standard
deviations of the error terms, up to six time steps of PH are
provided for both subject groups. Comparing results of Table
2 with Table 3, for PH¼ 1, the SSGPE and RAD values are
slightly lower for time-invariant models because the transi-
tion period (start with an untuned model) in the recursive
strategy may lead to large error terms at the beginning and
constant-parameter models may yield smaller error terms for
small PH values. As PH increases, the superior predictive
capability of the recursive identification is shown by signifi-
cantly smaller SSGPE and RAD values compared to time-
invariant models. Comparison of the results between the
study groups in Tables 2 and 3 reveals lower prediction errors
for the hospitalized group because glucose variation will be
reduced under controlled conditions.

Accuracy of the predictions is also evaluated using CG-
EGA. Table 4 demonstrates CG-EGA error matrix for 30-min-
ahead glucose predictions using the recursive algorithm with
change detection. There were no CGM data in the hypergly-

cemic range for the healthy population; therefore Table 4A
does not include columns for hyperglycemia. In the hypo-
glycemic range, 92.31%, 7.69%, and 0% of the data result in
accurate readings, benign errors, and erroneous readings for
the healthy population and 92.94%, 5.29%, and 1.77% for the
population with type 2 diabetes. These values are 91.50%,
7.87%, and 0.63% during normoglycemia and 89.79%, 8.70%,
and 1.51% during hyperglycemia for the population with type
2 diabetes. In contrast, 95.47%, 4.53%, and 0% of the healthy
group data are considered as accurate, benign errors, and
erroneous readings during normoglycemia.

Variations in model parameters. To enhance change de-
tection in model parameters, noisy data are smoothed with an
online filter. A low-pass equirriple finite impulse response
filter is used with normalized pass-band edge frequency of
0.42 and stop-band edge frequency of 0.5. Initial values for
model parameters (y(t¼ 0)) are 0; therefore, initialization does
not require any prior glucose concentration data. Model pa-
rameters converge to good parameter values rapidly, and
reliable glucose concentration predictions are made in less
than 2 h after starting the recursive algorithm (Fig. 3). This
period can be reduced further for a specific patient who uses
this method routinely, by assuming as the initial value the
parameter values from an earlier prediction series.

Discussion

A reliable subject-specific glucose prediction algorithm has
been proposed. Results in Table 3 reveal that more accurate
glucose predictions necessitate recursive identification of the
model parameters.

Table 4. Error Matrix of CG-EGA for Predicted Glucose Values with PH¼ 6 of Group B:

(A) Healthy Subgroup and (B) Type 2 Diabetes Subgroup

Point error grid zones

Hypoglycemia
(BG� 70 mg=dL)

Normoglycemia
(70<BG� 180 mg=dL) Hyperglycemia (BG> 180 mg=dL)

Rate error
grid zone A D E A B C A B C D E

(A) Healthy
A 92.31% 0% 0% 85.17% 0.46% 0% — — — — —
B 0% 0% 0% 9.52% 0.32% 0% — — — — —
uC 0% 0% 0% 1.74% 0.23% 0% — — — — —
lC 7.69% 0% 0% 2.29% 0.27% 0% — — — — —
uD 0% 0% 0% 0% 0% 0% — — — — —
lD 0% 0% 0% 0% 0% 0% — — — — —
uE 0% 0% 0% 0% 0% 0% — — — — —
lE 0% 0% 0% 0% 0% 0% — — — — —

(B) Diabetes
A 81.76% 1.18% 0% 72.43% 1.18% 0% 70.23% 1.00% 0% 0.08% 0%
B 11.18% 0.59% 0% 17.05% 0.84% 0.04% 18.23% 0.33% 0.17% 0% 0%
uC 2.35% 0% 0% 3.49% 0.30% 0% 4.10% 0.25% 0% 0% 0%
lC 2.94% 0% 0% 3.58% 0.25% 0% 4.01% 0.17% 0% 0% 0%
uD 0% 0% 0% 0.04% 0% 0% 0.17% 0% 0% 0% 0%
lD 0% 0% 0% 0.04% 0.17% 0% 0.08% 0% 0.17% 0% 0%
uE 0% 0% 0% 0.21% 0% 0% 0.42% 0% 0% 0% 0%
lE 0% 0% 0% 0.30% 0.08% 0% 0.59% 0% 0% 0% 0%

The healthy subgroup had no measurements in the hyperglycemic range. The normal type, italic type, and bold type represent accurate
readings, benign errors, and erroneous readings, respectively. BG, blood glucose; l, lower; u, upper.

250 EREN-ORUKLU ET AL.



FIG. 3. Variation in model parameters for a representative (a) healthy subject and (b) subject with type 2 diabetes for Group
B. Predicted glucose concentrations are for a PH of six time steps. Representative subjects are the same as in Figure 2.
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Prediction accuracy is improved by continued adapta-
tion of the model to a subject’s glucose–insulin dynamics.
Some previous studies have suggested adaptive strategies
for glucose–insulin modeling.2,29,30 The proposed recursive
glucose prediction algorithm can dynamically adapt to inter-=
intra-subject variability because models are derived from the
patient’s own CGM data and are recursively updated at each
sampling step to include the most recent glucose dynamics.
Integrating the recursive modeling strategy with a change
detection method further facilitates the prediction perfor-
mance, as the effects of glycemic disturbances are more rap-
idly captured and a faster model convergence is ensured.

To our knowledge, the work of Sparacino et al.23 is the only
previous study that specifically focused on recursive time-
series model identification of a real patient’s CGM data. They
used a first-order polynomial and AR model. Criteria used in
our algorithm are based on a different model type and order,
and more optimized model identification and glucose pre-
dictions are achieved with integration of the change detection
strategy to the recursive algorithm. We believe that simple
linear time-series models provide satisfactory glucose pre-
dictions and therefore can replace detailed nonlinear physio-
logical glucose–insulin models.

The computational simplicity of the proposed algo-
rithm makes it a good candidate for early warning hypo-=
hyperglycemic alarms or closing the glucose regulation loop
with an automated pump. Depending on the purpose of
glucose predictions, different PH values may play a signifi-
cant role. For instance, in case of hypo-=hyperglycemia de-
tection, higher PH values (e.g., 20–30-min-ahead) will be
of greater importance. However, for closing the loop with
model-based control strategies, even one-step-ahead predic-
tion will play an important role in computations of the re-
quired insulin infusion rate.
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