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Mucopolysaccharidosis type Il (MPSII), or Hunter syndrome, is a devastating disorder associated with a shor-
tened life expectancy. Patients affected by MPSII have a variety of symptoms that affect all organs of the body
and may include progressive cognitive impairment. MPSII is due to inactivity of the enzyme iduronate-2-sul-
fatase (IDS), which results in the accumulation of storage material in the lysosomes, such as dermatan and
heparan sulfates, with consequent cell degeneration in all tissues including, in the severe phenotype, neuro-
degeneration in the central nervous system (CNS). To date, the only treatment available is systemic infusion
of IDS, which ameliorates exclusively certain visceral defects. Therefore, it is important to simultaneously
treat the visceral and CNS defects of the MPSII patients. Here, we have developed enzyme replacement
therapy (ERT) protocols in a mouse model that allow the IDS to reach the brain, with the substantial correc-
tion of the CNS phenotype and of the neurobehavioral features. Treatments were beneficial even in adult and
old MPSII mice, using relatively low doses of infused IDS over long intervals. This study demonstrates that
CNS defects of MPSII mice can be treated by systemic ERT, providing the potential for development of an
effective treatment for MPSII patients.

INTRODUCTION

The enzyme iduronate-2-sulfatase (IDS) removes the sulfate
group from the glycosaminoglycans (GAGs), dermatan and
heparan sulfates, and its absence or inactivity results in muco-
polysaccharidosis type II (MPSII), or Hunter syndrome, a
lysosomal storage disorder. The pathogenetic mechanisms at
the basis of MPSII are still unknown. The block in the cata-
bolic pathway of derman and heparan sulfates results in the
accumulation of undegraded substrates in the cells and
tissues of MPSII patients, with progressive cellular vacuoliza-
tion and cell death (1,2). MPSII occurs in both mild and severe
forms, which cover a broad spectrum of symptoms, such as
dysmorphic facial features, hepatosplenomegaly, skeletal
deformities, joint stiffness, severe retinal degeneration,
hearing impairmentand, in the severe phenotype, a progressive

deterioration of the central nervous system (CNS). The inci-
dence of MPSII has been estimated at around one affected
male in 162 000 live births (3—5). This absence or inactivity
of IDS has been shown to be due to point mutations or del-
etions in the /DS gene, which maps on the X chromosome
(6—10). The severe form of MPSII is characterized by pro-
gressive somatic and neurological involvement, and the
onset of the disease usually occurs between the second and
fourth year of age. Death generally occurs between the age
of 10 and 14 years, and it is generally due to cardiac failure
or airway obstruction (1,2).

The MPSII (Ids*”") mouse model shows the features of
Hunter syndrome. No IDS activity can be detected in any of
its tissues, and the affected mice show progressive accumu-
lation of GAGs in all of their organs, along with
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neuropathological defects. The onset of this phenotype is at
3—4 months of age, and it becomes progressively severe
through adult life (11,12).

We have thoroughly characterized the CNS phenotype of
the MPSII mouse model, where diffuse neurodegeneration is
seen in different CNS areas such as reduced neuronal
density, increased ubiquitination, severe gliosis and increased
apoptosis; this phenotype becomes more severe with
disease progression through life. The mice also show progress-
ive degeneration of Purkinje cell neurons in the cerebellum
(13).

Recently, we established an efficient gene-therapy approach
to treat both the visceral and CNS defects in these MPSII
mice. MPSII pups injected with the adeno-associated viral ser-
otype 2/5 vector carrying human IDS ¢cDNA showed full cor-
rection of the CNS symptoms and the visceral defects for up to
18 months after therapy. Furthermore, we demonstrated that
the CNS rescue was due to the crossing of the blood—brain
barrier by the IDS enzyme (13).

Enzyme replacement therapy (ERT) with recombinant
human proteins has been used successfully in the treatment
of some other lysosomal storage diseases such as Gaucher
disease (14,15), Fabry disease (16—18), MPSI (19,20),
MPSVI (21,22) and Pompe disease (23) and there are also
some ongoing trials for Niemann—Pick type B (24). In
addition, ERT at high doses in mouse models of
a-mannosidosis, or MPSVII, and metachromatic leukodystro-
phy leads to enzyme delivery across the blood—brain barrier,
thereby partially reversing the storage in brain tissues (25—
27). The human IDS enzyme (Elaprase® [idursulfase], Shire
Human Genetic Therapies, Inc.) is already available commer-
cially in many countries for the treatment of MPSII and ame-
liorates certain visceral defects (28—30); however, idursulfase
does not ameliorate the CNS defects in these MPSII patients.
Prior to the availability of idursulfase, the treatment of patients
with MPSII was palliative and focused on the management of
the clinical problems.

Both cognitive and neurological impairment is a devastating
problem for patients affected by the severe form of MPSII.
Many obstacles need to be overcome to develop a therapy to
treat the CNS defects of MPSII patients; however, the
quality of life of these patients would greatly benefit by the
simultaneous treatment of their systemic and CNS defects.
Up to now, ERTs have been largely inefficient to treat CNS
phenotype in patients affected by lysosomal storage disorders,
and this was mainly due to the presence of the blood—brain
barrier and to the fast clearance of the infused enzymes
from the blood.

In the present study, we demonstrate that systemic adminis-
tration of human IDS to MPSII mice via ERT allows the
enzyme to clear the GAG storage in the brain, to correct
many of the neurodegeneration markers and to rescue the neu-
robehavioral CNS disease phenotype. Through ERT, we can
strongly ameliorate the CNS defects, even when using a rela-
tively low dose of IDS, and with both short and prolonged
treatment times. Furthermore, we show the rescue of the
CNS defects even in a group of old (aged 7 months and
treated for 3 months) MPSII mice. These data open up hope
for the treatment of MPSII patients exhibiting cognitive
impairment.

RESULTS

IDS activity can be partially rescued in the brains of
MPSII mice after ERT

ERT is the current approach to treat MPSII patients. To inves-
tigate whether systemic application of IDS enzyme via ERT
can deliver enzyme to the brain and therefore prevent or
cure the CNS degeneration, we implemented different thera-
peutic approaches. These were designed to identify the
minimal IDS dose and the longest treatment-interval time suf-
ficient to treat the CNS phenotype of MPSII mice. Thus we
proceeded as follows.

(A) A group of adult MPSII mice (aged 2 months; n = 21;
seven mice per group) received human IDS doses of
10, 5 or 1.2 mg/kg in a volume of 300 pl via the tail
vein, every other day (1-2), for a total period of 1
month. Groups of untreated, age-matched, MPSII (n =
5) and wild-type (n = 5) mice were used as controls.

A group of adult MPSII mice (aged 2 months; n = 14;
seven mice per group) received human IDS doses of
1.2 mg/kg in a volume of 300 wl via the tail vein, once
every 4 days (1-4) and once every 7 days (1-7), for a
total period of 1 month. Groups of untreated, age-
matched, MPSII (n=15) and wild-type (n =135) mice
were used as controls.

A group of old MPSII mice (aged 7 months; n = 21;
seven mice per group) received human IDS doses of
10 mg/kg in a volume of 300 pl via the tail vein, every
other day (1-2), once every 4 days (1-4) and once
every 7 days (1-7), for a total period of 3 months.
Groups of untreated, age-matched, MPSII (n =5) and
wild-type (n = 5) mice were used as controls.

A group of adult MPSII mice (aged 3 months; n =4)
received human IDS doses of 1.2 mg/kg in a volume of
300 pl via the tail vein, once every 7 days (1-7), for
the longer period of 7 months. Groups of untreated, age-
matched, MPSII (n = 5) and wild-type (n = 5) mice were
used as controls.

(B)

©

(D)

During these treatments, IDS activity was measured in the
plasma of all of the treated mice, every other month from
T1 to T7 (months 1, 3, 5 and 7), at 4 h after the last injection.
The IDS plasma activity was extremely high and was even
higher than the activity measured in the wild-type control
mice. Interestingly, also with the group D mice that received
IDS for the longest time, after 7 months their mean plasma
IDS activity was 8.7-fold higher than that of the wild-type
control mice (Table 1). Moreover, in all of the groups of
mice, the IDS activity measured 48 h after each injection
was higher (from 4- to 11-fold, depending on treatments)
than the levels in the untreated MPSII mice, but was also com-
parable to levels measured in the untreated wild-type mice
(Table 2). These plasma IDS activities returned to the levels
measured in the untreated MPSII mice 72 h after the last injec-
tions of each treatment protocol (data not shown). These data
clearly show that the IDS enzyme is very stable, showing slow
plasma clearance; indeed, it remains at high levels in the blood
of the treated mice for a long time.

The treated mice (groups A—D) were then sacrificed at
different times 4 h after the final administration of IDS of
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Table 1. Plasma IDS activities according to mouse treatment groups, 4 h after last treatment
Mouse treatment groups (treatment schedule; ) Sampling time for plasma IDS activity (nmol/4 h/mg protein)
T1 T3 TS T7

Controls

Wild-type (untreated; 5) 350 + 16.0 261 + 14.0 233 +23.0 221 £+ 11.0

MPSII (untreated; 5) 18+ 0.5 16 + 0.8 21 +£0.9 19+1.2
Group A

MPSII + 10 mg/kg IDS (1-2; 7) 10938 £ 779

MPSII + 5.0 mg/kg IDS (1-2; 7) 7500 + 447

MPSII + 1.2 mg/kg IDS (1-2; 7) 2790 + 226
Group B

MPSII + 1.2 mg/kg IDS (1-4; 7) 1810 + 151

MPSII + 1.2 mg/kg IDS (1-7; 7) 1877 + 136
Group C

MPSII + 10 mg/kg IDS (1-2; 7) 9292 + 611 6957 + 557

MPSII + 10 mg/kg IDS (1-4; 7) 7471 4+ 118 6459 + 301

MPSII + 10 mg/kg IDS (1-7; 7) 6642 + 389 6633 + 390
Group D

MPSII + 1.2 mg/kg IDS (1-7; 4) 2828 + 198 2551 + 215 2212 £ 26 1724 + 193
Table 2. Plasma IDS activities according to mouse treatment groups, 48 h after last treatment
Mouse treatment groups (treatment schedule; ) Sampling time for plasma IDS activity (nmol/4 h/mg protein)

Tl T3 TS T7

Controls

Wild-type (untreated; 5) 350 + 16.0 261 + 14.0 233 +23.0 221 + 11.0

MPSII (untreated; 5) 18 £ 0.5 16 + 0.8 21 +£09 19412
Group A

MPSII + 10 mg/kg IDS (1-2; 7) 271 + 74

MPSII + 5.0 mg/kg IDS (1-2; 7) 296 + 54

MPSII + 1.2 mg/kg IDS (1-2; 7) 217 £+ 38
Group B

MPSII + 1.2 mg/kg IDS (1-4; 7) 105 £ 27

MPSII + 1.2 mg/kg IDS (1-7; 7) 116 + 46
Group C

MPSII + 10 mg/kg IDS (1-2; 7) 208 + 11 192 + 12

MPSII + 10 mg/kg IDS (1-4; 7) 204 + 10 183 + 10

MPSII + 10 mg/kg IDS (1-7; 7) 210 £+ 30 156 + 37
Group D

MPSII + 1.2 mg/kg IDS (1-7; 4) 214 £+ 90 216 + 94 169 + 46 159 + 38

each treatment protocol. In parallel, the groups of untreated
MPSII and untreated wild-type mice were also sacrificed.
The IDS activities were measured in homogenates from their
brains and visceral tissues.

Group A showed brain IDS activities that decreased in par-
allel with the concentrations of IDS injected. Interestingly,
with the administration of the lowest dose of IDS (1.2 mg/
kg), some IDS activity was still detected in the brains of the
treated MPSII mice (Fig. 1A). Surprisingly, the same IDS
activities were detected in the group B mice, which received
1.2 mg/kg doses at longer time intervals, i.e. treatment every
4 and 7 days (Fig. 1B). The group C treatment showed that
IDS can also be partially detected in MPSII mice of 7
months of age, even when these mice were treated once
every 7 days (Fig. 1C). Finally, the MPSII mice in group D,
which were treated with 1.2 mg/kg once every 7 days for a
prolonged period of time, also showed some IDS activity in
their brains (Fig. 1D).

In conclusion, in all groups of treated MPSII mice, and even
in the adult MPSII mice treated with the lowest IDS dose

(1.2 mg/kg) once every 7 days, the IDS activities measured
in the brains were higher than those of the untreated MPSII
mice. However, as expected, the IDS activities were much
lower with respect to those measured in the wild-type mice.

We also tested the IDS enzyme activities in the homogen-
ates from liver, kidney, lung, spleen, heart and skeletal
muscle of the treated mice and the untreated MPSII and wild-
type mice (groups A—D). The tissue IDS activities measured
in the treated mice (for all three IDS concentrations injecte-
dand for all of the intervals of time) were always higher
than the activities measured in the untreated MPSII mice
and were also higher, with few exceptions, than the activities
measured in the visceral tissues of the wild-type mice (Sup-
plementary Material, Fig. SIA-D).

Clearance of lysosomal GAG accumulation in the brains
and tissues of the treated and control mice

Next, the brains and visceral tissues of the sacrificed mice
were analyzed for GAG clearance by Alcian blue staining of
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Figure 1. IDS activities following ERT, measured in brain homogenates of untreated wild-type (wt; n = 5) and MPSII (/ds*"; n = 5) mice and treated MPSII
mice sacrificed 4 h after the final IDS treatments (as indicated). (A) Group A (n = 7); (B) group B (n = 7); (C) group C (n = 7); (D) group D (n = 4). See text for
details. Data are means + standard deviations. P < 0.05 versus untreated MPSII control (ANOVA test).

the treated and untreated MPSII and wild-type mice. There
was almost total clearance of GAG accumulation in the
choroid plexus of the third and fourth ventricles and in the
cortex and thalamus of all of groups of mice, with respect to
the untreated MPSII mice (Fig. 2). Of note, even with the
low dose of IDS administered over the longer time interval
(1.2 mg/kg once every 7 days), there was good clearance of
GAGs in all of the regions of the brain analyzed. Furthermore,
there was clearance of GAGs when the mice were treated not
just for 7 months, but also for only 1 month.

These data show that GAGs can be cleared with both short
and prolonged ERT protocols with a low dose of infused IDS
in juvenile mice, and they can also be cleared in the older mice
with higher doses of IDS infusion. Importantly, the GAGs
were fully cleared in all of the visceral tissues (Supplementary
Material, Fig. S2) and in the urine (Supplementary Material,
Fig. S3) of all of the treated mice at all of the IDS concen-
trations infused and at all of the infusion time intervals.

IDS activity and GAG clearance in the brains and tissues
of treated and control mice sacrificed 4 days after the final
IDS infusion

We then wanted to determine whether we could measure IDS
enzyme activity and GAG clearance after prolonged periods of
time from the last IDS administration. Thus, to evaluate the
residual IDS activity, a group of adult MPSII mice (aged 2
months; n = 4) were treated with 1.2 mg/kg IDS once every

7 days (group E) for 1 month, and 4 days after the final IDS
injection, they were sacrificed. Groups of untreated, age-
matched, MPSII and wild-type mice were used as controls.

Surprisingly, 4 days after the last IDS administration, we
still detected IDS activity in both the brains and the tissues
of the treated mice; in most organs (brain, liver, kidney and
spleen), this activity was higher than that for the untreated
MPSII mice (Fig. 3A and B). GAG clearance was also seen
to persist in the different brain areas and in the visceral
tissues of these treated mice (Fig. 3C and D).

These data show that the IDS activity remains in the brain
and the tissues for a long time at sufficient levels to maintain
the clearance of GAG accumulation. For this reason, the
administration of IDS once every 7 days appears sufficient
to correct both the brain and the tissue defects.

Partial correction of the brain defects in the treated MPSII
mice

We have recently shown that progressive accumulation of
GAGs in lysosomes of neurons leads to severe vacuolization.
In addition, we have seen diffuse neurodegeneration in the
thalamus, cerebral cortex and brain stem, according to
reduced neuron densities (decreased anti-NeuN signals) and
to increased ubiquitin-expressing neurons. This was also
associated with the triggering of apoptosis, as shown by
TUNEL-positive signals in neurons of the thalamus, cerebral
cortex and brain stem of MPSII mice (13).
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mice (3 and 10 months old) and groups A—D treated MPSII mice (as indicated). See text for details. Magnification, 20 x.
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Figure 4. Representative analysis of the rescue of CNS markers in the thalamus following ERT, with untreated wild-type (wt; 3 months old; A and B) and MPSII
(Ids”"; 3 months old, A) mice and treated MPSII mice (A and B) sacrificed 4 h after the final IDS treatments in groups A andB, as indicated. (A) Immunohis-
tochemistry (IHC) and immunofluorescence (IF) monitored according to (left to right): anti-Lamp2 IHC for GAG storage; anti-NeuN IF for neuron density;
anti-ubiquitin IHC for ubiquitination; TUNEL assay for apoptosis; anti-GFAP IF for gliosis (all magnification 20 x ) and anti-CD68 IF for macrophage infiltration
(magnification, 40 x ). See text for details. (B) Co-localization of the lysosomal marker Lamp-2 (anti-Lamp2 antibody) and the IDS protein (anti-hIDS antibody)
as seen in the merge, as indicated. Magnification, 100 x.
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Here, we saw a clear reduction in the lysosomal GAG the untreated MPSII mice (Figs 4A and 5A). A clear ameliora-
accumulation, as showed by the anti-Lamp2 immunostaining tion of neurodegeneration was also evident in the treated mice
that marks the lysosome storage that is massively evident in in all of the groups, as revealed by reductions in anti-ubiquitin



and TUNEL signals in neurons of the thalamus (Figs 4A and
5A) as well as in the cortex and brain stem (data not shown).
Accordingly, we also noted increases in the neuron density (as
anti-NeuN immunostaining) in the treated mice of groups A, B
and D when compared with the untreated MPSII mice
(Figs 4A and 5A).

As expected, there was only a small increase in the neuron
density in the brains of mice of group C (Fig. 5A); indeed, the
treatment of these mice of 7 months of age appeared to have
been started too late, when the neurodegeneration was
already too advanced.

MPSII mice also showed increased numbers of activated
astrocytes, as revealed by anti-GFAP staining. This was
clearly ameliorated in the thalamus, cortex and brain stem in
all of the treated mice (Figs 4A and 5A; data not shown).
We also analyzed the inflammatory responses in the thalamus,
cortex and brain stem, by evaluating infiltration of activated
macrophages, using an anti-CD68 antibody with tissue sec-
tions. The untreated MPSII mice showed high levels of inflam-
mation; in contrast, the treated mice showed significant
reductions in macrophage infiltration in all of the CNS areas
analyzed (Figs 4A and 5A).

Together these data demonstrate that through ERT we can
promote partial correction of the CNS defects; importantly,
this holds true even for the treatment of the older mice.
Indeed, these old mice (group C) showed clear amelioration
of the marker phenotype even when treated once every 7
days. Importantly too, prolonged treatment (7 months treat-
ment; group D) with a low dose of IDS (1.2 mg/kg) and
with the longest interval between administrations (once
every 7 days) also improved the CNS phenotype of these
treated adult mice.

To confirm the presence of the IDS enzyme in the brains of
these treated mice, we performed a co-immunostaining using
anti-lamp2 and anti-human IDS antibodies with brain sections
of MPSII treated mice belonging to all of the groups. We
clearly saw labeling for IDS in the thalamus of the treated
mice with all of the treatment protocols (Figs 4B and 5B).

Clearance of lysosome storage after ERT as evaluated by
ultrastructural analysis

Ultrastructural analysis of thin sections from the cerebellum of
wild-type mice revealed electron-dense membrane structures
with morphological features of lysosomes in Purkinje cells
(Fig. 6A). These lysosomal organelles were mainly
electron-dense with a few translucent areas in the lumen,
and they usually ranged from 300 to 1000 nm in diameter.
In contrast, the cytoplasm of Purkinje cells from the MPSII
mice contained large lysosome-like organelles (Fig. 6B),
which in some cases reached even 3000 nm in diameter and
were, on average, more than twice the diameter of those of
the wild-type mice Purkinje cell lysosomes (Fig. 6D), as
revealed by the morphometric analysis. The lumen of these
organelles was filled with the heterogeneous material, part of
which looks like ‘fuzzy flakes’ that resemble GAGs. Taken
together, these ultrastructural features suggest that the degra-
dation processes in these organelles are impaired, which
results in GAG storage.
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We analyzed the Purkinje cells of the group C treated mice
(the oldest mice) by ultrastructural analysis and found signifi-
cant improvement of the above-described MPSII phenotype.
Indeed, for all the IDS treatments, the average diameters of
the lysosome-like structures decreased (although they
remained greater than that in the untreated wild-type mice;
Fig. 6C and D). The overall population of the lysosomes
was also highly variable in terms of the content. Some lysoso-
mal organelles in the treated mice showed heterogeneous
material in the lumen, as seen for the Purkinje cells from the
untreated MPSII mice (Fig. 6C, black arrows), whereas
others more resembled the electron-dense lysosomes for the
Purkinje cells from the untreated wild-type mice (Fig. 6C,
black arrowhead). All in all, the ultrastructural analysis con-
firms that the IDS cleared GAG storage in the lysosomes.
Interestingly, this was also seen for the group of older mice
that had the more severe GAG-storage phenotype.

Treated MPSII mice show improved sensorimotor
coordination in the open-field and rotarod tests

The mice in groups C and D underwent both the open-field
and rotarod tests. These neurobehavioral tests were carried
out only in these two groups of mice because the clear phe-
notype measured by these two tests can be seen only in
MPSII mice from about 5 to 6 months of age (11). The
ability to explore, the locomotion and the anxiety to move
of the treated mice were determined through the open-field
test. As shown in Figure 7, the performance in the open-
field test showed both the vertical and horizontal activities
to be fully corrected in the treated mice and to be com-
parable to the untreated wild-type mice (Fig. 7A, B, D
and E).

We have previously shown that MPSII mice undergo a loss
of Purkinje cells in the cerebellum (11). The rotarod test evalu-
ates the sensorimotor coordination and the rescue of these cer-
ebellum defects in the treated mice. The treated mice
significantly improved their performances when compared
with the untreated MPSII mice; indeed, in both the groups
of mice, the latency times of the treated mice were almost
comparable to those of the untreated wild-type mice
(Fig. 7C and F).

These data show that by systemic ERT, the MPSII CNS
defects can also be functionally rescued, confirming the
value of this therapeutic approach for the treatment of MPSII.

DISCUSSION

To date, the only therapy available to treat MPSII patients is
ERT, which is only effective to ameliorate certain systemic
defects. Progressive neurodegeneration in the severe form of
MPSII patients is a devastating feature leading to dramatic intel-
lectual impairment in the patients. It is therefore very important
to establish an ERT protocol that can ameliorate the CNS symp-
toms in addition to the visceral phenotype of MPSII patients.
At present, MPSII patients are treated with an infusion of
0.5 mg/kg recombinant human IDS once a week (28—30);
here, we show that in juvenile mice, the systemically infused
low dose of 1.2 mg/kg human IDS administered once every 7
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Figure 6. Representative analysis (A—C) and quantification (D) of the ultrastructure of the lysosome-like organelles in the Purkinje cells in thin sections of
cerebellum from untreated wild-type (wt; A and D) and MPSII (/ds” - B and D) mice and treated MPSII mice (C and D) sacrificed 4 h after the final IDS treat-
ments in group C, as indicated. In all cases, the Purkinje cells were sectioned through their central area (judged on the basis of the presence of the Golgi mem-
branes; A—C, white arrows) to ensure most representative sampling and analysis. (A) Black arrowheads, small electron-dense lysosome-like organelles. (B)
Black arrows, large vacuolar structures containing heterogeneous material. (C) Black arrowheads, significantly smaller vacuolar structures containing hetero-
geneous material; black arrows, lysosomes with regular size and morphology were also detected. Scale bar, 1000 nm. (D) Quantification of the lysosome diam-
eter (average + SD, n = 80 lysosomes) in sections of treated MPSII and control mice as indicated. P < 0.05 versus untreated MPSII control (ANOVA test).

days for short and for prolonged treatment periods is sufficient to
ameliorate and apparently prevent progression of the CNS
defects in these MPSII mice. Thus one of the important obser-
vations of the present study is that as opposed to much higher

doses of other enzymes needed for ERT (such as B-glucuronidase
in MPSVII mice, arylsulfatase A in metachromatic leukodystro-
phy mice and a-mannosidase in a-mannosidasis mice) to obtain
only minor improvements in the CNS phenotypes (26,27,31),
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Figure 7. Behavioral phenotypes following ERT, of 10-month-old untreated wild-type (wt; 7 = 5) and MPSII (Ids¥"; n = 5) mice and treated MPSII mice (as
indicated). (A—C) Group C mice (n = 7) after 3 months of treatment. (D—F) Group D mice (n = 7) after 7 months of treatment. See text for details. Data are
means + standard deviations for the open-field test (A, B, D and E) for the number of crossings (A and D) and rearings (B and E) and for the rotarod test (C and

F) for latency time. P < 0.05 versus untreated MPSII control (ANOVA test).

here we have a scenario in which a dose that is very close to that
used already in the clinic is sufficient to improve the CNS pheno-
type of MPSII mice. Remarkably, a clear improvement in the
disease phenotype is also seen in the 7-month-old mice when a

high dose (10 mg/kg) of IDS was administered once every 7
days for 3 months, showing that even when the CNS impairment
is clearly manifested, ERT can be effective to ameliorate the
disease.
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How is this possible? Our data clearly show that the IDS
plasma clearance is very slow, which might well be the reason
why we can find the IDS in the brain even with low infused
doses. IDS contains N-linked glycosylation sites, and the circu-
lating enzyme is highly sialylated (32,33). This was considered
important to mask immune reactivity and to reduce receptor
recapture, resulting in a high amount of circulating IDS and
therefore reduced clearance. In contrast, other lysosomal
enzymes currently used in ERT protocols also contain
N-linked oligosaccharides; however, their clearance is much
faster.

How the IDS crosses the blood—brain barrier and reaches
the brain remains a mystery at present, and it will be extremely
interesting to understand this further. Indeed, the stability of
the IDS enzyme in the plasma leads us to conclude that it is
an important parameter for the crossing of the blood—brain
barrier by IDS. Whether high circulating levels of IDS are
required for its delivery through receptor-mediated uptake or
via different routes remains an open question.

B-glucuronidase fused to the HIV Tat peptide was shown to
be taken up by absorptive endocytosis, which was mediated by
binding to heparan sulfate on the cell surface (34). Similarly,
the exposure of brain capillaries to high levels of circulating
enzyme might lead the heparan sulfate of the BBB endothelial
cells of MPSII mice to facilitate IDS delivery to the brain.
Finally, we cannot exclude also an injection-dependent hydro-
dynamic effect, due to the high volume of IDS infused. Thus,
further studies to address the mechanism of the barrier cross-
ing will perhaps be important to modify the IDS enzyme so as
to promote an increase in its uptake into the brain. Indeed,
although we saw relatively low activity of the IDS enzyme
in brain homogenates after these treatments, this activity
appeared to be sufficient to greatly ameliorate the CNS
markers and neurobehavioral symptoms in the treated mice.
Importantly, we clearly obtained clearance of GAG storage
in the lysosomes after IDS uptake. This is an additional impor-
tant characteristic of IDS, i.e. how a low amount of this
enzyme is already sufficient to ameliorate the phenotype.

In truth, however, whether these therapeutic approaches will
indeed be sufficient to treat or prevent neurodegeneration in
MPSII patients is difficult to predict at present. First of all,
patients are currently treated when the disease is already
clearly manifest, and secondly, and unfortunately, they can
also show high and variable immune responses against the
infused IDS (28—30). It will be important to direct future
studies toward minimizing any immune response that might
be mounted in the MPSII patients, perhaps also by modifying
some of the epitopes of the IDS protein. As we clearly showed
that the CNS lysomal storage of MPSII mice can be normal-
ized with a little enzymatic activity, this might well happen
also in the future attempts of CNS treatment of the MPSII
patients. An amelioration of the CNS phenotype in the patients
might be obtained if they will be treated very early and before
the neurodegeneration already impaired their cognitive func-
tions. An optimization of the ERT protocol by adjusting the
IDS dose and administration timing to a level that can be ben-
eficial for the treatment of the CNS is however needed.

In conclusion, these studies clearly show that the systemic
infusion of IDS in MPSII mice is an effective treatment for
the CNS phenotype, and this work now opens up hope for

effective treatment and/or prevention of the CNS defects in
young and adult MPSII patients.

MATERIALS AND METHODS
Animals

Female heterozygous MPSII mice were used, as described
previously (11).

Blood and tissue collection

Blood (50 wl) was collected in EDTA at different times after
the injections (months 1, 3, 5 and 7; T1, T3, T5 and T7) of
the treated mice and the untreated MPSII (Zds*") and wild-type
(control) mice. Injected human IDS (Elaprase) was kindly pro-
vided by Shire Human Genetic Therapies, Inc., Cambridge,
MA, USA. The blood was centrifuged at 10000xg for
10 min at 4°C, and the serum (supernatant) was used for
enzyme assays. Tissues were collected at the end of each treat-
ment from the treated mice and in parallel from the untreated
MPSII and wild-type mice. The mice were anesthetized and
sacrificed by cardiac perfusion: the left ventricle was cannu-
lated, an incision was made in the right atrium and the mice
were perfused with 40 ml of phosphate-buffered saline
(PBS). The organs were collected, and half of each was
fixed (for Alcian blue staining and immunohistochemistry or
immunofluorescence), and the other half of each was frozen
in dry ice before being processed for the IDS activity assay.

IDS activity assay

The tissues for analysis were homogenized in water. Serum
and tissue protein concentrations were determined using
the Bio-Rad colorimetric assay (Bio-Rad, Hercules, CA,
USA). The IDS assay was performed as described previously
(35): briefly, 50 pg total protein extract was incubated with
20 wl of the fluorogenic substrate, 4-methylumbelliferyl-a-
iduronide-2-sulfate (Muscerdam Substrates), for 4 h at
37°C. Then, 10 pl purified a-iduronidase from rabbit liver
(Muscerdam Substrates) and 40 wl Mcllvain’s buffer (0.4 m
Na-phosphate/0.2 M Na-citrate, pH 4.5) were added to the
reaction mixture, which was then incubated for an additional
24 h at 37°C. The reaction was stopped by adding carbonate
stop buffer (0.5 M NaHCO5/0.5 m Na,COs3, pH 10.7), and the
fluorescence of the 4-methylumbelliferone liberated was
measured using 365 nm excitation and 460 nm emission in
a fluorimeter (BIO-RAD VersaFluor Fluorometer). The
enzyme activities were expressed as nmol/4 h/mg protein,
as calculated through the standard curve of the fluorogenic
substrate, 4-methylumbelliferyl-a-iduronide (Sigma-
Aldrich).

Alcian blue staining

After the perfusion of the mice with PBS, the tissues were col-
lected and fixed in methacarn solution (30% chloroform, 60%
methanol and 10% acetic acid) for 24 h at 4°C. The next day,
the tissues were embedded in paraffin (Sigma-Aldrich) after
their dehydration through a 70—100% ethanol gradient.



Finally, the tissues were sectioned into 7 wm thick serial sec-
tions. The tissue sections were stained with 1% Alcian blue
(Sigma-Aldrich) in hydrochloric acid. The counterstaining
was performed for 2min with Nuclear-Fast red
(Sigma-Aldrich).

Immunohistochemistry and immunofluorescence

Mice brains were collected after PBS perfusion and fixed with
10% neutral buffered formalin, pH 7.0, for 12 h at 4°C. Then
the brains were embedded in paraffin (Sigma-Aldrich) and
dehydrated through a 70—100% ethanol gradient. Immunohis-
tochemistry and immunofluorescence analyses were per-
formed on 7 wm thick serial sections. The specimens were
incubated for 1h with blocking solution [Tris-buffered
saline, 0.2% Tween-20 (Sigma-Aldrich) and 10% normal
horse serum, Vectastain Elite ABC kit] before incubation
overnight with the primary antibodies.

For immunohistochemistry analyses of Lamp2 and ubi-
quitin of the paraffin-embedded, formalin-fixed brains, the
avidin-biotin complex (ABC) method was used (Vectastain
Elite ABC kit). A monoclonal rat antibody against murine
Lamp?2 (diluted 1:100; Santa Cruz Biotechnology, Inc., CA,
USA) and a polyclonal rabbit antibody against murine ubi-
quitin (diluted 1:50; Abcam, Cambridge, UK) were used.
Then, secondary biotinylated horse anti-rat and anti-rabbit
IgG and streptavidin—biotin—peroxidase complex (Vectas-
tain Elite ABC kit) were used for 1h of incubation (for
anti-Lamp2 and ubiquitin). The color was developed
using the ABC Elite Vector Staining kit and the horse-
radish peroxidase substrate (Vector Laboratories, Inc., Bur-
lingame, CA, USA). For the detection of apoptotic cells in
the brain sections, TUNEL staining kits (Chemicon Inter-
national) were used, according to the manufacturer’s
instructions.

Immunofluorescence analyses were carried out for the detec-
tion of NeuN, GFAP and CD68 (36,37) and for the
co-localization signal of Lamp2-hIDS. A monoclonal mouse
antibody against murine NeuN (diluted 1:200; Abcam), a mono-
clonal rabbit antibody against murine GFAP (diluted 1:400;
Sigma-Aldrich), a monoclonal rat antibody against murine
CD68 (diluted 1:250; AbD Serotec) and an antibody against
human IDS (hIDS, Shire Pharmaceuticals, Boston, MA, USA)
were used for the detection of co-localization signals between
Lamp2-hIDS. After washing, the sections were incubated for
1 h with secondary antibodies (Molecular Probes, Invitrogen,
CA, USA). Stained sections were mounted with Vectashield
with DAPI (Vector Laboratories, Inc.).

Electron microscopy

The cerebellum was excised from 10-month-old treated mice and
untreated MPSII and wild-type mice and fixed in 1% glutaralde-
hyde in 0.2 m HEPES buffer. Then small blocks of the cerebel-
lum tissue were cut and post-fixed in uranyl acetate and in
0s0,. After dehydration through a graded series of ethanol,
the tissue samples were cleared in propylene oxide, embedded
in the Epoxy medium (Epon 812) and polymerized at 60°C for
72 h. From each sample, semi-thin sections were cut with a
Leica EM UC6 ultramicrotome and mounted on glass slides
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for light microscopic inspection to identify the Purkinje and
granular cell layers. Ultrathin (70 nm thick) sections of the
area of interest were obtained. Electron microscopic images
were acquired from thin sections using an FEI Tecnai-12 electron
microscope equipped with an ULTRA VIEW CCD digital
camera (FEI, Einhoven, The Netherlands). Quantification of
the lysosome-like organelle dimensions was performed using
the AnalySIS software (Soft Imaging Systems GmbH,
Munster, Germany).

Quantitative analysis of GAG accumulation in the urine

Urine from individual mice was collected in metabolic cages
at the end of each treatment and from the untreated MPSII
and wild-type mice. GAG levels in the urine were determined
using the dimethylmethylene-blue-based spectrophotometry of
GAGs (38). These were normalized to the creatinine content.
Urine creatinine was measured using Creatinine Assay Kits
(Quidel Corporation, San Diego, CA, USA). Absorbance
was read at 490 nm. Urinary GAG was expressed as milligram
GAG/milligram creatinine.

Open-field and rotarod tests

The motor and the exploratory behaviors of treated mice were
assessed in an acrylic open arena, as described previously (39).
The open-field test was performed (between 09:00 and
11:00 h) using the open-field apparatus (60 cm x 60 cm X
40 cm). The floor of the wooden arena was divided equally
into squares marked by red lines. In this test, the treated
mice and the untreated MPSII and wild-type mice were
placed individually in the center of the arena and allowed to
explore freely. The number of crossings (squares crossed
with all paws) and rearings (rising of the front paws) was
recorded during the test period of 10 min. This apparatus
was cleaned with a detergent and dried after occupancy by
each mouse.

The rotarod test is designed to assess the sensory motor
coordination, balance, equilibrium and motor learning. The
treated mice and the untreated MPSII and wild-type mice
were placed on top of the rotating rod facing away from the
experimenter, in the orientation opposite to that of the rod
rotation. The latency times for the mice to fall from the rod
were recorded automatically by the apparatus. For the first
day of the test, the mice were placed on the rotating rod set
at the steady slow speed of 4 rpm and trained to remain on
the rod for 60 s. After this habituation trial, each mouse was
tested in four trials per day, for 3 consecutive days, with an
inter-trial interval of 30 min. The rotarod apparatus (Ugo
Basile, Italy) accelerates gradually from 4to 40 rpm. The
cut-off time was 600 s for the trials.

Statistical analyses

The statistical significance was determined for the measure-
ments compared by the analysis of variance (ANOVA) test.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at HMG online.
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