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Abstract

Recent genome-wide association studies (GWASs) have identified candidate genes contributing to cancer risk through low-
penetrance mutations. Many of these genes were unexpected and, intriguingly, included well-known players in
carcinogenesis at the somatic level. To assess the hypothesis of a germline-somatic link in carcinogenesis, we evaluated the
distribution of somatic gene labels within the ordered results of a breast cancer risk GWAS. This analysis suggested frequent
influence on risk of genetic variation in loci encoding for ‘‘driver kinases’’ (i.e., kinases encoded by genes that showed higher
somatic mutation rates than expected by chance and, therefore, whose deregulation may contribute to cancer
development and/or progression). Assessment of these predictions using a population-based case-control study in Poland
replicated the association for rs3732568 in EPHB1 (odds ratio (OR) = 0.79; 95% confidence interval (CI): 0.63–0.98;
Ptrend = 0.031). Analyses by early age at diagnosis and by estrogen receptor a (ERa) tumor status indicated potential
associations for rs6852678 in CDKL2 (OR = 0.32, 95% CI: 0.10–1.00; Precessive = 0.044) and rs10878640 in DYRK2 (OR = 2.39, 95%
CI: 1.32–4.30; Pdominant = 0.003), and for rs12765929, rs9836340, rs4707795 in BMPR1A, EPHA3 and EPHA7, respectively (ERa
tumor status Pinteraction,0.05). The identification of three novel candidates as EPH receptor genes might indicate a link
between perturbed compartmentalization of early neoplastic lesions and breast cancer risk and progression. Together,
these data may lay the foundations for replication in additional populations and could potentially increase our knowledge
of the underlying molecular mechanisms of breast carcinogenesis.
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Introduction

With the advent of technical and methodological advances,

several GWASs identifying common genetic variation associated

with risk of developing cancer have been completed recently [1].

Thus, initiatives such as the National Cancer Institute’s Cancer

Genetic Markers of Susceptibility (CGEMS) and efforts carried out

by deCODE Genetics and the Breast Cancer Association

Consortium have led to the identification of breast cancer risk

alleles in single nucleotide polymorphisms (SNPs) replicated across

populations [2–6]. Intriguingly, illustrating the unbiased nature of

GWASs, most hits have corresponded to a priori unexpected

candidate genes. In this context, the involvement of biological

processes beyond the canonical DNA damage response in breast

cancer is further suggested by the observed differential influence of

low-penetrance risk alleles among BRCA1 and BRCA2 mutation

carriers [7–9].

A potential common characteristic of the unexpected low-

penetrance susceptibility genes is the previously identified

contribution to tumorigenesis, but at the somatic level. Common

genetic variation in loci encoding for FGFR2 and MAP3K1

influences risk of breast cancer [2,4], and these genes were

previously found to be somatically mutated in diverse neoplasias

including breast cancer [10,11]. In addition, and central to the

understanding of cancer progression, common risk alleles showed

differential influence according to ERa tumor status [12], and

variation in the locus encoding for ERa, ESR1, also influences risk

of breast cancer [13,14]. More recently, additional breast cancer

susceptibility loci have been described that include CDKN2A/B as

candidates [15]. While these observations suggest a ‘‘germline-

somatic’’ link in breast carcinogenesis, an analogous situation may

exist for other neoplasias. Variation in loci encoding for CDH1 and

SMAD7 influences risk of colorectal cancer [16,17] and, similarly,

these genes were previously identified as inactivated or deregulated
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in tumors [18–21]. Moreover, deregulated germline expression of

a paradigmatic proto-oncogene, MYC, may be a common

mechanism of tumorigenesis in epithelial tissues [22–25]. Howev-

er, despite some evidence of a germline-somatic link, as yet there is

no explicit evaluation of this hypothesis and its potential usefulness

in replication studies. Here we present an examination of this link

through analysis of the CGEMS GWAS breast cancer dataset and

subsequent assessment of the predictions in a case-control study of

incident breast cancer in Poland.

Results

Distribution of somatic gene sets in ordered breast
cancer GWAS results

Previously, analysis of the CGEMS GWAS dataset using the

lowest genotypic P value per gene locus suggested true associations

in genes annotated with Gene Ontology (GO) biological process

terms linked to somatic events [26,27]. However, since there is a

positive correlation between the extension of a given locus and the

number of SNPs it may contain (and, therefore, the possibility of

significant association results being obtained by chance), an

unadjusted GWAS rank is biased at its lowest P values for specific

processes in which large gene products frequently participate

[26,28,29] (Fig. 1A). Nevertheless, cancer genes tend to expand

across large genomic regions [30], and examination of eight genes

likely involved in breast cancer through low-penetrance muta-

tions–CASP8, COX11, ESR1, FGFR2, LSP1, MAP3K1, RAD51L1

and TOX3 [2–6,13,14]–showed a trend for larger genomic loci

(mean (x) genomic extension = 211 kilo bases (kb) and standard

deviation (s) = 283 kb; compared to x = 66 kb and s= 128 kb for

all annotated genes in the CGEMS GWAS rank).

Having identified caveats to the ranking of GWAS results, we

performed 10,000 permutations of case-control status and used the

null distribution of t statistics from the age-adjusted partial

correlation analysis to correct the original rank, which then

showed an unbiased distribution (Fig. 1B). Prior to the evaluation

of somatic sets, analysis of GO biological process terms in the

GWAS permutation P values rank did not show any significant

asymmetry using the Gene Set Enrichment Analysis (GSEA) tool

[31] with multiple testing correction by the false discovery rate

(FDR) approach [32]. Nonetheless, most processes with nominally

significant P values were those previously highlighted, which are

associated with somatic events [26,27] (Table S1). This observa-

tion appears to agree with recently described results of pathway-

based analysis of the same GWAS dataset [33].

Next, evaluation of somatic sets related to cancer prognosis and

treatment response prediction, and to genetic and genomic

alterations (see Materials and Methods), revealed significant

asymmetrical distribution of ‘‘driver kinases’’ [34,35]; that is,

kinases whose deregulation through frequent somatic mutation

contributes to tumor development and/or progression (‘‘driver

mutations’’). In contrast, ‘‘passenger mutations’’ were defined as

essentially neutral and linked to the inherent genetic instability in

cancer cells [34,35]. Thus, the driver kinases set was found to be

biased towards the top (nominal significant association results) of

the GWAS permutation rank (GSEA nominal P,0.001; FDR-

adjusted P = 0.010) (Fig. 1C and Table S2). Among the remaining

of somatic sets evaluated, only cooperation response genes (CRGs)

to oncogenic mutations [36] showed a trend for a distribution

similar to that of driver kinases (GSEA nominal P = 0.080; FDR-

adjusted P value = 0.25) (Fig. 1D), although the intersection

between both sets only contained two genes (Table S2). Therefore,

in somatic cancer genes, common genetic variation in driver

kinase loci might frequently influence risk of breast cancer.

The set of driver kinases contained a benchmark gene, FGFR2

[2,4], and a locus recently replicated in an independent study,

BMPR1B [37]. Nevertheless, a significant bias was still observed

following exclusion of these two loci (GSEA nominal P = 0.001;

FDR-adjusted P = 0.048), which suggests that variation at

additional driver kinase loci influences risk of breast cancer.

Importantly, using the set of non-driver kinases–either the

subsequent equivalent set as originally statistically ordered or the

total set (n = 344) [35]–did not reveal significant bias (GSEA

nominal P = 0.99 and 0.66, respectively), which reinforces the idea

of frequent involvement of driver kinases. However, if only the

individual statistical data for each locus were considered, most of

the driver kinase loci would perhaps not have been selected for

replication in other populations.

Independent association results for common variation in
driver kinase loci

Given the possible bias in GWAS rank identified above, we

examined the top 20 driver kinase variants in the original rank

(Table S3, including details of the CGEMS and results below) in a

case-control study of incident breast cancer in Szczecin (Poland),

previously used in other replications [38]. Applying genotyping

quality controls and Hardy-Weinberg equilibrium analysis, 16

SNPs representing an identical number of driver kinase loci (i.e., a

single SNP for each locus and representing the strongest potential

statistical association) were examined for their association with risk

of breast cancer using 880 controls and 1,173 cases (see Materials

and Methods). In this analysis, the rs3732568 variant in the ephrin

type-B receptor 1 (EPHB1) locus was found to be associated with risk

of breast cancer: OR = 0.79, 95% CI: 0.63–0.98; Ptrend = 0.031

(Table 1). Further evaluation of this association through 10,000

case-control permutations in our study gave a similar significance

value, Ptrend = 0.034. Importantly, this association was in the same

direction and with similar magnitude to the result in the CGEMS

GWAS: age-adjusted OR = 0.78, 95% CI: 0.64–0.94;

Ptrend = 0.009.

While deregulated expression or function of EPHs and EPH

receptors is thought to play a critical role in the initial stages of

epithelial neoplasia [39,40], recent analysis of early breast cancer

expression changes suggests a link between disruption of cell

adhesion and extracellular matrix pathways, and the risk of

developing breast cancer [41]. Analysis of this recent dataset also

revealed an early expression change of EPHB1, between normal

breast tissue and atypical ductal hyperplasia (Fig. 2). This

alteration consisted of infra-expression in hyperplasia, akin to its

potential role in the compartmentalization of early neoplastic

lesions [42]. Together, association studies, early expression

changes in carcinogenesis and the regulation of cell adhesion

suggest the involvement of EPHB1 in risk of breast cancer.

Next, given accepted models of inherited breast cancer

susceptibility [43], we examined associations with risk at early

age of diagnosis (#40 years old). This analysis indicated two

additional potential associations: rs6852678 in CDKL2, recessive

model OR = 0.32, 95% CI: 0.10–1.00; P = 0.044; and rs10878640

in DYRK2, dominant model OR = 2.39, 95% CI: 1.32–4.30;

P = 0.003 (Table 2). Results for rs6852678 appeared to be

consistent with CGEMS GWAS analysis; age-adjusted recessive

model OR = 0.71, 95% CI: 0.53–0.95; P = 0.019; however, the

pattern for rs10878640 might be more complex (CGEMS GWAS

ORs = 1.05 and 0.68 for heterozygotes and minor allele

homozygotes, respectively).

Having potential differences by ERa tumor status, we next

examined associations in ERa-positive and -negative breast cancer

patients. Thus, rs3732568 in EPHB1 showed a similar influence on

Germline-Somatic Cancer Link

PLoS ONE | www.plosone.org 2 November 2010 | Volume 5 | Issue 11 | e14078



either type of breast cancer (Table 3)–which is consistent with an

overall significant association–and rs12765929 in BMPR1A and

rs9836340 in EPHA3 showed a potential major impact on the risk

of ERa-negative breast cancer (P for difference in OR (interaction)

by ERa status ,0.05), while rs4707795 in EPHA7 showed a

differential effect between ERa-negative versus ERa-positive

breast cancer risk (Pinteraction = 0.007) (Table 3). None of these

additional candidates linked to ERa tumor status, or those linked

to an early age of diagnosis above, showed significant expression

differences at early stages of breast carcinogenesis as EPHB1. On

the other hand, the remaining SNPs examined in this study after

applying quality controls and Hardy-Weinberg equilibrium

analysis (i.e., 10 out of 16), did not show significant associations

following CGEMS evidence (Table S3). Together, the gene-set

based analysis of GWAS data and the subsequent replication

attempt might indicate that common genetic variation in specific

driver kinase loci, and particularly in EPH receptor genes, influence

risk of breast cancer.

Discussion

Evaluation of a germline-somatic link in breast carcinogenesis

suggests a role for driver kinases and, perhaps to a lesser extent,

genes with a synergistic response to oncogenic mutations. This

study might be limited by the assignment of the lowest genotypic P

value per gene locus within a defined genomic window (i.e.,

Figure 1. GWAS ranks and distribution of cancer somatic gene sets. A, Original GWAS results ranked according to the lowest genotypic
association test P value per gene locus (unadjusted for genomic extension; taken SNPs in defined genomic window of 610 kb relative to the first and
last exons of a given gene). The Y-axis indicates the number of SNPs per gene locus while the X-axis indicates the lowest association P value per gene
locus. Bias can be appreciated as the number of SNPs per gene locus increases at lower P values. B, GWAS results ranked according to the lowest
association P value per gene locus but adjusted by genomic extension through case-control permutations. Compared to the previous graph, the bias
largely disappears. C, Following the rank in B, the Y-axis indicates odds ratios (ORs) of allele effects and density distributions of gene sets (driver
kinases correspond to a light lilac curve; the rest of the genome in the GWAS dataset is shown by a dark lilac curve), while the X-axis indicates the log-
transformed association P values, previously adjusted by genomic extension. As indicated by the density curves, SNPs mapping to driver kinase loci
are relatively more frequent at lower association adjusted P values. This observation is supported by GSEA results using the same CGEMS GWAS
adjusted rank; nominal P,0.001 and FDR-adjusted P = 0.010 (Table S2). D, Similarly to the graph in C, distribution of CRGs in the CGEMS GWAS rank
adjusted through permutations.
doi:10.1371/journal.pone.0014078.g001
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610 kb)–thus excluding a large proportion of variation that

cannot be assigned to a specific known gene–and by its focus on

the additive model of influence of risk alleles when adjusted

through case-control permutations. Future analyses taking into

account the potential perturbation of germline gene expression by,

for example, common variation at distant regulatory regions may

improve the identification of susceptibility genes using GWAS

complete data. Another limitation in the interpretation of the

results presented here may lie in the case-control study designs: the

CGEMS addressed breast cancer risk in postmenopausal women,

while the Polish study was relatively enriched in early-onset cases.

Therefore, studies in additional populations, with diverse designs,

are warranted to corroborate the results shown here.

The results of the replication study may be consistent with

previously detected somatic genetic alterations and/or functional

roles. Somatic mutations in CDKL2 were nonsense and were only

detected in breast and ovarian cancer cell lines or tumors [11,35].

CDKL2 (also known as p56 or KKIAMRE) is the most distant

member of the CDC2-related serine/threonine protein kinase

family, involved in epidermal growth factor signaling [44], but

with a mostly uncharacterized function. DYRK2 was found to be

mutated in breast and central nervous system tumors, in nonsense

and missense alterations, respectively [11,35]. The functional role

of DYRK2 in the DNA damage response [45] may link to

CGEMS GWAS results for RAD51L1 [3]: loss of DYRK2 function

alters the activation of apoptosis in response to DNA damage via

ATM [45], which may therefore promote carcinogenesis.

Having revealed potential associations linked to known somatic

alterations, the most striking results of this study may concern the

identification of risk alleles at three EPH receptor loci. EPH-

mediated signaling regulates important biological process altered

in carcinogenesis, such as cell-to-cell communication, and cell

migration and adhesion via the actin cytoskeleton [39,40]. Thus,

through RHO and RAS/MAPK activities [46], this signaling

pathway has been implicated in the maintenance of epithelial

tissue architectures and is therefore thought to act as a tumor

suppressor [39,40]. These observations may indicate that, similarly

to colorectal tumorigenesis [42], EPH-mediated compartmental-

ization of early breast tissue neoplastic lesions is critical to prevent

the subsequent emergence of carcinoma. Therefore, through a

germline expression or functional perturbation, EPHB1 may

contribute to the observed variability in the transition from an in

situ lesion to an invasive carcinoma [47]. While the associations

revealed here warrant further replication in other populations, the

existing data could potentially increase current knowledge of the

genetic basis and molecular mechanisms of breast carcinogenesis.

Materials and Methods

CGEMS dataset
The National Cancer Institute CGEMS initiative has conducted

genome-wide association studies to identify common genetic

variants and the corresponding functionally affected genes

involved in breast cancer and prostate cancer susceptibility. An

initial CGEMS whole genome scan was designed to study the

main effect of SNPs on breast cancer risk in postmenopausal

women [2]. The study involved 1,145 invasive postmenopausal

breast cancer cases and 1,142 matched controls from the Nurses’

Health Study nested case-control study [48]. Results of the

CGEMS GWAS of breast cancer were obtained upon approval of

a Data Access Request.

Table 1. Association between genetic variation in EPHB1 and
risk of breast cancer in Poland.

EPHB1, rs3732568

Controls Cases

n % n % OR 95% CI

C/C 693 79.8 891 83.2 1.00

C/A 165 19.0 172 16.1 0.79 0.62–1.00

A/A 10 1.2 8 0.7 0.60 0.23–1.55

Total 868 1,071

Trend 0.79 0.63–0.98

Ptrend = 0.031{

{Adjusted by age.
doi:10.1371/journal.pone.0014078.t001

Figure 2. Early change of EPHB1 expression in breast carcinogenesis. The graphs show expression profiles in histologically normal (HN)
breast tissues versus patient-matched atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS) [41]. Results of two EPHB1 microarray
probes (names shown at the top) and the corresponding significance P values are shown.
doi:10.1371/journal.pone.0014078.g002
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GWAS rank
In our previous analyses [26,27], ordered CGEMS GWAS results

(i.e., ranks) corresponded to the lowest P value per gene for the

genotypic test in a genomic region of +/210 kb at each gene locus,

defined by the Ensembl human genome release 57. Assigned SNPs

were curated using Ensembl gene annotations. We [26] and others

[28] noted that such ranks were biased along with the genomic

extension–and therefore with the number of SNPs–per gene locus.

To adjust for this bias, several statistical strategies are possible [28],

including carrying out permutations of the case-control status to

correct the significance of the original statistic. In our analysis,

considering typed and informative SNPs in each gene locus, we first

chose the maximum absolute value of the t statistic from the age-

adjusted partial correlation in the additive model. Next, 10,000

permutations of the same informative SNPs were performed to

create a null distribution for this maximum t statistic, which was

used to assess its significance corrected by number of SNPs.

GSEA application
The distribution of gene sets in ranked GWAS results was

examined using the non-parametric algorithm in the GSEA tool,

with default values for all parameters [31] except for the set size

when appropriated. In GSEA, a pre-defined gene set is mapped to

a rank–in our case genes/loci ordered according to the adjusted

association statistic–to assess potential bias using an enrichment

score that reflects the degree to which this set is overrepresented at

the extremes of the entire ranked list. In the interpretation of the

results, caution should be taken when considering sets of different

size. In our study, different hypotheses were examined indepen-

dently (i.e., gene sets linked to prognosis, prediction or genetic/

genomic somatic alterations), and P values were corrected for

multiple testing within each group : 1) genes whose expression in

primary breast tumors was associated with patient prognosis and/

or metastasis [49–55]; 2) genes whose expression in primary breast

tumors was associated with patient therapeutic treatment response

[56–59]; 3) genes whose expression levels differed according to

ERa breast tumor status or grade [60], or in response to 17b-

estradiol [61]; and 4) genes with somatic genetic and/or genomic

somatic alterations (Table S2). This last group was made up of five

sets : i/ driver kinases (conditional probability of containing driver

mutations .0.70, n = 119 as defined previously [35], of which 95

were uniquely mapped in the GWAS rank); ii/ CRGs to

oncogenic mutations [36]; iii/ cancer gene census, somatically-

mutated only [62,63]; iv/ genes affected by somatic chromosomal

rearrangements and/or fusions [64]; and v/ amplified and over-

expressed cancer genes [65] (Table S2).

Gene expression analysis
Raw expression microarray data on breast cancer progression

[41] were downloaded from the Gene Expression Omnibus

reference GSE16873 and normalized with robust multiarray

average (RMA) [66] and significance analysis was performed using

the significance analysis of microarray (SAM) algorithm [67].

Study samples in Poland and association study
A case-control study of unselected invasive breast cancer collected

between 1996 and 2003 in Szczecin (Poland) was analyzed. The

series included 976 cases of breast cancer unselected for age and an

additional group of 367 cases of breast cancer diagnosed at age 50

or below. Therefore, the series was enriched for early-onset cases:

mean age of diagnosis was 52.4 years (range 19–88). Subjects were

unselected for family history and 15% of cases reported a first- or

second-degree relative with breast cancer. The participation rate

exceeded 70% among women with breast cancer invited to enroll.

Collected information included year of birth, age at diagnosis of

breast and/or ovarian cancer, tumor bilaterality, family history

(first- and second-degree relatives with breast and/or ovarian

cancer) and tumor pathological features in .80% of cases (ERa and

progesterone receptor status, and grade). Cases were also examined

for BRCA1 founder mutations in Poland [68] and, if positive,

Table 2. Associations between genetic variation in driver kinase loci and risk of breast cancer at #40 years of first age at diagnosis.

CDKL2, rs6852678

Controls Cases

n % n % OR 95% CI

C/C 39 51.3 62 51.2 1.00

C/T 28 36.8 54 44.6 1.21 0.66–2.23

T/T 9 11.8 5 4.1 0.35 0.11–1.12

Total 76 121

Recessive 0.32 0.10–1.00

Precessive = 0.044

DYRK2, rs10878640

Controls Cases

n % n % OR 95% CI

G/G 42 56.8 44 35.5 1.00

G/T 24 32.4 66 53.2 2.62 1.40–4.93

T/T 8 10.8 14 11.3 1.67 0.64–4.39

Total 74 124

Dominant 2.39 1.32–4.30

Pdominant = 0.003

doi:10.1371/journal.pone.0014078.t002
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excluded from the association study (n = 50). The control group

included cancer-free adult women from the same population (920

women with mean age of diagnosis of 56.7, range 20–91) taken from

the healthy adult patients of five family doctors practicing in the

Szczecin region. These individuals were selected randomly from the

patient lists of the participating doctors. The study was carried out

with informed consent of the probands and approved by local ethics

committees. Genotypes were obtained using Sequenom iPLEX

chemistry at the International Hereditary Cancer Center. Quality

controls were of .95% calling for each SNP and .90% of calls per

sample. Thus, in the set of 16 SNPs, we observed an average

concordance rate of 98.7% of genotype calls using 3.3% replicates.

Genotypes of 880 controls and 1,173 cases were effectively analyzed

using conditional and unconditional logistic regressions (age

adjustment using similar strata size; 20–46, 46–56, 56–66, and

66–91 years old).

Table 3. Associations of genetic variation in driver kinase loci and risk of breast cancer by ERa tumor status{.

BMPR1A, rs12765929

Controls ERa-negative ERa-positive

n % n % OR 95% CI n % OR 95% CI

G/G 514 59.1 189 64.5 1.00 389 58.4 1.00

G/T 306 35.2 96 32.8 0.87 0.65–1.16 243 36.5 1.07 0.86–1.33

T/T 50 5.7 8 2.7 0.45 0.21–0.98 34 5.1 0.93 0.59–1.48

Total 870 293 666

Trend 0.79 0.62–1.00 1.02 0.86–1.21

Ptrend = 0.050 Ptrend = 0.81
Pinteraction = 0.024

EPHB1, rs3732568

Controls ERa-negative ERa-positive

n % n % OR 95% CI n % OR 95% CI

C/C 693 79.8 242 82.6 1.00 563 84.9 1.00

C/A 165 19.0 49 16.7 0.81 0.57–1.16 94 14.2 0.68 0.51–0.90

A/A 10 1.2 2 0.7 0.55 0.12–2.56 6 0.9 0.72 0.26–2.00

Total 868 293 663

Trend 0.80 0.58–1.11 0.71 0.55–0.91

Ptrend = 0.18 Ptrend = 0.007
Pinteraction = 0.56

EPHA3, rs9836340

Controls ERa-negative ERa-positive

n % n % OR 95% CI n % OR 95% CI

A/A 446 51.3 154 52.4 1.00 356 53.7 1.00

A/G 341 39.2 99 33.7 0.84 0.63–1.13 251 37.9 0.91 0.74–1.14

G/G 82 9.5 41 13.9 1.43 0.93–2.19 56 8.4 0.85 0.58–1.22

Total 869 294 663

Recessive 1.53 1.02–2.31 0.88 0.61–1.26

Precessive = 0.040 Precessive = 0.48
Pinteraction = 0.010

EPHA7, rs4707795

Controls ERa-negative ERa-positive

n % n % OR 95% CI n % OR 95% CI

G/G 618 71.0 204 69.6 1.00 479 71.9 1.00

G/A 239 27.5 87 29.7 1.18 0.88–1.60 166 24.9 0.92 0.73–1.17

A/A 13 1.5 2 0.7 0.45 0.10–2.06 21 3.2 2.11 1.04–4.28

Total 870 293 666

Recessive 0.43 0.10–1.96 2.15 1.06–4.37

Precessive = 0.28 Precessive = 0.034
Pinteraction = 0.007

{Adjusted by age.
doi:10.1371/journal.pone.0014078.t003
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